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We present first results from a simulation of quenched overlap fermions with improved gauge field action Among
the quantities we study are the spectral properties of the overlap operator, the chiral condensate and topological
charge, quark and hadron masses, and selected nucleon matrix elements To make contact with continuum physics,
we compute the renormalization constants of quark bilinear operators in perturbation theory and beyond

1 INTRODUCTION

Lattice calculations at small quark masses, ie
in the chiral regime, requiie actions with good
chiral properties Overlap fetmions [1] have an
exact chiral symmetry on the lattice [2] and thus
are predestined for this task A further advantage
of overlap fermions is that they are automatically
O(a) improved [3]

The massive overlap operator is defined by

D — (1 _ a_mq
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) DN +myg, (1)

*Talks piresented by M Gtirtler, R Hosley, H Peitlt and
T Streuer at Lattice 2003
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where Dy is the Wilson-Dirac operator We as-
sume r = 1 throughout this paper The operator
Dy has n_ + ny exact zero modes, Dyv, = 0,
n_ (n4) being the number of modes with negative
(positive) chirality, ys¢n = —¥n (vs¥n = +%n)
The index of Dy is thus given by v = n_ — ny
The ‘continuous’ modes A, Dy, = Ay, having
(1[21,751,11)‘) = 0, come in complex conjugate pairs
A, AF
To compute the ‘sign function’

X

XTY

we use Zolotarev’s optimal rational approxima-

sgn(X) =

=9ssgn(H), H =%, (3)



tion [4] To improve the accuracy of the rational
approximation, and to reduce the number of iter-
ations in the inner inversion, we project out the
~ 16 lowest eigenvalues of H The approxima-
tion of the ‘sign function’ is done to better than
5 10~7 in the interval [0 1,2 4] We use a multi-
mass conjugate gradient solver in both the inner
and outer inversions For any given quark mass
this allows to compute propagators for a whole set
of higher quark masses at very little extia cost in
CPU time For the inner and outer inversions a
stopping criterion of 10¢ and 5 107°, respec-
tively, is employed

It is important to use a good gauge field action,
because the inversion time of the fermion matrix
is greatly reduced for improved gauge field ac-
tions We use the Liischer-Weisz action [5]
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with coefficients c1, ¢z (¢o + 8¢1 + 8¢z = 1) taken
from tadpole improved pertuibation theory [6]
In Fig 1 we compare the condition number of
the Wilson and tadpole improved Lischer-Weisz
gauge field action We see that the condition
number is a factor of > 3 laiger for the Wilson
action This is laigely due to the fact that the
Liischer-Weisz action suppresses dislocations [7]
and thus gieatly reduces the number of (unphys-
ical) zero modes Topological studies using the
Wilson gauge field action should be taken with
caution

The calculations are mainly done on the 16332
lattice at B = (6/¢)co = 8 45, whete [6] ¢; =
—0 15486 and c2 = —0 013407 The correspond-
ing lattice spacing is a = 0095 fm if we use
ro = 05 fm to set the scale We have taken
p = 14, which we have found to be the optimal
choice In addition, pait of the calculations have
been done on the 12324 lattice at 4 = 8 1 to test
for scaling The lattice spacing here 1s ¢ = 0 125

T T T T T T T

—— Llischer Weisz
Wilson

2000 |- ) E

Figure 1 The condition number for the Wilson
and tadpole improved Lischer-Weisz gauge field
action on the 163 32 lattice at lattice spacing a ~
01 fm for p = 14, as a function of configuration
number

fm [6] Both lattices have the same physical vol-
ume V

2 SPECTRAL PROPERTIES

The eigenvalues of Dy lie on a circle around (p,0)
with radius p in the complex plane The improved
operator D\'? = (1 —aDn /2p)~! Dy [3] projects
the eigenvalues of Dy stereographically onto the
imaginary axis The ‘continuous’ eigenvalues of
DY'P come in pairs =i\, while the zero modes
are untouched

We have computed the lowest & 140 eigenvalues
of Dy on both our lattices for O(250) gauge field
configurations each ~We employed the Ainoldi
algorithm as provided by the ARPACK package
If one defines the topological chaige density by
q(z) = (1/2)Tr (y5s Dn (2, z)) [8], the total charge
Q 1s given by the index of Dy

Q=) alz)=n_—ny (5)

Using this definition we have computed the topo-
logical susceptibility yiop = (Q*)/V and find

B | Atop
810 | (195(5) MeV)? (6)
845 | (187(5) ]\/16\7)4

The spectial density of the ‘continuous’ modes is



formally given by
p0) = {260 - 1)), 7
X

where the sum extends over the (non-zero) eigen-
values +iX of DI In our case 0 < |A| < 800
MeV In practice one groups the eigenvalues into
bins, whose size will depend on the statistics In
the infinite volume £ = —(¢¢) = —mp(0) In the
finite volume and for small eigenvalues the spec-
tral density can be computed from the chiral low-
energy effective theory For A < Er, Er being the
Thouless energy Er ~ f2/5v/V, the low-energy
effective partition function is dominated by the
zero momentum modes, and the zero-momentum
approximation of the chiral low-energy effective
theory is equivalent to chiral random matrix the-
ory In random matrix theory the microscopic
spectial density in the sector of fixed topological
charge Q,

. 1
(V) = Jim = p(0) g (8)
with ZV X kept finite, is given by [9]

xr
P (@) = 5

5 (Va1 (@) = Jiei+1(2) Jigi-1(2)), - (9)

where J,(z) are Bessel functions Thus, for A <
E7r the spectral density is given by

PN =3 w(@) piP (TV ), (10)
Q

where w(Q) is the weight of the sector of topo-
logical charge Q with ", w(Q) = 1 Taking
w(@) from our ‘measured’ chaige distiibutions,
we then may obtain ¥ by fitting (10) to our
data In Fig 2 we show the data together with
the fit for § = 845 We obseive that ran-
dom matiix theory desciibes the data well up to
A ~ 150 MeV For the (unrenormalized) chiral
condensate we find ¥ = (242(8) MeV)? at f = § 1
and © = (249(9) MeV)3 at 8 =8 45 We will give
renoimalized values after we have computed the
1enormalization constants

Random matiix theory piredicts furtheimore the
distiibution of the smallest non-zero eigenvalue in

0 002 004 006 008 01

Figure 2 The spectral density p(A) at 8 = 8 45,
together with a fit of random matrix theory to
the data Both p and A are given in lattice units

the sector of topological charge @, which we call
p(S%)(EV/\) The fitst few expressions are [9]

T .2

PSa(e) = el
Zz 2

PSp(a) = 5 Ph(), (11)
r _p2

pspla) = e (B(2) - L@)s(2))

After having determined ¥ from the spectral den-
sity of all eigenvalues, these formulae contain no
free parameters anymore, and thus can be com-
pared directly to our ‘measured’ distributions In
Fig 3 we show our data together with the pre-
dictions of 1andom matrix theory We find good
agreement

3 RENORMALIZATION

To obtain physical results from lattice calcula-
tions of hadron matrix elements the underlying
operators have to be 1enoimalized Let us denote
the lattice regulaiized operators by O(a) We
then define renormalized operators OF (1) by in-
tioducing the renormalization constant Zo (apu)

O™ (1) = Zo(ap)O(a) (12)

The 1enormalization constant Zo (au) is found by
imposing the 1enoimalization condition

Aolprmye = Zylap)Zo(ap) ' AG™

+ other Dirac structuies, (13)



—
Q=0 Q=1 Q=2
05—+ 05— 05—+
—
wt N 0it 0st
% % =
S Eoat = Hoa QA Roa
o = u =4
02+ 02—+ 02—
01— LIk o Ill—’—
* | . . -
T T T T T
o 5 10 0 10 5 10
X X
Q=3 IQl=4 Q=5
o.cT 054 054
04~ 04—+ 04 ==
] ~Z =2
[T T Roz _ ESBCLEE o
[=% Q (=% N
02— 02—+ 024
01 011 0l / \
DZF |
A , [T . s , [ >
5

(@)

Figure 3 Distiibutions of the smallest non-zeio eigenvalue pg3(z) as a function of z = XV for |Q| =
0, ,5on the 16332 lattice at 8 = 8 45, together with the predictions of 1tandom matiix theory, in lattice

units

where Zy is the wave function renormalization
constant to be defined below and Ap is the
forward (quark line) amputated Green function
computed between off-shell quark states with 4-
momeritum p  We consider quairk bilinear oper-
ators only The renormalized operator O%(p) is
independent of the regularization scheme, but will
depend on the external states and on the gauge
The operator matrix elements can be converted
to more popular schemes like MS by means of
continuum perturbation theory

In the following we present first 1esults of a
perturbative calculation of renormalization con-
stants for oveilap feimions and improved gauge
field action So far results for oveilap fermions
ate only known for the Wilson gauge field ac-
tion [10,11] The numbers given below hold for
¢1 = —0 15486 and ¢y = —0 013407 (ie the im-
provement coefficients at § = 8 45), while we keep
the (bare) coupling constant g aibitrary, which
allons us to exchange it for a better expansion
parameter

The lattice Feynman 1ules for overlap fermions
have been derived in [12,13] The gluon propa-
gator for impioved gauge field action is known in

four dimensions only [14,15] A suitable form for
dimensional regularization is

D3P = DV + AD,,, (14)
where
. 1 L I
Wil . puho
DWI son _ ;‘E <5uu £ = ) , (15)

is the standaid Wilson propagator with i:” =
(2/a)sin{ak,/2), and ¢ specifies the gauge The
Landau gauge corresponds to £ = 1, the Feyn-
man gauge to £ = 0 The six-link interaction
terms are contained in AD,, = D}f}}p - DXY,“SO“
While D,YY,“S"" leads to infiaied divergent expres-
sions, which have to be regularized, expressions
involving AD,, aie infiaied finite and thus can
be computed in four dimensions We may wiite

L

4
ADu, = Sy Dol ey, ) k2
n=0
(16)
m+4n=4 ) ) )
+ Z Dm n(ky Clyc'.?) 'I‘A'Zm-'-l k;:"+1

m n=0



The coefficient functions D, and Dy, = Dy
ale rational functions involving k and c1,2 Bx-
plicit expressions are given in [16] Both functions
vanish in the limit ¢; 3 — 0

Self energy

The inverse of the massless quark propagator can
be written in the form

S™l=jy—xht (17)
with
lat __
Et_.1621112( p?) (18)
For the quaik self energy ¥; we find
Si(@®p?) = (1-¢) n(a’p?)
+ 479201¢ + by (19)
with
by = —16 179 (20)

Fiom (19) we obtain the quark wave function
renormalization constant

2

g°C
Zy(ap) = 1 = =g Ta(a®ss?) (21)

Local operators

Let us consider local operators

Ox =9T¥y =X (22)
now with

X rx

S 1

P Y5

v Yu

A s

T Tuvs

To find the 1enormalization constants we have to
compute the amputated Green functions Ap, =
A*  We obtain

)

SP _ . GCF 4 29
AT =A{1s) + ——16”2[ (4 = &) In(a’p?)
= 5792018 + bs p] {1, 75}, (23)

AZA—{’YM’7N75}+ Tom 2{[ )lnaPZ)
— 479201€ + by 4l (24)
Pu l;
20-6) P (1, 3),
¢*Cp
AL, = ouys + T6m2 = [¢ In(a®p?)
~ 3 79201€ + br]o s, (25)
where
bsp = 10512,
bya = 6228, (26)
bp = 3900

Using (13) we then arrive at the renormalization
constants

9°Cr
Zsp = 1- 16 7 [=6In(ap) — €+ bs p + b,
Zya = 1- ‘(i [bv a + bs], (27)
¢*Cr
Zr = 1- Tom2 [2111(a;4)+§+b7~+bg]

In the M S scheme this gives

—_ 2

Zgy’};g = 1- ‘016CF [-6In(ap) =5+ bs p + bx],
WS C

Z\%f =1- g a [bVA + bs], (28)
— gz

zMs = e (ap) + 14 by + bg]

One-link operator

The one-link operator that will be of interest to
us hete is

O = %g{?'yu BV ¥ — Tiaces (29)

Two different i11educible 1epresentations of O,
under the hypercubic group have been considered
in the literatuie [17]

O,

0{14}7

3
, , ] » .
Oy, = 044 — 3 Z Oii, (30)



whete { } denotes symmetrization of the in-
dices Because of space limitations we will not
give the Gieen functions here but only state the
final 1esults For the renoimalization constants of
the operators . we obtain in the MS scheme

2

s _,_9°Cr[l6 40
2 =1-T53 [3 In(ap) +ba v+ +bz](31)
with
b, = —6516,

by, = —b5617 (32)
Improvement

Lattice perturbation theory is known to conveirge
badly due to the appearance of (gluon) tadpole
diagrams, which are lattice artifacts and which
make the bare coupling g into a poor expansion
parameter It was proposed [18] that the pertur-
bative series should be rearranged in order to get
rid of the tadpole contributions We have made
use of this observation already in tuning the coef-
ficients of the Liischei-Weisz action (4) For the
1enoimalization constants this rearrangement is
done in [16], following a method simila1 to that
in [19] Writing

Crg® -

Z(’) = ]. - ]_67['2 BOy (33)

we ar1ive at the tadpole improved 1esult

R sea fp s LuK T
e p—4+4dug 1672 ud ©

- (1 - % - nD)ku]}, (34)

wheire
1 1
Ug = <-3-TI‘ U])laquetté) ! ) (35)

np is the number of covariant derivatives and [20]
ky, = 0732572 The difference to the Wilson
gauge field action is that (1—np)n? now has to be
replaced by (1 —4/p—np)k,, and there is an ad-
ditional prefactor of p/(p—4 —4ug) At our value
of #(ie g° =16658) we find ui = 065176

Alternatively, for the local operators (with np =
0) one may improve the perturbative result by
writing [21]

_Crg?
1672

ZY1 = grerpert [1 (Bo — BV)], (36)

where Zp°"P*™ is the mnonperturbatively deter-

mined renormalization constant of the local vec-
tor cuirent and ZD*™ the perturbatively com-
puted one A similar procedure can be envis-
aged for the one- and higher-link operators In
that case Zy """ will have to be replaced by the
appropiiate nonpertuibatively determined renor-
malization constant of the one- and higher-link
operator, 1espectively

In Table 1 we compare the results of the vari-
ous improvement schemes with the perturbative
result For Zp°"P"™ we have taken the nonpertur-
bative result Z4 = 1 416 derived below (eq (48))

0 | Zo | 25 | 24T
S, P | 1150 | 1190 | 1430
V,A | 1140 | 1171 | 1416

T | 1159|1207 | 1443
Os | 1257|1335 -
O, | 1244|1308 | -

Table 1

Comparison of 1enormalization constants at the
scale ap = 1 for B = 8 45 and Zy°"P™" =1 416 in
the M S scheme

4 CHIRAL CONDENSATE

Knowing Zs, we can now compute the renormal-
ized chiral condensate

(YR (p) = ~Zs(ap) S (37)

It 1s traditional to quote numbers for yu = 2 GeV
In the M S scheme we obtain Z17(2 GeV) = 1 253
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Figure 4 Effective pion masses for our four dif-
ferent quark masses from (A4(t)A4(0))

at =81and ZE(2GeV) =1184 at B = 845
This gives

B_| (%) (2GeV)
810 | (261(9)MeV)? (38)
845 | (263(9)MeV)3
We find good agreement with scaling

At B = 8 45 we have ZY1(2GeV) = 1426 Us-
ing this value for the renormalization constant we
obtain (4)M5(2GeV) = (280(10) MeV)3

5 QUARK AND HADRON MASSES

The results presented in this and the next Section
refer to the 163 32 lattice at § = 8 45 The calcu-
lations aie done for four different quark masses,
amg = 0028, 0 056, 0 098 and 0 140 (correspond-
ing to ap = amg/2p =001,002,0 035and 0 05 )
To inciease the overlap of meson and baryon oper-
ators with the giound state wave function we use
smeared souices [22] with £, = 0 21 and N, = 50
The calculations of two-point functions aie based
on O(100) configurations The code has partly
been written in SZIN [23], which has the advan-
tage of being flexible and machine independent

Pion mass

We compute the pion mass fiom various coi-

relation functions (P(1)P(0)), (A4({1)P(0)) and
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Figure 5 Effective pion masses fiom

(A4(t)A4(0)) before (solid symbols) and af-
ter (open symbols) removal of zero modes fiom
the quark propagators

(A4(t)A4(0)), where P is the pseudoscalar den-
sity and A, the axial vector current In Fig 4 we
show the effective mass plot of (A4(t)A4(0)) for
our four quark masses This correlation function
is least affected by finite size corrections induced
by zero mode contributions [24,25] The result-
ing pion masses are given in Table 2 Our lightest
pion mass is & 400 MeV, which is compatible with
quenched Wilson fermion calculations

The correlation functions (P(¢)P(0)) and
(A4(t)P(0)) give compatible results, albeit with
larger ertor bars If one explicitly 1emoves the
zero mode contributions from the quark propa-
gatols one arrives at the 1esult shown in Fig 5
It appeais that the pion mass obtained from
(A4(t)A4(0)) increases by ~ 10% (5%) at the

amg amy mgy [MeV]
0028 | 0211(3) 439(6)
0 056 | 0 288(2) 599(4)
0098 | 0383(2) 797(4)
0140 | 0466(2) | 969(4)

Table 2

Pion masses fiom (44()44(0)) We have used
a = 0095 fm to convert the lattice numbers to
physical units
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Figure 6 The pion mass (am.)? as a function of
amyg, together with the fit

lowest (highest) quark mass Whether this is
a valid procedure to reduce finite size effects is
not clear to us, because 1t involves a nonlocal
step [26] But it should be taken as a warning
that finite size effects might still be large

In Fig 6 we plot m2 against mg, and in Fig 7
we show the deviation of m2 fiom linearity
Quenched chiral perturbation theory predicts, in
the infinite volume,

m2 = Amg(1 - 6[In(Amg/A2) +1]) + O(m2) (39)
We fit our data by
m2 = Amg + BmgInm, + Cmg (40)

The 1esult of the fit is shown by the curves in
Figs 6 and 7 Using Ay =47 fr (fxr = 93 MeV),
we detive § = 026(9) This number agrees,
within er1o1 bars, with what one would expect
Howevel, before one can draw any conlusions, a
careful study of finite size effects must be per-
formed

Quark masses

We determine the bare light and stiange quaik
masses, m; = (my, + my)/2 and my, from the

am?/m,_

14 -

M IS e

ST GRS B SR N
0 005 01 015 02

amq

12

Figure 7 The ratio am? /mq as a function of amg,
together with the fit

physical pion and kaon masses [27,28]

miphys = Amy+ Bmylnm, + Cm3, (41)

m%{phys = A(me+m,)/24 B(mg +my)/2
(ms Inmg; — mylnmy _ 1)

(42)

ms — MMy

+ C(me+ms)/2)?

We find am, = 00020(3) and am, = 0 068(2)
The 1enoimalized quaitk mass 1s given by
mlt = Zn,(ap)my with Z,, = 1/Zs  Using
ZIT(2GeV) = 1184 (and a = 0 095 fm), we ob-

tain

mMS(2GeV) = 35(3) MeV, (43)
mM¥(2GeV) = 119(4) MeV (44)

If we use Z§1(2GeV) = 1426 instead, the num-
bers 1educe to

I

m?ﬁ('z GeV)

mMS(2GeV)

2 9(3) MeV, (45)
99(3) MeV (46)

I

The light quaik mass m, should not be taken too
seriously, because it 1s strongly affected by chiral
logaiithms



16 — e — -
N<14_‘—\°"\9\§_\Q\~
13 .
12- . L il N !
V] 005 01 015

am

Figure 8 The renoimalization constant Z4 as a
function of amg, together with the chiral extrap-
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Nonpertur bative determination of Z 4

The renormalization constant Z4 can be com-
puted nonperturbatively from the Waid identity
(cf [25)

Z4 = lim 2m, (P(t)P(0))
t—o0 my (Aq(t)P(0))

(47)

The result is plotted in Fig 8 We see that Z4
depends only weakly on the quark mass A linear
extrapolation to the chiral limit gives

Za =1416(2) (48)

This number lies 20% above the tadpole improved
perturbative result

amyg ampy my [MeV]
0028 | 060(3) 1250(60)
0056 | 065(1) 1350(20)
0098 | 0775(10) | 1612(20)
0140 | 0875(5) 1820(10)

Table 3
Nucleon masses We have used a = 0 095 fm to
convert the lattice numbers to physical units

30 T T T
I ®
20 - N
w \
) o
% F
z
E r
~— r (0]
10 - $ i
[k
;
OIL.JAI..J.I....I+.l.
0 005 01 015 02

arnq

Figure 9 The nucleon mass (mpyro)? as function
of amg, together with the experimental result (),
using ro/a = 5 26

Nucleon mass

Our results for the nucleon mass are given in Ta-
ble 3 In Fig 9 we plot (myrg)? against m,
Except for the lowest mass, which currently is
not very well determined, the data points lie on a
straight line, which extrapolates surpiisingly well
to the experimental value

6 NUCLEON MATRIX ELEMENTS

While hadion masses are determined from two-
point correlation functions, nucleon matrix ele-
ments of quark bilinear operatois O,

(N|OIN), (N|N) = 2my, (49)

are derived fiom 1atios of three-point to two-point
functions,

(N (O ()N (0))

R==NoR o)

~ ——(NlOIN),  (50)
my

which fo1 ¢ > 7> 0 aie propoitional to the de-
sited matiix element, as shown on the 1 h's of
eq (50) Here N({) is a suitable baiyon operator
We consider nucleons of zero momentum only
This technique 1s by now standaid For details
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Figure 10 The ratio R plotted against the posi-
tion 7 of the operator Oy for amy = 014 The
source (V) is placed at time slice ¢ = 0, and the
sink (N) at t =13 From a plateau att > 7> 0
we can determine R

and the numerical implementation the reader is
referred to [22,29] The calculation of three-point
functions 1equires additional inversions and there-
fore is computationally expensive The calcula-
tions in this Section are based on O(50) configu-
rations, so the 1esults must be regarded as very
pieliminary

While hadion masses are automatically O(a) im-
proved, operator matrix elements aie generally
not, except in the chiral limit However, in dis-
tinction to improved Wilson fermions, improve-
ment for overlap fermions is very simple and uni-
versal [3]

o = (1~ “2—";9')_1 0 (51)

This a major advantage, as we do not have to
compute mat1ix elements of higher dimensional
operators, nor thenn associated impirovement co-
efficients

We shall consider two operatois, the local vector
curtent V, and the one-link operator O, The
nucleon matiix element of @, yields the first mo-
ment of the unpolatized nucleon stiucture func-
tion The 1esults presented in this Section 1efer
to impioved, nonsinglet operatois

A typical ratio R i1s shown in Fig 10 for the oper-
ator @y from which we can find the bare nucleon
mat1ix element

Local vector current

Let us first look at the local vector current Due
to charge conservation

(NIVEINY = Zy (N|V,IN) = 2my, (52)

which may be used to compute Zy [30] We ex-
pect Zyv = Z 4, and the idea is to test this hypoth-
esis In Fig 11 we plot Z" against am, We com-
pare this result with Z4 computed from eq (47)
in Section 5 We see that Zy approaches Z4 in
the chiral limit, while at our largest quark mass
the numbers differ by a few percent Though the
opelators are O(a) improved, discretization errors
~ (amy)? are still possible, which might explain
the small slope A linear extrapolation to the chi-
1al limit gives

Zy = 1426(7) (53)

First moment of the structure function

Let us now turn to the operator @, The nucleon
matrix element of the operator O, is much harder
to compute, as it requires a nonzero nucleon mo-
mentum The matrix element of the renormalized
operator O, gives [22]

(NIOFIN)

Zp (NOu|N)
(54)
= —2m% (z)

For the tadpole impioved 1enoimalization con-
stant in the M S scheme we find ZM5(2GeV) =
1314 In Fig 12 we show the fitst moment of the
nonsinglet nucleon stiucture function () in the
MS scheme at y = 2GeV  Our data at the two
smallest quark masses ate too noisy to be conclu-
sive At the higher quaik masses the numbers are
surprisingly low, and closer to the phenomenolog-

ical 1esult, in compaiison with previous calcula-
tions using Wilson fermions
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Figure 11 The renormalization constant Zy from
this calculation (solid symbols) compared with
Z 4 from Section 5 {(open symbols) as a function
of amg, together with linear extrapolations to the
chiral limit The symbols at the lowest quark
mass are displaced by a small amount so that they
do not overlap

7 SUMMARY

Ovetlap fermions have many advantages over
Wilson and staggered fermions They provide
an implementation of lattice fermions with ex-
act chiral symmetry, even at finite lattice spac-
ing In addition, they are automatically O(a) im-
proved, and the task of operator renoimalization
is greatly 1educed

Calculations with overlap fermions on fine
grained, phenomenologically relevant lattices are
progressing 1apidly They are computationally
costly, but by using an improved gauge field ac-
tion and projecting out the lowest lying eigenval-
ues the condition number can be substantially 1e-
duced We have tested the piedictions of randoni
mattix theory and find good agieement with the
unfolded distiibutions of the smallest eigenvalue
in topological sectors up to |@| =5 The 1enoi-
malization constants of local and one-link opei-
ators have been computed perturbatively for the
tadpole improved Luscher-Weisz gauge field ac-
tion The one-loop corrections tuin out to be 1ela-
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Figuie 12 The fizst moment of the nucleon struc-
ture function (z) at 4 = 2 GeV as a function of
amg Also shown is the phenomenological value

(*)

tively large, and in most cases significantly larger
than in the improved Wilson fermion case [19],
which calls for a nonpertuibative determination
As afirst step, we have computed Z4 and Zy non-
perturbatively We find that Z4 and Zy agree
in the chiral limit, as expected The nonper-
turbative numbers turn out to lie 20% higher
than the tadpole improved perturbative values
(at @ = 0095 fm) On the phenomenological side
we have computed the topological susceptibility
and the chiral condensate from the spectium of
low-lying eigenvalues The topological suscepti-
bility is found to be in good agreement with the
Witten-Veneziano formula

mé, = ij\g—thop, (59)

™

giving m,y = 920(50) MeV We employed 1andom
matrix theory to derive the chiral condensate in
the infinite volume We went on to compute the
pion, nucleon and quark masses We find some
signal for chiral logarithms Both 14/a [6], using
79 = 0 5 fm, and the nucleon mass give compati-
ble values fo1 the lattice spacing Our lowest pion
mass so fa1 i1s m, ~ 400 MeV Theie is quite a big
uncertainty in the strange quairk mass due to an
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uncettainty in Z,,, Finally, we were able to com-
pute the fitst moment of the nucleon structure
function
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