CERN LIBRARIES, GENEVA

CM-P00044095

Status report on approved Omega experiments
and summary of new proposals with tentative schedule for 1974

J.D. Dowell
Omega Coordinator

Summary of status of Omega experiments

1. Slow n experiment S112

Study of neutral bosons with a neutron time of flight trigger.

$$\pi^{-}p \rightarrow X^{0}n$$
 at 12 GeV/c

Data taking complete. 3M triggers recorded. 1M good.

e.g.
$$60,000 X^{0} \rightarrow \pi^{+}\pi^{-} \sim 250 ev/\mu b$$

2. Slow p experiment S113

Systematic study of high mass boson resonances with high statistics and goo resolution.

$$\pi^{-}p \rightarrow X^{-}p$$
 at 12 GeV/c

Data taking complete. 3.3M triggers recorded. 2M good.

e.g. 200,000
$$X \to \pi^- \pi^+ \pi^-$$

150,000 $X \to \pi^- \pi^0$ $\sim 300 \text{ ev/}\mu\text{b}$

3. Fast Λ experiment S114

Study of two-body, quasi two-body and inclusive process involving a fast Λ - including polarization.

Data taking complete.

$$\pi^- p \rightarrow \Lambda^0 X^0$$
 at 8 GeV/c 1.0M triggers, 55,000 Λs , few 1000 ev/ μb $\pi^+ p \rightarrow \Lambda^0 X^{++}$ at 12 GeV/c 0.2M triggers, 1,500 Λs , few 100 ev/ μb

4. Fast $\bar{\Lambda}$ experiment S115

Study of high mass resonances decaying into BB or BBB.

Half data taken, finish in April 1974.

$$K^{\dagger}p \rightarrow (\bar{\Lambda}, \bar{p}, K^{-})$$
 + anything at 12 GeV/c.

$$\pi^+ p \rightarrow ditto$$

0.82M K[†]p triggers recorded > 100 ev/
$$\mu$$
b (seen $\bar{\Lambda}$).

Expect 3,500
$$\overline{\Lambda}$$
, 35,000 K° .

5. K* experiment S116

Study of non-diffractively produced K^*s , $K^-p \rightarrow K^0\pi^+\pi^-n$.

Expect \sim 15,000 good events \sim 250 ev/ μ b.

Require multiplicity in 2 MWPC. One tested with associated logic, second under construction. Ready to take data in summer 1974.

6. Fast p experiment S117

Study of baryon exchange.

$$\pi^{-}(K^{-}, p) p \rightarrow p + X$$

$$\pi^{+}(K^{+})p \rightarrow p + X$$
at 12 GeV/c

Cross sections < 1 µb.

Full test carried out in December 1973; 0.2M triggers at $44/10^5 \pi^-$. π^+ not yet tested. Should take data in May 1974. Expect $\gtrsim 10^4$ ev/µb.

7. $\underline{\pi\pi}$ experiment S133

 $\pi\pi$ scattering lengths and phase shifts for $M_{\pi\pi} < 500 \text{ MeV/c}^2$. $\pi^{\pm}p \rightarrow \pi^{+}\pi^{\mp}n$ at 3.2 GeV/c.

Partial test in June 1973 with vertical wires only in a MWPC. Trigger rate encouraging at 8.2 x 10^{-4} . Should go down by a factor 3. Expect 8,000 events in each channel for $\rm M_{\pi\pi}$ < 500 MeV/c².

Data taking runs (allocated by EEC)

1973	2½ days useful (PS troubles)	
1973	Good run	n, Λ̄, p
1973	Good run	Finished Λ (S114), p (S113)
1973	6 days lost due to Ω compressor	Finished n (S112)
1974	??	Finish $\Lambda(S115)$, $\pi\pi$ (S133)
	1973 1973 1973	<pre>1973 Good run 1973 Good run 1973 6 days lost due to</pre>

The runs included tests for Fast p (S117) and K * (S116)

Criteria for judging Omega experiments

Triggering

- a) Incident π
- b) Low cross section \sim 100 μb
- c) Large acceptance

Give high sensitivity

≥ 10,000 ev/µb

few 100 x bubble chamber

but may be biased especially when triggering on decay products.

Other Omega features

i) Large acceptance for multipronged events

- .. one should look at 3 or more prongs since
- e.g. CERN Munich can look at 2

but not too many because of multitrack efficiency and pattern
recognition problems.

ii) Data ready digitized.

Even if the above triggering criteria are not satisifed one can record measured events in a very short time $\gtrsim 10$ x bubble chamber in 10 days.

iii) Resolution

2 x bubble chamber.

iv) Cerenkov identification

Qualitative advantage over bubble chamber. Also allows rapid selection of interesting events at the analysis stage.

Request 10 days? 10 days 7 days Time 14 days Existing trigger. Can be Useful in anticipation fitted in without ξ . of SPS RF beam. Good Topical. Anticipates test of principle. Other points higher energies. Complementary to slow n,p slow n, p. Main interest mation on KKm, ppm etc. Essentially new infor-100 X bubble chamber Summary of New Omega Proposals Physics Large multiprong | Complementary to knowledge of K*s Provide needed improvement in т т т , т т т т т , т т Exploratory Omega features exploited acceptance Ditto Ditto Ditto **း**ပ ر. د ن + Biased No Yes Yes No Ev/ub 100 3,000 10,000 250 (Letter of Intent) (PH I/COM-73/49) (PH I/COM-73/50) Experiment (PH I/COM-73/65) Rare decays of K⁺ interaction (CERN/EEC-74/1) $^{\text{t}}$ $^{\text{t}}$ $^{\text{t}}$ $^{\text{t}}$ High $m p_{T}$ trigger mesons

Tentative 1974 Omega_schedule

PS period	<u>Dates</u> <u>Nor</u>	ninal Length	(x5/7) <u>Plan</u>
2	13/3 - 11/4	4½ weeks	Test double $\check{C}/Run \pi^{+}(n)$?? Finish $\bar{\Lambda}$ (S115) Finish $\pi\pi$ (S133)
3	22/4 - 29/4	1 week (GGM)	Test fast p (S117) Test K* (S116) Test drift chamber
4	29/5 - 22/6	3½ weeks	<pre>{ Run fast p, test K* test new experiments/drift chamber.</pre>
5	1/7 - 8/7	1 week (GGM)	Test K*/test new experiments
6	5/8 - 24/8	∿ 3 weeks	Run K*/test new experiments
8	2/10 - 26/10	3½ weeks	Run new experiment(s)
9	30/10 - 23/11	3½ weeks	Run new experiment(s)