EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH

CERN LIBRARIES, GENEVA

CM-P00046553

CERN/SPSC/80-113 SPSC/P 153/S 29 September 1980

PROPOSAL

DIRECT PHOTON PRODUCTION IN HADRON-HADRON COLLISIONS AT THE SPS

- R. Hagelberg, M. Hansroul, W. Kienzle, A. Michelini and O. Runolfsson. CERN, Geneva
 - G. Burgun, Ph. Charpentier, B. Gandois, F.X. Gentit, P. Le Dû, G. Rahal and P. Siegrist.
 CEN, Saclay
 - M. Crozon, P. Delpierre, P. Espigat, Th. Leray J. Maillard and J. Tilquin. Collège de France, Paris
 - J. Badier, J. Bourotte and S. Weisz. Ecole Polytechnique, Palaiseau
 - J. Boucrot, O. Callot, D. Décamp, Y. Karyotakis and J. Lefrançois.

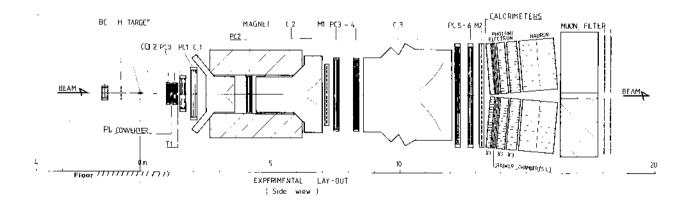
 Laboratoire de l'Accélérateur Linéaire, Orsay
 - C. Bemporad, F. Costantini, G.R. Giannini, P. Lariccia. Istituto di Fisica, Università di Pisa, Pisa, Italy Istituto Nazionale di Fisica Nucleare, Sez. di Pisa, Pisa, Italy.

Contactman : W. Kienzle
Spokesman : A. Michelini

ABSTRACT

We propose to measure the production of direct real photons with large transverse momentum in pion-nucleon collision at the SPS (H8 beam) using the NA3 spectrometer with an upgraded e- γ calorimeter. We intend to proceed in steps of increasing complexity:

- i) measurement of the direct γ cross-section in $\pi^{\pm}C \rightarrow \gamma + X$ and search for the annihilation process $\overline{q}q \rightarrow \gamma g$ by measuring the charge asymmetry at 200 GeV/c;
- ii) determination of the gluon structure function of the pion and the nucleon;
- iii) use of the $\pi^--\pi^+$ difference on carbon, if found experimentally, to extract the gluon fragmentation from the γ -hadron correlations.


For comparison, the quark fragmentation function can, in principle, be extracted from processes where the Compton scattering $qg \rightarrow q\gamma$ dominates and compared with data from D.I.S. as a test of the method.

The existing standard NA3 spectrometer is well suited for this type of physics. Good π^0 rejection is achieved on the trigger level by selecting e^+e^- pairs from γ conversion in a thin lead radiator. This trigger offers the advantage of being highly selective for single γ 's and technically feasible with the present cathod cell chambers, already used in the dimuon experiment.

In order to improve the direct photon selection of the existing electron-photon calorimeter we intend to add a fine-grained shower chamber.

The program of measurements described above requires 160 days of beam time in 1981-82.

The impact on this experiment of a future high-energy antiproton beam is briefly discussed at the end.

