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ABSTRACT

Some recent studies of the properties of D-particles suggest that in string theory a rather conventional description
of spacetime might be available up to scales that are significantly smaller than the Planck length. We test this
expectation by analyzing the localization of a space-time event marked by the collision of two D-particles. We find
that a spatial coordinate of the event can indeed be determined with better-than-Planckian accuracy, at the price of
a rather large uncertainty in the time coordinate. We then explore the implications of these results for the popular
quantum-gravity intuition which assigns to the Planck length the role of absolute limit on localization.

1



1 Introduction and summary

The idea of an absolute limit on localization has a very long tradition in quantum-gravity research [1].
Some representative studies of various realizations of this idea can be found in Refs. [2, 3, 4, 5, 6,
7, 8, 9]. As a result, much of the research in quantum gravity is guided by the intuition that the
localization of a spacetime event should be fundamentally limited by (at least [6, 7]) the Planck
length, LP ∼ 10−33cm, and that the length of a spacetime interval could at best be measured with
Planck-length accuracy. The “pre-D-brane” perturbative string-theory literature provides support
for these expectations, since the analysis of closed-string scattering indicates [10] a corresponding role
for the string length Ls in measurability limits (which is compatible with the Planck-length limit,
since in perturbative string theory LP < Ls). However, some more recent studies [11, 12, 13, 14]
have obtained results in favour of the possibility that the collision region, for collisions of D-particles,
could have substringy and subplanckian size. This is based on the observation [14] that D-particles
with appropriately small relative velocity can be basically treated as ordinary very-weakly-interacting

point particles up to distances as small as g
1/3
s Ls, without encountering comparatively large relative-

position quantum uncertainties, in a framework where gs � 1 and LP ∼ g
1/4
s Ls (so that g

1/3
s Ls �

LP � Ls).
These string-theory results have not affected the intuition of those working in other areas of

quantum-gravity research. The Planck length is still assumed to set the absolute limit on localiza-
tion and on length measurement. The D-particle results are apparently perceived as some sort of
peculiarity of string theory, which should not affect the intuition of those approaching the quantum-
gravity problem from a different perspective. We intend to show here that, on the contrary, the
recent string-theory results on localization are a manifestation of a more general weakness of the
arguments that were used to suggest that the Planck length sets the absolute limit on localization
and on length measurement.

We observe that the D-particle results on localization exploit the fact that D-particles carry other
charges in addition to the gravitational charge/mass. The traditional Planck-scale-limit quantum-
gravity intuition was based on some analyses which implicitly assumed that the “target particle”
(the particle whose position is of interest) and the “probe particle” (the particle used in the mea-
surement procedure) interact only gravitationally. The type of subplanckian accuracy achievable
with D-particles is instead the result of a combination of interactions. We conclude that the result
of subplanckian accuracy obtained with D-particles exposes the fact that previous quantum-gravity
analyses had assumed, without justification, that the particles participating in the localization proce-
dure should only interact gravitationally. Even in other approaches to the quantum-gravity problem,
possibly very different from string theory, it would not be surprising to find an analogous result
of subplanckian accuracy. However we also find that the example of D-particles suggests that one
might be able to achieve subplanckian accuracy in measurement of space position only at the cost of
a rather sizeable uncertainty on time measurement.

After some preliminaries (Section 2) on the Bohr-Rosenfeld approach to measurability analysis
in physics and on the standard Heisenberg microscope, in Section 3 we analyze localization via a
Heisenberg-microscope procedure in the spirit of the quantum-gravity arguments [2, 3] which assume
that the probe should be a massless neutral (but interacting gravitationally) particle and lead to
the traditional expectation of separate Planck-length uncertainties for the measurement of space
coordinates, δx ≥ LP , and timea, δt ≥ LP , of an event.

Examining this result we argue that a possible cause of concern is the fact that the associated
quantum-gravity intuition is based on measurement analyses all assuming that a massless neutral
probe should be used. While in practice localization procedures typically do rely on massless (or
anyway relativistic) probes, in order to establish a fundamental measurability limit one should con-
sider the problem in very general terms. It is possible that the probes that turn out to be useful for
practical reasons are not the ones conceptually best suited for the task of localization. In order to
establish a localization limit of more general validity one should in particular consider both relativis-
tic and non-relativistic probes; moreover, one should consider both the case of probes which only
interact gravitationally (“neutral probes”) and the case of probes which (in addition to gravitational
charge/mass) also carry other charges (“charged probes”). In Section 4 we start by repeating the

aWe use conventions in which ~ = c = 1.
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same analysis of localization via a Heisenberg-microscope procedure, already considered in Section 3,
but replacing the massless neutral probe with a nonrelativistic (massive) neutral probe. However,
the analysis rapidly suggests that the use of a nonrelativistic neutral probe cannot improve on the
localization limit established in the case of a relativistic neutral probe. The end result is that measure-
ments using a nonrelativistic neutral probe can only achieve localization at the level δx ≥ LP /

√
V 3

P ,

δt ≥ LP /
√

V 5
P , where VP is the velocity of the nonrelativistic probe (VP � 1).

In Section 5 we consider the case of D-particles, as an example of probes which do not interact
exclusively gravitationally. Our analysis does not require any of the most technical details of the
string-theory framework which supports the presence of D-particles. We only take into account
the fact that the underlying supersymmetry of the theoretical framework imposes that D-particles,
besides carrying gravitational charge, also carry another charge associated (in an appropriate sense)
to the gravitational charge through supersymmetry. As a result of a compensation between these two
interactions [14] as long as the distance d between two D-particles is greater than

√
vLs (denoting

with v the relative velocity and Ls the string length) the energy stored in a two-D-particle system
can be described as U ∼ −L6

sv
4/d7 (up to an overall numerical factor of order 1). This energy law

replaces the corresponding Newton energy law that applies to “neutral” particles. Another property
of D-particles which is used in our analysis is the fact that their mass can be expressed as g−1

s L−1
s in

terms of the string coupling and the string length. Using these properties of D-particles we find that
the analysis of a Heisenberg-microscope procedure of localization of a collision between D-particles

can indeed achieve accuracy δx ≥ g
1/3
s Ls ∼ g

1/12
s LP . We also observe that such a level of spatial

localization can only be achieved at the cost of a rather poor level of temporal localization. In fact,

we find that the event is temporally localized with uncertainty δt ∼ g
−1/3
s Ls ∼ g

−7/12
s LP (and, since

gs � 1, this amounts to an uncertainty limit which is significantly larger than the usually expected
Planck-scale limit).

In Section 6 we stress that our observations for a localization measurement procedure are also
applicable (as one would expect) to procedures for the measurement of the length of a spacetime
interval.

The closing section (Section 7) is devoted to some comments on the implications of our analysis
for the intuition that should guide quantum-gravity research. The example of D-particles suggests
that we should not necessarily assume that both δx ≥ LP and δt ≥ LP hold independently. Our
findings however provide support for the idea of a combined limit on position/time measurement,
something which could perhaps be schematized with a relation of the type δxδt ≥ L2

P .

2 Preliminaries

2.1 The Heisenberg microscope

In Section 3, 4 and 5 we illustrate our point on localization in quantum gravity within the familiar
framework of the Heisenberg-microscope measurement procedure. In order to render our discussion
self-contained (and in order to introduce some notation which will be useful in the following sections)
we provide here a brief review of the original (ordinary quantum mechanics, neglecting gravity)
formulation of the Heisenberg-microscope measurement procedure [15, 16]. This original formulation
of the microscope is used to explore the implications of the uncertainty relations for the accuracy
with which it is possible to measure simultaneously the position and the momentum of an electron.
The position measurement is achieved by means of a microscope, represented by a box with an
opening which allows incoming light to hit a photographic plate. The electron is assumed to be
located somewhere in the xy plane (see figure). For simplicity we consider the localization in the
x coordinate only. A photon scatters off the electron via Compton scattering and is then collected
in the microscope. Were it possible to keep the electron fixed in the same point of the xy plane
during the experiment, one could then scatter a large number of photons off the electron, obtaining
a diffraction pattern on the photographic plate of the microscope. The width of the first peak of the
diffraction pattern would be given by

l′ ' λ′

sin β
' λ′

tan β
=

λ′b
L

, (1)
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Figure 1: In the Heisenberg-microscope setup, if the target could be kept fixed in P , one could
scatter a large number of photons off the target, obatining a diffraction pattern centered in P ′ on
the photographic plate of the microscope. If only one photon scatters off the target it is likely that
it reaches the photographic plate at some point Q′ within the first peak (of width l′) of the expected
diffraction pattern. Then Q′ is most likely within a distance l′ from P ′. The projection Q of Q′

through the centre C of the opening of the microscope is most likely within a distance l from P ,
which represents the actual position of the target. l is then the uncertainty in the measurement of
the position of the target.

where λ′ is the wavelength of the scattered photon, and β, L and b are shown in the figure. By
establishing the position of the center of the diffraction pattern one could then infer the position of
the electron in the xy plane. However, already the first photon-electron collision would cause the
electron to (acquire some momentum and) move away from its original position, which is the position
that one is here attempting to measure. Thus the position measurement must be based on a single
point on the photographic plate of the microscope, rather than on a whole diffraction pattern. This
leads to an uncertainty in the measurement of the (x-component of the) position of the electron
which can be estimated assuming that the single point on the photographic plate of the microscope
must have appeared somewhere in the region which would have been occupied by the first peak of
the diffraction pattern. The uncertainty is estimated as the width of the peak projected on the xy
plane, and it is easy to verify that

δx & a

b
l′ ' λ′a

L
. (2)

In order to also estimate the uncertainty on the x-component of the momentum of the electron,
px, one can use the fact that in the photon-electron collision a part of the initial momentum of the
photon is transferred to the electron, and after the collision px is given by

px ' p0
x +

1

λ
− p′x , (3)

where p0
x is the x-component momentum of the electron before the scattering, and p′x is the x-

component of the momentum of the photon after the scattering. The direction taken by the photon
after the scattering can be deduced from the fact that it was collected by the microscope. This allows
us to estimate the uncertainty on the x-component of the momentum of the photon:

δp′x ∼
1

λ′ sin α sin θ & 1

λ′
L

a
, (4)

where α is shown in figure.
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The uncertainty on the x-component of the momentum of the electron will be of the same order:

δpx ' δp′x & 1

λ′
L

a
. (5)

Finally, combining this equation with equation (2) one finds a limit on the simultaneous measurement
of the x-components of the position and momentum of the electron,

δxδpx & 1 , (6)

consistently with Heisenberg’s uncertainty relation. Of course, a similar conclusion can be reached
for the y- and z-directions, if needed, after a rotation of the apparatus.

The result (6) limits the simultaneous measurability of two observables, x and px, but does not
constrain in any way the measurability of a single one of them. In this framework there is no in-
principle reason (although it would not be feasible experimentally) that prevents one from measuring
x exactly, δx = 0, although this should come at the cost of renouncing to all information on px.

In quantum gravity, as we will discuss in the following sections, it is instead expected that there
should be an in-principle obstruction for achieving δx = 0.

2.2 Bohr-Rosenfeld probes

In the following sections we will analyze the Heisenberg-microscope procedure from a quantum-
gravity perspective. In the original Heisenberg microscope one measures the position of an electron
at rest and uses photons as probes, but we find that a key issue from the quantum-gravity perspective
is the one of selecting the particles to be used as probes and the particles whose position is to be
determined via the Heisenberg-microscope procedure. Clearly an electron at rest would not be a
very sharp way to mark a spacetime point in quantum gravity, since already in relativistic quantum
mechanics the localization of a particle of mass M at rest is limited by its Compton wavelength,
and therefore it appears that large-mass particles should be preferable. On the other hand, as we
shall discuss in greater detail later, gravity introduces a source of uncertainty that grows with the
particle’s mass. A balance of this competing sources of uncertainty must be achieved in order to
obtain the true absolute limit on localization in quantum gravity.

We want to stress here that it is not uncommon that the choice of the particles used in the
measurement procedure turns out to be a key point of the analysis of a measurability limit. The
best example is provided by attempts (in the 1930s) to establish whether quantum electrodynamics
sets a measurability limit for the electromagnetic fields. Various arguments had suggested that there
might be a logical inconsistency in quantum electrodynamics, since on the one hand the formalism
predicts no absolute limit on the measurability of the electromagnetic fields (if one is willing to lose
all information on some conjugate fields), whereas the analysis of several gedanken measurement
procedures had provided evidence of an absolute measurability limit. The situation was clarified in
a study by Bohr and Rosenfeld [17], who proposed a gedanken measurement procedure using probes
of charge Q and inertial mass M in such a way to obtain an uncertainty on the measurement of
an electromagnetic field that is proportional to the ratio Q/M . Considering the limit Q/M → 0
the measurement procedure reproduced the result expected on the basis of the formal structure of
quantum electrodynamics, i.e. an uncertainty-free measurement of the relevant electromagnetic field.

In the Bohr-Rosenfeld analysis clearly the nature of the probes used in the measurement procedure
plays a key role, in light of the important dependence on Q/M . This provides some guidance for the
study we are here reporting: we should be open to the possibility that the localization of a spacetime
point may depend significantly on the particles used in giving operative meaning to that point.

The Bohr-Rosenfeld analysis also provides insight on the nature of the particles to be used as
probes in measurement analysis. In fact, it is noteworthy that not only the measurability limit may
be different if we use different “known particles” (the ratio Q/M has a different value for electrons
and muons), but it appears that we should consider all particles that are allowed by the formalism,
even when these particles have not been observed in Nature. This is the line of analysis advocated by
Bohr and Rosenfeld when they contemplate the limit Q/M → 0. If one restricts the analysis to known
particles it would of course not be possible to gain access to the Q/M → 0 limit and therefore the
(uncertainty-free) result expected on the basis of the formal structure of quantum electrodynamics
could not be achieved by the measurement procedure. However, Bohr and Rosenfeld [17] stress that
quantum electrodynamics does not predict its constituents (e.g. it predicts how electrons interact
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but it does not predict the existence of electrons) and its intrinsic structure should not be assumed
to depend on elements external to the theory, such as indeed the types of probes that happen to be
available in Nature. In actual measurements the measurability of an electromagnetic field will be
limited due to various practical facts, including the fact that Nature does not make available to us
particles with arbitrarily small ratio Q/M , but quantum electrodynamics does predict in a logically
consistent way the absence of an in-principle limitation of the measurability of electromagnetic fields,
which finds its support in measurement theory upon considering the limit of particles with arbitrarily
small ratio Q/M .

3 Localization of an event marked by the collision between

a photon and a neutral massive particle

As mentioned, most approaches to quantum gravity are guided by the intuition that the Planck length
should set absolute limits on the measurability of spatial distances, δx ≥ LP , and time intervals, δt ≥
LP . The emergence of these measurability limits has been suggested by various types of analyses [2, 3,
8], and can provide some guidance in proposing schemes for spacetime noncommutativity [4, 5, 18] and
certain types of spacetime discretization [19]. While in different measurement procedures the details
of the analysis can be rather different, this result is basically inevitable if quantum mechanics and
general relativity are combined straightforwardly. In fact, as we stressed earlier, quantum mechanics
introduces a “Compton-wavelength uncertainty” in localization, which decreases with the particle
mass, and for a particle of mass of order L−1

P leads to a localization uncertainty of order LP . On
the other hand general relativity introduces a “Schwarzschild-radius uncertainty” in localization,
which increases with the particle mass, and for a particle of mass of order L−1

P leads to a localization
uncertainty which is also of order LP . So, as long as quantum mechanics and general relativity are
the only ingredients of the analysis, the absolute limit on localization is necessarily of order LP (and
is achieved in the measurement of the position of particles with mass of order L−1

P ).
In order to illustrate the derivation of this limit within a complete analysis of a localization

measurement procedure, in this section we consider, in the spirit of Refs. [2, 3], a reformulation of
the Heisenberg microscope gedanken experiment that takes into account gravitational effects. For
simplicity we describe the gravitational interaction between the probe, a photon, and the target, a
massive neutral particle at rest, using a semi-Newtonian frameworkb. In Refs. [2, 3, 8] the mass
of the particle whose position is being measured (which we will sometimes call “target particle”) is
not specified, but of course, as we stressed above, its mass cannot be smaller than L−1

P (otherwise
its Compton wavelength would be larger than the sought position accuracy LP ), and its mass can-
not be larger than L−1

P (otherwise the measurement procedure should bring the photon inside the
Schwarzschild radius of the particle, since the probe-target distance must be at some point of the
order of LP if the position measurement procedure must achieve LP accuracy). We will therefore
implicitly assume that the “target particle” is of Planckian mass.

The line of reasoning that we adopt here is slightly different from that of the analysis of the
Heisenberg-microscope procedure in Subsection 2.1. While in ordinary quantum mechanics (with its
Galileo-Newton spacetime background) one is exclusively interested in space-position localization,
from a quantum-gravity perspective one is of course interested primarily in the spacetime localization
of an event. Therefore our attention is here shifted from the measurement of the position in space of
a target particle, to the measurement of the spacetime coordinates of the event of collision between
the probe and the target. Whereas in the original Heisenberg-microscope analysis one considers the
simultaneous measurement of a coordinate and of the corresponding component of the momentum
of the target particle, here one is interested primarily in the measurement of two coordinates, one
space coordinate and the time coordinate of the spacetime event of collision.

We must also stress that in principle the analysis of such a measurement procedure from a
quantum-gravity perspective should take into account a very large number of potential sources of

bAs shown in Ref. [2], the estimates obtained using this semi-Newtonian gravity turn out to be correct (using
general relativity one obtains the same estimates, after a somewhat more tedious analysis).
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contributions to the overall uncertainty. We do not claim to consider all of these possible sources
of uncertainty, but we focus on some which appear to be most significant for the quantum gravity
analysis. The uncertainties we do consider lead to an absolute measurability limit. Other sources of
uncertainty (that may be present but are not considered in our analysis) could in principle lead to
a stricter limit, but the limit we obtain is absolute (cannot be violated, since the presence of other
sources of uncertainty of course could not lead to an improved accuracy).

The possibility to lower/violate our absolute limit could be contemplated however for other mea-
surement procedures. The Heisenberg-microscope procedure is one of the possible ways to localize a
spacetime event and is clearly affected by the absolute localization limit we describe. Although this
seems unlikely to us (and the analysis of a few alternative measurement procedures will quickly lead
the reader to an analogous intuition), one cannot exclude the possibility that some other localization
procedure may not be affected by such a localization limit. We will take as working assumption that
this is not the case, but it cannot be excluded in principle.

We denote with X the spatial coordinate and with T the time coordinatec which are to be
measured. As in the traditional Heisenberg-microscope procedure the observable X is here still
obtained by observing the position of arrival of the probe on the photographic plate of the microscope,
while T can be obtained as

T ' ti + X , (7)

where ti marks the instant when the experiment begins (the instant when the probe is fired toward
the target).

The uncertainties on the measure of X and T , δX and δT respectively, can be described in this
wayd:

δX & δXc + δx0 + dmin + δxp + δxt

δT & δti + δX
(8)

where:
δXc is the uncertainty due to the width of the opening of the microscope;
δx0 is the uncertainty on the initial position of the probe (which quantum mechanics relates to the
uncertainty in the initial momentum of the probe);
dmin is the minimum distance between probe and target reached during the measurement procedure;
δxp is the uncertainty on the position of the probe at the moment of the collision;
δxt is the uncertainty on the position of the target at the moment of the collision;
δti is the uncertainty on the instant when the probe is fired toward the target.

We start by noticing that δXc is an uncertainty of classical-mechanics origin, and it can be reduced
at will by varying the width of the opening of the microscope. Therefore δXc cannot be significant
in establishing an absolute limit on localization.

Concerning δxt we must stress that clearly (on the basis of our considerations concerning the
competing contributions to the δxt uncertainty due to the “Compton-wavelength uncertainty” and
the “Schwarzschild-radius uncertainty”) one must necessarily find δxt ≥ LP . Therefore the best we
can hope for is a localization at the level δX ∼ LP . We intend to show, through an analysis of the
other sources of uncertainty, that δX ∼ LP can be achieved. We will in general denote with δx∗ the

cThese are the X coordinate and the time coordinate “of the event”. The careful reader might notice that the
spacetime point marked by the probe-target collision is not even sharply defined, since the probe and the target have
“finite size” (intrinsic position uncertainty) and there is no instant in the collision at which the probe and the target
have the same spacetime coordinates. This, however, is of merely academic concern: in a measurement procedure that
aims for space/time accuracies of order LP it is sufficient to introduce all aspects of the analysis with corresponding
accuracy, and indeed we will make sure that the setup is such that the spacetime point marked by the collision is
specified with LP accuracy.

dOur analysis looks only for an estimate of orders of magnitude, and therefore we will discard all numerical factors
of order 1.

6



accuracy for which one aims in the measurement procedure. In this case, with δx∗ ∼ LP , consistently
we must take

δx0 . δx∗ ∼ LP

dmin . δx∗ ∼ LP

(9)

The fact that, as stressed above, our analysis assumes that the mass of the target is of the order
of the Planck scale, mt ∼ L−1

P , is compatible with the choice dmin ∼ LP (we remind the reader that
the minimum probe-target distance dmin must not be smaller than the Schwarzschild radius of the
target particle, dmin & Gmt).

From the fact that δx0 . LP it follows that

δp0
p ∼

1

δx0
& 1

LP
(10)

where p0
p is the initial momentum of the probe, and δp0

p is the corresponding uncertainty. From the

fact that of course we must demand that p0
p&δp0

p, one finds that

p0
p&δp0

p ∼ δx−1
0 & EP , (11)

where EP is the Planck energy.
Next we should consider the contribution to the uncertainties that originates from the uncertainty

in the energy stored in the probe-target system in the course of the collision process. For our purposes
(since we are only looking for an order-of-magnitude estimate) it is sufficient to consider this issue
only for the stage of the collision in which the probe-target distance is of order dmin. At such short
probe-target distances there is a rather strong gravitational field, which is significantly affected by
the uncertainty δp0

p. However, this strong gravitational field is only present when indeed the probe-
target distance is small. At early and late times in the measurement procedure nearly all the energy
of the system is stored as kinetic energy, and we can expect that the kinetic energy of the probe at
early and late times will be of the same ordere.

In order to estimate (δpp)x, the uncertainty on the x-component of the probe’s momentum, we
can proceed as in the preceding section, relying on the observation that the measurement procedure
requires that the probe reaches the photographic plate of the microscope. Therefore

(δpp)x . p′p sin α ' p′p tanα = p′p
L

a
∼ pp

L

a
, (12)

where p′p is the momentum of the probe after the scattering, α is defined in the figure, and we also
used the observation that p′p ∼ pp.

From this it follows that

δxp & 1

pp
L
a

. (13)

This δxp describes the uncertainty on the probe’s x coordinate at the moment in which the probe
reaches the opening of the microscope. This same δxp represents a good estimate of the uncertainty

eIn the collision the target (which was initially at rest) will only take away from the probe a small (negligible)
fraction of the kinetic energy, even though the target acquires a nonnegligible momentum. This is due to to the large
mass of the target (as compared to the massless particle used as probe). In general, for a photon scattered along the
direction characterized by scattering angle θ the relation between the momentum of the probe before the collision, pp,
and the momentum of the probe after the collision, p′p, is set by the formula p′p = pp/[1 + pp(1− cos θ)/mt], where mt

denotes again the mass of the “target” particle.
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on the probe’s x coordinate at the moment of the collision (all distance scales in the measurement
procedure are certainly small enough that the spread of the probe’s wave packet is negligible [20]).

Finally we need an estimate for δxt, the uncertainty on the target’s x coordinate at the moment
of the collision. A key contribution to this uncertainty (in addition to the Compton-wavelength
uncertainty, which is under control with our choice of target-particle mass) originates from the
gravitational interaction between probe and target. By momentum conservation we have that the
gravitational interaction must induce correlated variations of the target’s momentum and of the
probe’s momentum,

∆pt (t) ' ∆pp (t) ' Gppmt

d (t)
, (14)

so that

(δvt)x (t) =
(δpt)x (t)

mt
' ∆pp (t)

mt

L

a
(15)

(Note that in this equation we also used the fact that, because of the large mass of the target, while
the target’s momentum is nonnegligible, its velocity vt is small.)

Our estimate of δxt is based on the fact that it must be greater than (but comparable to) the
corresponding uncertainty that develops in a small time interval, of size dmin, around T :

δxt ≥
∫ T

T−dmin

|(δvt)x|dt '
∫ T

T−dmin

∣∣∣∣∆pp (t)

mt

∣∣∣∣ L

a
dt ∼ ∆pp (t)

mt

∣∣∣∣
dmin

dmin
L

a
' Gpp

L

a
. (16)

We are finally ready to combine all the contributions to δX listed in (8), obtaining

δX & δXc + δx0 + dmin + δxp + δxt & δXc + δx0 + dmin +
1

pp
L
a

+ Gpp
L

a
. (17)

Not all of these contributions are equally significant from our quantum-gravity perspective. We
already stressed that δXc depends on the structure of the microscope, and can be reduced at will,
while δx0 and dmin depend on the characteristics of the probe and the target, and are chosen precisely
in order to reach the intended δx∗ ∼ LP accuracy goal. One easily sees that, in order to verify that
this sought accuracy can be actually reached, it is necessary to examine the contributions δxp and
δxt, since one of them decreases as pp is increased while the other increasesf with pp (and therefore
they cannot be both made small at will). The minimum-uncertainty case corresponds to

min (δxp + δxt) =

√
1

pp
L
a

Gpp
L

a
= LP . (18)

Thus, we find (as expected) that it is indeed possible to reach the intended accuracy of the order of
the Planck length:

min(δX) ∼ LP . (19)

The analysis of the δxp and δxt contributions also reassures us that indeed it would have not been
possible to aim for anything better than Planck-length accuracy: even choosing δx0 and dmin smaller

fThis is a key point: in ordinary quantum mechanics one achieves as good a localization as desired by increasing
the momentum of the probe, whereas by taking into account gravitational effects an increase in the momentum of
the probe is not always beneficial for localization. A higher frequency photon, while resolving smaller lengths, brings
about a more intense gravitational field, which ends up introducing a bigger uncertainty in the target’s position.
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than the Planck length one would still inevitably find a Planck-length uncertainty due to the combined
contribution from δxp and δxt.

For the uncertainty on T we find

δT & δti + δX & LP , (20)

where

δti ∼ 1

δEp

∼ 1

δpp

∼ δx0 ∼ LP . (21)

The result (19) for δX is widely accepted [2, 3, 8], and can be obtained on the basis of several
types of measurement analyses, of which our Heisenberg-microscope procedure is only one example.
Studies of the limit on δT are somewhat less numerous, but our result (20) also finds support in all
the related literature [2, 3, 8].

As mentioned, the intuition emerging from these analyses is also consistent with some results
obtained in the “pre-D-brane” perturbative string-theory literature, since the analysis of closed-
string scattering [10] provides support for δX ≥ Ls (where Ls is the string length, and in the
relevant framework LP < Ls).

4 Localization of an event marked by the collision between

two neutral massive particles

The localization limit δX ≥ LP , δT ≥ LP is widely accepted within the quantum-gravity community.
We feel that it is often overlooked that the derivation of this localization limit relies on two crucial
ingredients: the nature and strength of the gravitational interactions and the fact that a massless
particle with energy uncertainty δE has position uncertainty 1/δE. As stressed earlier, while in prac-
tice localization procedures typically do rely on massless (or anyway relativistic) probes, according
to the Bohr-Rosenfeld line of analysis [17] it is necessary to wonder whether the probes that turn out
to be useful for practical reasons are the ones conceptually best suited for the task of localization.
In order to establish a localization limit of more general validity one should in particular consider
both relativistic and non-relativistic probes; moreover, one should consider both the case of probes
which only interact gravitationally (“neutral probes”) and probes which, in addition to gravitational
charge/mass, also carry other charges (“charged probes”). In this Section we start by repeating
the same analysis of localization via a Heisenberg-microscope procedure, already considered in the
previous Section, but replacing the massless neutral probe with a nonrelativistic (massive) neutral
probe.

We denote by mp and mt respectively the masses of the probe and the target. Our analysis can
follow the same steps already discussed in the previous section. The only key differences originate
from the fact that here the speed of the probe is taken to be much smaller than 1. Again the X
coordinate of the collision event can be obtained by observing the position of arrival of the probe on
the photographic plate of the microscope, while T can be here estimated from

T ' ti +
X

vp

, (22)

where vp is the speed of the probe.
δX and δT are again a combination of various contributions:

δX & δx0 + dmin + δxp + δxt

δT & δti +
δX

vp

+
X

v2
p

δvp ,
(23)

where δx0, dmin, δxp, δxt, δti have been defined in the preceding Section 3, while δvp is the uncertainty
on vp. (Of course, also in this case there is a δXc contribution, which we are omitting since, as clarified
in the previous section, it is of classical-mechanics origin and can therefore be reduced at will.)
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Our objective here is to show that, using a nonrelativistic probe, one finds an absolute limit
on localization with minimum uncertainty larger than LP . We therefore set up the measurement
procedure aiming for Planck-length accuracy

δx0 . δx∗ ∼ LP (24)

dmin . δx∗ ∼ LP . (25)

and show that there are some contributions to δX and δT which lead to a worse-than-Planckian
result.

Again we observe that from (25) one obtains

δp0
p ∼

1

δx0
& 1

LP
(26)

and that from the requirement p0
p&δp0

p it then follows that

p0
p&δp0

p ∼ δx−1
0 & EP , (27)

(we are again denoting with p0
p the initial momentum of the probe and with δp0

p the corresponding
uncertainty).

Here, with the nonrelativistic probe, the fact that δp0
p & 1/LP implies δvp & 1/(mpLP ), a rather

large velocity uncertainty. Since we will anyway find that the use of the nonrelativistic probe leads
to worse-than-Planckian localization, we allow ourself a “rather optimistic” attitudeg concerning the
possibility of satisfying the requirements vp & δvp and vp < 1.

In order to estimate δxt we must consider the effects induced by the gravitational probe-target
interaction at least over a small time interval, of size dmin, around T . We observe that also in this
case it is legitimate to assume p′p ∼ pp, i.e. the momentum of the probe at early and late times is of

the same orderh. This allows us to proceed just like in Eqs. (12)-(13) of the previous section, finding

δxp & 1

pp
L
a

. (28)

and finding for δxt (again proceeding as in the previous section)

δxt ≥
∫ T

T− dmin
vp

|(δvt)x|dt '
∫ T

T− dmin
vp

∣∣∣∣∆pp (t)

mt

∣∣∣∣ L

a
dt ∼ ∆pp (t)

mt

∣∣∣∣
dmin

dmin

vp

L

a
. (29)

where ∆pp(t) is the variation of the momentum of the probe induced by the gravitational interaction
at the instant t (where t is taken to be close to T ).

gAs mentioned, in order to keep the “Schwarzschild-radius uncertainty” at or below the accuracy goal LP , it
is necessary to assume L−1

P & mp. On the other hand one must have vp < 1 in order to be consistent with the
nonrelativistic nature of the probe and one must have vp ≥ δvp & 1/(mpLP ) in order to be able to aim the probe
toward the target. The fact that this requirements cannot be simultaneously implemented is already an indication of
the fact that the LP accuracy is not within the reach of a measurement procedure using a nonrelativistic neutral probe.
We will set this concern aside, and find that it is anyway impossible to achieve LP accuracy using a nonrelativistic
neutral probe.

hThis can be easily verified by looking at the formulae that describe nonrelativistic scattering between particles of
equal mass, in the case where one of the particles is initially at rest while the other particle initially carries a large
momentum. For generic scattering angle one finds that the two particles carry final momenta of the same order of
magnitude (which of course is the same order of magnitude of the initial momentum of the probe). One well-known
exception is the case of a “central collision”, in which the particle initially at rest ends up carrying all the momentum
in the final configuration, but of course this is not a viable option for the setup of our microscope.
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To estimate ∆pp(t) we can argue as follows. Considering the probe’s total energy Ep and the
gravitational potential energy U (t) originated by the interaction with the target

Ep = mp +
p2

p

2mp
+ U (t) , (30)

we can estimate the probe’s momentum as

pp =
√

2mp (Ep − U (t)−mp) , (31)

and we find that

∆pp ' −mp

pp

∆U ∼ mp

pp

Gmtmp

dmin

=
Gmtmp

vpdmin

. (32)

Using (29) this allows to derive

δxt ∼ ∆pp (t)

mt

∣∣∣∣
dmin

dmin

vp

L

a
' Gmp

vpdmin

dmin

vp

L

a
=

Gpp

v3
p

L

a
, (33)

and finally, combining all these results, we find that the total uncertainty on X is estimated by

δX & δx0 + dmin + δxp + δxt & δx0 + dmin +
1

pp
L
a

+
Gpp

v3
p

L

a
≥ 1

pp
L
a

+
Gpp

v3
p

L

a
, (34)

where on the right-hand side we are inviting the reader to focus on two of the contributions. Those
two contributions are sufficient for establishing our result that using the nonrelativistic neutral probe
only a worse-than-Planckian accuracy is achievable. In fact,

δX ≥ min (δxp + δxt) =

√
1

pp
L
a

Gpp

v3
p

L

a
=

LP

v
3
2
p

, (35)

which indeed represents worse-than-Planckian accuracy (since the hypothesis of using a nonrelativis-
tic probe requires vp < 1).

The use of a nonrelatistic neutral probe is even more obviously costly for the accuracy in the
measurement of T . In fact, on the basis of the observations reported above one finds

δT & δti +
δX

vp

+
X

v2
p

δvp ∼ δti +
δX

vp

+ Xv
− 1

2
p , (36)

with

δti ∼ 1

δEp
∼ 1

vpδpp
∼ δx0

vp
. (37)

Since in a reasonable Heisenberg-microscope setup the distance X (distance between the point
where the experimenter introduces the probe and the point where the probe-target collision occurs)

is macroscopic, the contribution Xv
−1/2
p can be very large. And in any case the contribution δX/vp

implies that δT is clearly larger than LP : δX is already larger than LP by at least v
−3/2
p and therefore

δT is larger than LP by at least v
−5/2
p .
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5 Localization of an event marked by the collision between

two D-particles

In our investigation of the expectation that a localization limit δX ≥ LP , δT ≥ LP should hold
in quantum gravity we observed that this limit is essentially based on the analysis of measurement
procedures in which a massless neutral particle probes the position of a massive target particle, and
we argued that a more robust estimate of the localization limit could be achieved by considering both
relativistic and non-relativistic probes, and by considering both the case of neutral probes (probes
which only interact gravitationally) and the case of charged probes (probes which, in addition to a
gravitational charge/mass, also carry other charges). In the previous section we showed that replacing
the massless neutral probe with a nonrelativistic neutral probe one cannot improve on the expected
localization limit δX ≥ LP , δT ≥ LP . In this Section we use the case of D-particles as an illustrative
example of the role that charged particles might have in allowing to achieve an improved level of
localization.

D-particles are zero-dimensional (pointlike) D-branes, topological objects on which open strings
end. In Refs. [13, 14] the scattering of D-particles in the type IIA string theory was studied in ten
spacetime dimensions, and it was found that the minimal size of the collision region could be well
below the “ten-dimensional Planck length”i.

In the relevant theoretical framework the string coupling constant is small, gs � 1, and the

Planck length is related to the string length, Ls, by LP ∼ g
1/4
s Ls. One therefore has the following

hierarchy of scales:

g
1
3
s Ls � LP ∼ g

1
4
s Ls � Ls , (38)

which will play an important role in our analysis. Also important for our analysis of the Heisenberg-
microscope procedure using D-particles is the fact that D-particles have mass higher than the Planck
mass [13, 14]:

m =
1

gsLs
∼ 1

g
3/4
s LP

� 1

LP
, (39)

and that in a two-D-particle system, in addition to the gravitational interaction one must take into
account a sort of companion interaction (a requirement which primarily follows from the supersym-
metry of the theoretical framework) and the two interactions largely compensate each other, leading
to a net interaction which is governed by the potential energy

U ∼ −L6
s

v4

(r)7
+O

(
v6L10

s

(r)11

)
, (40)

as long as the distance r between the two D-particles and the relative velocity v of the two D-particles
are such that

r &
√

vLs . (41)

iSince the analysis is in a 10-dimensional spacetime of course the relevant length scale is the corresponding Planck
length. In presence of “large extra dimensions” the relation between this ten-dimensional Planck length and the Planck
length (gravitational coupling constant) we observe in the four spacetime dimension we perceive may be nontrivial.
However, the presence of large extra dimensions is not necessary, and in fact it was not assumed in Refs. [13, 14].
Moreover, this issue related to the possible presence of large extra dimensions is irrelevant for our line of analysis: the
quantum-gravity intuition in favour of the localization limit δX ≥ LP , δT ≥ LP applies equally well to the case of
a four-dimensional spacetime and to the case of a ten-dimensional spacetime. The point we are trying to investigate
is whether (for whatever choice of number of spacetime dimensions) the localization limit δX ≥ LP , δT ≥ LP can
be improved upon. While in studies with different objectives it is sometimes appropriate to denote by L

(10)
P the

ten-dimensional Planck length, in order to maintain a distinction from the four-dimensional Planck length, this type
of notation is unnecessary in our analysis and we therefore denote simply by LP the Planck length, independently of
the number of dimensions chosen for spacetime.
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(Although it is irrelevant for our analysis, since the localization procedure requires a nonvanishing
probe-target relative velocity, it is noteworthy that, in particular, for a system of two D-particles at
rest there is no force.)

On the basis of these properties, the analysis of collisions between two D-particles suggests [13, 14]

that the minimal dimension of the collision region is given by g
1/3
s Ls which is indeed below the Planck

length (gs � 1 implies g
1/3
s Ls � g

1/4
s Ls ∼ LP ). In light of this result it is natural to wonder whether

D-particles can be used for accurate localization of a spacetime point. It is from this perspective that
we consider a Heisenberg-microscope procedure in which both the probe and the target that collide
are D-particles. As in the other Heisenberg-microscope procedures we analyzed, the X coordinate
can be measured by measuring where the probe hits the “photographic” plate of the microscope, and
the T coordinate can be measured as

T ' ti +
X

vp

. (42)

And once again the uncertainties on the measurement of X and T are given by (omitting again a
classical-physics contribution of the type δXc which could anyway be reduced at will)

δX & δx0 + dmin + δxp + δxt (43)

δT & δti +
δX

vp
+

X

v2
p

δvp , (44)

using notation already introduced in Eqs. (8) and (23). Here however we assume that mt = mp = m,
with m given by (39) (i.e. the target and the probe are D-particles, of mass m).

On the basis of the results of Refs. [13, 14] we are encouraged to aim for g
1/3
s Ls accuracy:

δx∗ ∼ g
1
3
s Ls . (45)

and we therefore take

δx0 ' δx∗ ∼ g
1
3
s Ls (46)

δvp ' 1

mδx0
∼ g

2
3
s , (47)

where the last equation also takes into account pp ' mvp (small vp). Indeed vp must be small in
order for (40) to be applicable:

dmin ' √vpLs ∼ g
1
3
s Ls , (48)

where we also took into account that for consistency with our accuracy objective we must require

dmin ∼ g
1/3
s Ls. This leads to a choice of probe velocity of order g

2/3
s

vp ∼ g
2
3
s . (49)

The description of δxp,

δxp & 1

pp
L
a

, (50)

maintains the same form as in the previous Section 4 (observing again that the momentum of the
probe at early and late times is of the same order of magnitude).
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For δxt the analysis can proceed as in the previous sections but taking into account the different
form of the potential energy associated to the probe-target interaction:

δxt ∼ ∆pp (t)

m

∣∣∣∣
dmin

dmin

vp

L

a
' L6

s

pp

v4
p

d7
min

dmin

vp

L

a
=

L6
sv

2
p

md6
min

L

a
' 1

mvp

L

a
, (51)

where we used again pp ' mpvp and we estimated [∆pp (t)]dmin
using the same type of argument

already used in the previous section. Combining all these observations we find that the uncertainty
on the measure of X can be estimated by

δX & δx0 + dmin + δxp + δxt & δx0 + dmin +
1

mvp
L
a

+
1

mvp

L

a
, (52)

where δx0 and dmin are of the order of the accuracy goal g
1/3
s Ls we are aiming for, and the last two

contributions combine to give an overall contribution which can also be reduced to the level g
1/3
s Ls:

min (δxp + δxt) =

√
1

mvp
L
a

1

mvp

L

a
=

1

mvp

∼ g
1
3
s Ls . (53)

In summary all contributions to δX can be controlled at the level g
1/3
s Ls, so that it is indeed

legitimate to estimate min(δX) ∼ g
1/3
s Ls, i.e. we find that a space coordinate of the event of

collision between two D-particles can be measured with better-than-Planckian accuracy.
This comes at the cost of a relatively large uncertainty on the time coordinate of the collision

event. In fact, on the basis of the observations reported in this section, we find for δT

δT & δti +
δX

vp

+
Xδvp

v2
p

, (54)

where

δti ∼ 1

δEp
∼ Ep

ppδpp
∼ 1

vpδpp
∼ δx0

vp
∼ g

− 1
3

s Ls (55)

δX

vp

∼ g
− 1

3
s Ls . (56)

Also in this case (as for the other case in which we considered a nonrelativistic probe) it is
noteworthy that in a reasonable Heisenberg-microscope setup the distance X should be macroscopic,

and the contribution Xv
−1/2
p should be very large. And in any case the terms δti and δX/vp give

contributions of order g
−1/3
s Ls, so that clearly

δT & g
− 1

3
s Ls . (57)

The price for the better-than-Planckian space localization (min(δX) ∼ g
1
3
s Ls < g

1/4
s Ls ∼ LP ) is

therefore a worse-than-Planckian time localization of the event: δT & g
−1/3
s Ls � g

1/4
s Ls ∼ LP .

6 Aside on distance measurement and the Salecker-Wigner

procedure

In our analysis of Heisenberg-microscope measurement procedures we stressed their use in the lo-
calization of collision events. It is worth mentioning explicitly the (rather obvious) fact that our
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analysis can be viewed also as an analysis of length measurement: the coordinates X, T also specify
the length L = X of the interval that connects the origin of the coordinate system and the col-
lision event at the time T . Using D-particles one then finds that, with a large time-measurement

uncertainty δT & g
−1/3
s Ls, the length of the interval can me measured rather sharply

min(δL) ∼ g1/3
s Ls . (58)

This can be easily verified independently using one of the distance/length measurement proce-
dures that are most commonly considered. In particular, some recent studies [6, 7] have considered
the Salecker-Wigner [21] measurement procedure. The measurement of the length of, say, a metal
bar can be performed by choosing as reference time-like world line “WL1” one extremity of the bar,
and marking by “WL2” the world line of the other extremity. The length of the bar can be measured
by sending a probe of velocity V at time t = 0 from WL1 to WL2, and setting up things in such a
way that after reaching WL2 the probe is reflected back toward WL1. By measuring the time t = t∗
when the probe finally returns to WL1 one can deduce the length of the bar as L = V t∗/2.

This same Salecker-Wigner measurement procedure can of course also be used to localize an event,
the spacetime point marked by the arrival of the probe at WL2, with coordinates X = L = V t∗/2,
T = t∗/2.

The careful reader can easily verify, following the steps of the line of analysis presented in the
previous section, that, in the case in which both the probe and the particle that marks the WL2

world line are D-particles, the Salecker-Wigner measurement procedure leads to min(δL) ∼ g
1/3
s Ls

and min(δT ) ∼ g
−1/3
s Ls.

7 Closing remarks

We have argued that, as long as the localization limit is obtained using only ordinary quantum
mechanics and general relativity, the Planck length sets absolute limits on the measurability of spatial
distances, δx ≥ LP , and time intervals, δt ≥ LP . This is due to the interplay between the “Compton-
wavelength uncertainty” and the “Schwarzschild-radius uncertainty”. Essentially D-particles provide
us an example of the possibility that the particles that intervene in the localization process carry
also some other charges (so that, in addition to quantum mechanics and general relativity, some
other structures come into consideration), leading to a weakened “Schwarzschild-radius uncertainty”.

Allowing for D-particles in the measurement procedure, one can find min(δx) ∼ g
1/12
s LP � LP (if

gs � 1).
D-particles are only an example of charged probes, and with other examples it is plausible that one

could manage to further reduce min(δx). It therefore seems that one should not insist on simultaneous
δx ≥ Lp and δt ≥ Lp uncertainties, and it is hard to say how low the uncertainties could be in a
specific quantum-gravity model. But it is noteworthy that all of our results are consistent with the
idea of a general localization limit on the combined measurement of space and time coordinates of
a point: δxδt ≥ L2

P . In the case of D-particles one finds that the sharp (better-than-Planckian)
space-position measurement can only be achieved at the cost of a rather poor time measurement,

δt ∼ g
−1/3
s Ls, and one ends up findingj δxδt ≥ Ls � L2

P . Of course in the case of localization based
on massless neutral particles one does find δx ≥ LP and δt ≥ LP which results in δxδt ≥ L2

P . Further
investigations of the robustness of this δxδt ≥ L2

P uncertainty principle could provide an important
element of guidance for quantum-gravity research. It may well be that the correct form of the new
uncertainty principle is somewhat different, but, in light of our analysis, it appears likely that that

jSome authors, perhaps most notably Yoneya (see, e.g. Ref. [22]), have proposed arguments in favour of the general
validity in String Theory of an uncertainty relation δxδt ≥ L2

s. The arguments adopted by Yoneya do not appear to
be fully in the spirit of more traditional measurability analyses (and therefore it would be important to find additional
evidence in support of δxδt ≥ L2

s in String Theory), but it is nonetheless noteworthy that our D-particles analysis is
consistent with this expectation.
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it should take the form of a space/time uncertainty principle (an uncertainty principle such that one
can improve space localization at the cost of a worse time localization of the event).

Another point that should be explored concerns the covariance of the quantum-gravity uncertainty
principles. It appears necessary [23] to verify that the structure of Lorentz transformations (or at
least of some suitable deformation of the Lorentz transformations [24]) are compatible with the new
uncertainty principle. Especially in light of this possible concern for Lorentz covariance, it appears
necessary [4] to perform more general measurement analyses, in which all of the coordinates of the
spacetime point are considered, whereas here (and in most of the “quantum-gravity uncertainty
principle” research) we focused on a single space coordinate and the time coordinate.

We have also set aside here, at the level of the analysis of the consequences of our analysis, the

contributions of the type of the term Xv
−1/2
p in Eq. (52). These contributions appear to suggest

that the localization can be rather poor (much worse than suggested by the δxδt ≥ L2
P limit) if

the spacetime point under consideration is at a large distance from the position where the probe
starts off for the measurement procedure. This type of behaviour is expected on the basis of some
intuitions for the quantum-gravity problem, most notably the ones that favour a role for decoherence
in quantum gravity [6, 7, 25, 26]. Also this possibility deserves further investigation.
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