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ABSTRACT

A fully programmable processor has been built which can
be used for numerous tasks requiring simple but fast data
treatment in real time.

High speed of operation is obtained using dedicated
autonomous sub-units which operate concurrently under control
of a common command module. This unit is capable of issuing
one 48 bit instruction every 80 ns.

The processor is loaded and controlled by a host mini-
vuter (PDP-11). The mstruction set includes ADD,
L oTRACT, SHIFT, BOOLEANS, MULTIPLY, DIVIDE and CONDITIONAL
SKIPS and JUMPS.

Software presently available is a cross-assembler which
runs on a PDP-10, a loader, a set of debugging programs
and a histogramming routine.

1. INTRODUCTION

In the field of experimental high energy nuclear
physics there is an ever-increasing need for very high speed
data processing. Frequently large quantities of measured
data are generated in bursts, and it is necessary to do
some pre-processing in real time before the result is
transmitted to an on-line mini-computer for further
processing and/or storage on tape.

At CERN-DD considerable effort is being devoted to
build very fast special purpose processors using combinato-
rial LST circuits. [1 2] These systems use prewired data
paths and the program is set up in a diode matrix.

The processor described in this paper uses a different
roach. It is a fully programmable sequential machine
with an instruction set comparable to that of a modern mini-
computer. High speed operation is obtained by keeping data
and control path delays to a minimum and by overlapping

operations as much ‘as possible.

It is inherently slower than hard wired devices, but
it will execute suitable tasks more than one order of
magnitude faster than a modern mini-computer.

Originally, the processor was designed as an integrated
part of the CERN ERASME project [3,4], which is a system of
five semi-automatic scanning and measuring machines for
bubble chamber photographs. The prototype [5] was
specifically implemented to generate and evaluate histo-
grams of track co-ordinates in the automatic track-following
mode of the machine.

Based upon the experience with the prototype which
came into operation at the end of 1974, the more powerful
version described in this paper was designed. The first
unit ‘is being built at present.

Apart. from the(applicétibnydescribéd,above, the
processor is being proposed to be used in data collection
and preprocessing for wire-chamber experiments,

It is felt that. the device could find numerous other
applicaticns in fields where a variety of short routines
have to be -executed at a speed which would be too high for
a mini-computer. v

2. GENERAL DESCRIPTION

Fig. 1 shows a-simplified block diagram of the processor.
It is made up from five main sections which are lodged in
separate '"NIM" type plug~in units, connected together by a
printed circuit mother-board:

a) an instruction unit with a 256 x 48 bit read/write TIL
memory

b) a 256 x 16 bit data memory of the same type as above

c) an arithmetic- ~logic unit which also contalns the data
flow control

d) a fast shift and bit test uﬁit
e) a fixed p01nt multlply and. divide unit.

The two latter units are optlons -and not shown on the
block diagram. .

There are two main buses in the processor : the 48 bit
instruction bus (IB) which controls all operations, and the
16 bit data bus (DB) to which the data memory (DM) and all
the processing units are connected. .Data .to and from
external devices also pass via the DB.,

The processor is connected on line to a host mini-computer.
a PDP-11, which is used to load the program, initiate the
operation and finally read the processed data.

The machine runs on a single phase clock and one 48 bit
instruction is executed per cycle. The prototype runs at
10MHz, but the revised version, which will use Schottky
TTL memory, has been designed to work at a nominal cycle
time of 80 ns.

To optimize speed.of operation, the machine has been
designed in such.a way that as many activities as possible
are executed simultaneously. Data and instructions reside
in separate memories; every cycle a new instruction is
fetched and at the same time the operands are brought in to
the arithmetic unit from the data memory and/or the data
file. Meanwhile, the addresses for the: next data and
instruction are being prepared in the dedicated arithmetic
units. Book-keeping is done in parallel, rather than by a
separate instruction. Finally, a unique "BREAK" system
allows. single. 1nstruct10n 1oops to be executed with up to



four way automatic branching.

3. THE ARITHMETIC LOGIC UNIT

The arithmetic logic unit (ALU) is shown in Fig. 2
together with the associated registers and the data memory.

The ALU itself consists of three IC's of the type
SN745181 and a carry look-ahead SN745182. These circuits
are strictly combinatorial and the typical propogation time
for adding two 16 bit words is 20 ns. The 5 bit opcode and
the input carry are held in a dedicated 6 bit register
(ALO) which is loaded from the instruction bus (IB). The
64 possible operations include add, subtract, left shift
and Booleans. An exhaustive list is found in a semiconduc-
tor manufacturer's manual or in this processor's software
documentation [6].

The two operands are latched in the registers A and B at
the beginning of a cycle whenever their '"enable" bits are
present in the instruction word (IB <45> and <27>). The A
operand is taken from the common data bus of the processor
(DB <15-0>). It can thus be loaded directly with data from
the host computer, an external device, the data memory or
immediately from the instruction bus. The B register is
connected to the data file (DF) which contains 8 x 16 bit
words (4 x 74S172). The addressing of the latter is done via
the IB during the second half of the instruction read-out
(Fig.4). Thus, the content of the selected file register
can be strobed into the B register at clock time. In other
words, the DF combined with the B latch look like 8 separate
accumulator registers.

As shown in Fig. 2, the DF has two input ports and two
output ports. These ports can operate simultaneously and
independently to an extent which is only limited by the
addressing structure. Due to the restricted number of bits
available in the instruction word, it was not possible to
take full advantage of all the addressing possibilities of
the DF.

The output of the ALU is connected to the common data
bus DB through two sets of tristate gates, one set of which
has been connected to swap bytes. From the DB, the inform-
ation can then be transferred to any of the units connected
to this bus, whether internal or external.

Most frequently results will be written into the data
memory (DM). As this happens during the second half of a
cycle, it is possible to execute an operation, for instance
ADD, in the ALU and still have time to write the result into
the DM during the same cycle. This means that within a
program, we can perform the operation A(ALU)B » C within one
cycle. A typical example would be to add a constant to a
block of data in the DM. This would be done in a loop with
only two instructions, one for read and the next one for
the ADD and write. The DM addressing would be executed in
parallel and the word count handled in the instruction unit
by means of the BREAK logic as explained in a separate
chapter.

To perform conditional branching, the carry (CN+4) and
A=B outputs of the ALU have been brought out to the BREAK
logic of the Instruction Unit (see Fig. 1 and 3). The BREAK
logic is treated below in a separate chapter.

4, TIE MULTIPLY/DIVIDE AND SHIFT UNITS

The multiply/divide unit is a separate and autonomous
option.

The operands are loaded from the common data bus (DB)
by a micro-instruction. As soon as the unit has completed
its execution,a flag is set which causes a conditional jump
in the instruction unit, provided the BREAK system has been
activated. Multiplication takes 1,6 us and division 1.8 us.
The unit works in signed or unsigned integer mode, and
executes concurrently with other activities in the processor.

The shift unit uses two levels of the AM 25810 combin-
atorial shift network. End-off right or left shift as well
as rotate by any number of places up to 15 is carried out
in one single 80 ns cycle.

As combinatorial "drop-through" shifters are not well
suitced for detection of overflow, a separate bit test logic
has been incorporated in the shift unit. It works as
follows: a bit pattern which is set up in a mask register
by program is compared with the data word. If the BREAK
system is activated, the processor will skip the next
instruction whenever any of the masked bits is present in
the data word, and it will skip two instructions if all the
masked bits are present.

This unit has been designed, but not yet built.

S. THE DATA MEMORY

The data memory (DM) is shown in Fig. 2 together with
its associated addressing and control logic.

The memory itself is made up from 16 TTL memory chips
each of which contain 256 static storage cells (SN74200 or
equivalent). A read or write cycle takes 45 ns. By using
a recent Schottky version, the access time is reduced to .
30 ns typically. '

The data memory unit has its own dedicated addressing
system.

The arithmetic unit (DALU) can perform 8 different
operations : A, A+l, A-1, B, A+B, A+B+l, all = 0 and
finally all = 1.

The A input of the DALU is taken directly from the
Data Address Register (DAR) making address modifications
relative to the present address. When the opcode DALO=A+1
the DAR-DALU combination looks like a counter where the
strobe SDA acts as the incrementing command. If this
strobe is left out (IB <25> = (), or the clock to
the module stopped, the address will remain at its latest
value.

The addressing logic has been designed in such a way
that it is easy to jump from onc block of data to another.
The base values are set up directly from the IB in the
8 word Address File (AF). They can then be used as
absolute addresses by executing a direct transfer to the
DAR via the common bus DAB <7:0> or as indices by trar
ferring the relevant AF word to the Data Index Registe. (DAI).
The DALO opcodes available for indexing are A+B or A+B+l.
The DAR content can be saved at any time in the AF by
giving the AF address on IB <38:36> and setting the strobe
bit IB <39> SAVDA. As the AF permits read and write at the
same time, save and retrieve can be executed within one
cycle.

The lower byte of the DB is connected to the DAB via
tristate gates. Therefore all DB sources can be used as
addresses. Immediate addressing is obtained by connecting
IB <15:0> to the DB, and using the lower byte only. The DAR
can in turn be read on to the DB.

External devices can address the DM through two
different ports: one port is reserved for the host computer
(UNIBUS),one for DMA addressing (HIST BIN NO.). Data is
transferred directly on to the DB.

In one mode, the entire DM is connected to the PDP-11
UNIBUS; it then looks like a section of the host computer's
own memory. This is particularly convenient when treating
processed results, because the data does not have to be
moved before it can be further processed by the PDP-11.

The data memory can be expanded in blocks of 256 words
by means of paging. The page mumber is set up via the IB.



So far, the processor has not been used for tasks which
need more than the basic page. It is estimated that the
fast memory could be expanded to a few thousand words at
the most, at the expense of some reduction in speed.
Direct connection to a 16k MOS memory with 250 ns access
time is being studied at present.

6. THE INSTRUCTION UNIT

6.1. PRINCIPLE
The main parts of the Instruction Unit, which is shown
on Fig. 3 are:

a) a fast TTL memory with 256 words of 48 bits

b) the instruction addressing logic, which includes the
' conditional "BREAK" system

¢) a read-in sequencer to load programs from the host
computer

d) the UNIBUS interface, part of which is external to the
unit

~) a priority register which can be set by external signals
to start a given routine.

Although the execution time of the individual instruc-
tions is directly related to the memory access time, the
effective speed at which a program runs is even more
dependent upon the architecture of the machine. Therefore,
the Instruction Unit has been built in such a way that
operations will overlap in time. Thus, in order to overlap
fetch and execute cycles, it has its own arithmetic unit
for address calculations. Further, the address for the next
instruction is evaluated during the time the present inst-
ruction is read from the memory.

The Instruction Unit is autonomous in the sense that it
is indifferent to what kind of units it controls. The
only incoming signals are the ones that are necessary to
load the instructions, start routines and to set up branch
operations.

A versatile 'BREAK" system allows single instruction
loops to be executed with up to four-way branching. Direct
jumps -are executed without loss of a cycle.

A more detailed description of the logic is given below.

6.2. THE INSTRUCTION MEMORY

Fast, static TTL memory chips of the type SN74200 or
a faster Schottky version (82516 or 27LS00) arve used.
The total memory capacity of the prototype is 256 words
of 48 bits. :

The operation of the ‘memory is simple: when a ""READ"
and "ENABLE" signal is given, the content of the addressed
cell will occur on the output 45 ns later (30 ns for
Schottky version) and stay until any of the mentioned
signals are changed. The processor cycle time is 80 ns,
as shown on Fig. 4. When a program is running only READ
operations are performed. This means that the Instruction
Memory could be replaced by a Read Only Memory once the
whole program has been finally frozen.

The programs are loaded from the host computer. A
sequencer automatically assembles three incoming 16 bit
words into one 48 bit instruction and then advances the
address register (IAR).

6.3. THE INSTRUCTION ADDRESSING SYSTEM

As shown in Fig. 4 a new instruction cycle is started
each time an address is strobed into the Instruction
Address Register (see Fig. 3). This address is prepared

in the dedicated instruction addressing logic concurrently
with the other activities in the processor. The main parts
of this logic are:

1. a dedicated Arithmetic~Logic Unit (IALU)

2. a 4-way multiplixer to select the addressing source

3. a "BREAK" system which controls conditional branching
4. a register to save an address to be used later (SAVIA)
5. the Instruction Address Register (IAR).

All these units are controlled by the program via the
Instruction Bus (IB).

The IALU (SN74S181) is used to calculate instruction
addresses. The operation code is set up in the IALO register.
The code is converted from 3 bits to 6 bits to save space
in the instruction word.

One of the inputs to the IALU is taken directly from
the IAR. This makes address calculations relative to the
present IAR content. Normally the IALO code will be A+l,
which means that the IALU acts together with 1AR to form a
virtual address counter.

Jumps can be executed via two different paths: direct
jumps bypass the IALU and are taken directly from the IB
to the IAR through the MUX. In this way, direct jumps do
not take longer than sequential addressing. Conditional
jumps pass through the IALU input B, and are controlled by
the "BREAK" system as described below.

An address can be saved any time in the SAVIA register
by means of a single bit command and retrieved later by
selecting the relevant MUX input.

The host computer has direct access to the IAR over the
IAB-bus. This port is used to load programs or to initiate
a routine.

To skip one cycle, the clock to the IAR can be inhibited
by means of the single bit "NOP" command. The program will
resume one clock period later.

6.4. The "BREAK" SYSTEM

The "BREAK' logic controls conditional .skip and jump
operations. In order to illustrate its principle, let us
consider a simple routine which performs a tight loop in the
ALU with three possible branches. The sequence, as it
would occur in a conventional mini-computer could typically
look 1like this:

1. set up necessary parameters

2. load working register with data word

3. perform operation

4. branch to 8 if result = 0

5. increment address register for the data
6. go to 9 if all done

7. return to 2

8. do subroutine, then return to 5

9. continue with next instruction.

For cimplicity, let us also assume that step 3 merely
consists of one single instruction, such as COMPARE, and

that we do not store the result. Normally, most of the
other steps within the loop require one instruction, which



means that the overhead is more time consuming than the
actual operation itself. Further, most of the instructions
will need two memory cycles.

How many of these steps can in principle overlap in
time? Obviously, step 3 is the essential operation.
However, the address of the third data word could be
calculated during the read out of the second while the
first one is being treated in the ALU. Thus no real time
is lost within the loop in fetching the data.

It remains to take care of the branch instructions,
step 4 and step 6. For the latter, we need a counter which
can be preset to a given value, and then decremented once
per revolution in the loop. When it reaches zero, a con-
ditional "BREAK" system could force the instruction address
to be modified. Additional inputs to such a system could
handle the conditional outputs of the ALU.

By now it should be obvious that in fact it is possible
to overlap all the steps in the loop with the ALU activity.

The main parts which form the BREAK system are shown
on Fig. 3. A conditional jump function is prepared and
executed as follows: a mask is set up by the program in
the conditional break register BR which selects one or
several of the open collector gates which are marked
<,=,> or W. The output of these gates are tied to the
Instruction Address Bus IAB which normally contains all
"0's", Whenever a condition becomes true, a '"1' is placed
on the relevant bit of the IAB; in other words, a number
appears on the IAB and consequently at the B input of the
IALU. If the code IALO=A+B, this number is added to the
present instruction address, and a jump is executed. The
magnitude of the jump will lie between 1 and 5, and depend
upon the sclection mask in BR as well as the condition
which has occurred. Note that for a given condition the
magnitude of the jump is programmable. In this way, one
can compose multiway branching. For instance, one could
choose to add 1 to the present instruction address when the
wordcounter reaches zero, 2 if the '"=" condition is met in
the ALU, 3 for the '"<" condition and stay with the same
instruction if nore of these conditions are met. The word-
counter empty condition (W) has been given priority over
all other conditions.

Skip instructions can be composed in a similar way by
setting the IALO code = A+B+l.

Without going into further details, the timing problem
needs a few comments: the path from the input of one of
the registers of the ALU to the IAR is longer than the
clock period of 80 ns. It is therefore necessary to skip
one strobe pulse to the IAR when a condition is met, in
order to allow for the jump address to be evaluated in the
JIALU. This is controlled by the two flip-flops CKCO and
ENBK. The latter is also used to enable the BREAK system
so that one can leave the content of the BR if it is
needed again.

When a condition has been met in the ALU, and a branch
is executed, the content of the data address register, ALU
registers etc. must be frozen, or else the return to the
loop becomes cumbersome, Therefore, the clock to the ALU
is inhibited within the cycle in which the condition was
met. This is the task of the gate G3.

7. INTERFACE TO THE HOST COMPUTER

The processor is intimately connected to the UNIBUS,
and the PDP-11 controls its state via a command register.
To load a program, the instruction memory is made to look
like a single register on the UNIBUS and the incoming 16
bit words are automatically assembled into sequential 48
bits instructions. Once loaded, the content of the
instruction memory may be read back and checked.

Exccution of a program is triggerced by moving its start

address to a virtual UNIBUS register, and the processor can
be programmed to operate in a mode in which the data memory
looks like part of the PDP-11's own memory. This means that
results do not have to be transferred back to the PDP-11
memory for further processing.

8. EXTERNAL I/0 AND FLAGS

Data to and from an external device pass via the common
data bus DB. The access to the DB, as well as the memory
commands, are controlled by program. The device can either
send the addresses through the "HIST BIN" port (Fig. 2) or
use the internal addressing system. The transfer is synch~
ronous with a cycle time of 80 ns or multiples thereof.

In order to start a given routine in the processor
from an external device, a set of four FLAG inputs are
connected to a priority register.(see Fig. 3). The outputs
of the latter are connected to the BREAK system. Each flag
will force the program register to a different address, from
where the routines can be started. To make the system still
more flexible, the lowest priority flag will enable a set of
six gates on to the IAB (not shown on Fig. 3). In this way,
up to 64 different peripherals can be handled directly at
the expense of some additional externmal interfacing logic.

Obviously, the external flag system is program con-
trolled. The priority register must be regularly check. . to
detect incoming signals. On the other hand, routines are
normally short and executed at high speed, making the
response time supportable in all practical cases. A genuine
interrupt system would require an appreciable amount of.
hardware and most likely introduce additional time delays
in the control paths of the processor.

9. PROGRAMMING AND SOFTWARE

The 48 bit instruction word is divided into three
main groups: commands, enable bits and their associated
parameter fields as shown below: (see also ref. 6).

47 0
MODE 0: COMMANDS ENABLE PARAMETERS & .
BITS MO DIRECT OPERANDS
MODE 1: | COMMANDS ENABLE PARAMETERS &
BITS ML DIRECT OPERANDS
SAME IN DIFFERENT FROM
BOTH MODES MODE 0

As all parameters and direct operands do not fit into
the framework of 48 bits, two different instructions are
used which are distinguished by means of a single 'mode"
bit. Most of the commands are single independent bits and
may be used at the same time. However, this does not always
apply to the enable bits as sometimes their data fields

-overlap.

The programs for the processor are written in a
symbolic language. A cross assembler which runs on a
PDP-10 computer composes the 48 bit instruction words from
individual micro commands and stores the result on disc.
The programs are then transferred to the host PDP-11 com-
puter via a direct link or paper tape. A resident loader
in the PDP-11 transfers the binary program to the micro-
processor for execution.

The assembler includes all the usual features such as
symbolic addressing, labels, literals etc. ‘

In addition to the assembler, a complete set of
debugging and checking routines has been created.



10. PRESENT STATUS AND PERFORMANCE

The prototype was installed in one of the ERASME [1]
measuring units in December 1974 and has been running
continuously ever since withcut failure. Its task so
far has been to generate four different histograms in
real time. Actual timing measurements by means of an
oscilloscope show that the prototype executes this partic-
ular routine 11 times faster than the PDP-11-45.

. The corresponding program for the more powerful new
version has been written and it is estimated that the gain

will increase to around 20 when compared with a PDP 11-45,
or 60 when compared with a PDP 11-20.

The fastest possible routine is a single loop
instruction containing a multi-way branch. A typical
example would be to search through the data memory for
words which match a given sample., (In fact, the processor
then simulates a content addressable memory). In this
mode of operation the processor is about 35 times faster
than a PDP 11-45.

Although further experience with various kinds of
programs are needed before a good estimate can be found,
it seems that the factor of 20 times PDP 11-45 can be
expected for tasks which are reasonably suitable for the
processor. Routines which include a lot of multiplications
and/or divisions will run slower.
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