CFRN I IBRARIES GENEVA

CM P00046419

WA 15 Expt.: N1Beam:

Approved: 08.07.1976 Preparation Status:

CERN/SPSC/76-69 SPSC/P 34 + P 39/S 19.08.1976

A WIDE BAND BEAM ANTINEUTRINO EXPERIMENT IN GARGAMELLE TO STUDY PURELY

LEPTONIC AND OTHER RARE V INTERACTIONS

Aachen 1-Bergen 2-Brussels 3-Strasbourg 4-University College London 5 Collaboration

G.H. Bertrand-Coremans³, F.W. Bullock⁵, M.J. Esten⁵, E. Fett², M. Goossens³, A. Haatuft², A. Halsteinslid², T.W. Jones⁵, J. Morfin¹, H. Mulkens³, K. Myklebost², J.M. Olsen², A. Rognebakke², J. Sacton³, A. Schumacher¹, O. Skjeggestad², P. Vilain³, H. Weerts¹, L.C. Welch¹, (plus 4-5 physicists from Strasbourg).

This experiment proposes to principally study rare antineutrino interactions giving rise to an electron in the final state. Of main interest are the reaction

- a) $\bar{\nu}_{\mu} + e^{-} \rightarrow \bar{\nu}_{\mu} + e^{-}$; leptonic n.c. process
- b) Dilepton processes
- c) $\bar{\nu}_{p}$ and ν_{p} interactions
- d) Events with μe V^O topology

Gargamelle is assumed to be filled with a mixture of 20 mole % CF3 Br and 80 mole % C3 H8, resulting in a liquid with a density of 0.62 gcm and a radiation length of 40 cm.

Some expected yields are:

- a) between 20 and 50 events, depending on the Weinberg angle which is assumed,
- about 100 events with µe final states and an approximately equal number of μμ pairs. The latter will probably be more difficult to extract,
- 1000 events type $\bar{\nu}_{p}N \rightarrow e^{\dagger}N$ and 620 events type $\nu_{p}N \rightarrow e^{\dagger}N$.

Whereas an EMI is not needed for interactions of the type a) such a device is mandatory to realise the full potential of the experiment.

The wide band $ar{\mathsf{v}}$ beam NI is requested with a total intensity on the target of 5.10^{18} protons, which would result in an exposure of 5.10^5 pictures if 10^{13} p/pulse were extracted. It is hoped to complete the exposure within two years, with at least 1/5 of it taken during the first year. A first exposure of about 105 pictures would be worthwhile as soon as the intensity has reached a value of 10^{12} p/pulse on the target.

(Summary edited by R. Budde)

References:

SPSC/74-122/P 34; SPSC/75-5/P 39; SPSC/75-73/P 34 + P 39/Add.1