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Abstract

The purpose of the present note is to described the various constraints used in the de�nition of

the geometry of the end cap electromagnetic calorimeter for ATLAS. Then the chosen geometrical

structure is de�ned and the required working conditions are given. The behaviour of the detector is

analysed with these geometrical parameters and some important characteristics such as electronic

noise, high voltage current and dynamic range are calculated.





1 Introduction

On the basis of general ideas developped and tested in the framework of the RD3 collabora-

tion [1, 2], the present note describes the adaptation of accordion type calorimeter in the end-cap

region. The �rst part is devoted to the speci�cations and constraints used to de�ne the geometrical

structure of the end-cap electromagnetic calorimeter. In a second part, this structure is presented

and all its parameters are discussed. Then various linked information such as cell capacitance, high

voltage current, electronic noise and dynamic range is extracted. The parameters obtained in this

note should not be considered as frozen and could still be a subject of certain changes.

2 Geometry of the end-cap

2.1 Input parameters

The goal of the calculations presented in this note is to optimize the geometrical structure

of the end-cap electromagnetic calorimeter in order to get the best energy resolution and response

uniformity in a region of performance optimization.

The boundaries of this region as well as the overall dimensions and position inside the AT-

LAS detector of the electromagnetic end-caps are considered as de�ned by the general layout of

ATLAS. Namely, the pseudorapidity coverage of the electromagnetic end-caps is considered to be

1:4 < � < 3:2, and the performance optimization is required for at least 1:6 < � < 2:8.

The total calorimeter depth, in terms of radiation lengths, has to be of the order of 28 Xo or

more to contain 2 TeV electromagnetic showers without visible deterioration of energy resolution

from backward leakage [3].

For technical reasons that are explained in section 2.3 and 2.5, the required rapidity coverage

can not be acheived in one accordion structure. Thus, the endcap structure consists of 2 wheels

with di�erent numbers and shapes of absorbers.

Monte-carlo studies performed �rst for the barrel then extended to the endcap structure have

shown the need for a number of absorbers close to 360 for the inner wheel [2]. Moreover, the number

of absorbers in each wheel has to follow the constraint, from the read-out scheme, of 2n readout

cells in � direction. Then, the average cell size need to be close to the transversal shower dimension.

These requirements de�ne the choice of cell granularity �� � �� = 0:025� 0:025 for outer wheel

(the same as in the barrel calorimeter) and ����� = 0:05� 0:05 for inner wheel. This gives 128

cells for the inner wheel and 256 cells for the outer wheel with 3 absorbers per cell, or 384 (768)

absorbers in the inner (outer) wheel.

From mechanical constaints on the cryostat and on the hadron calorimeter dimensions given

in [4], the total thickness of active part (with charge collection) of the calorimeter is 51 cm and the

distance in the Z direction from the interaction point to the beginning of active part is 362.3 cm.

The outer radius is de�ned by the general layout of ATLAS to be equal to 203 cm.

2.2 The approach to the end-cap accordion geometry optimization

In order to de�ne the endcap geometry, the position of the boundary between small and large

wheels has to be choosen as well as, for each wheel, the number of waves, and the radius behaviour

of the openning angle and of the lead thickness. These parameters should provide the best signal

uniformity in both � and � directions and should satisfy certain technological limitations which

will be discussed later on. A better understanding of the optimization procedure can be given by

�rst considering the \ideal" geometry.
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Figure 1: Lay-out of accordion absorbers with \ideal" geometry

L total thickness of active part of the calorimeter in Z direction

M number of waves in Z direction

N number of absorbers

�(R) openning angle

e(R) lead thickness

p = 2�R=N distance between neighbouring absorbers in � direction

d = L=2M half of zig-zag step

h = d=tg �
2

zig-zag height

lzig(R) = d=sin�

2
zig-zag length

Table 1: Geometrical parameters of the \ideal" geometry

This geometry, shown on the �gure 1, uses sharp angles and no materials other than lead or

liquid argon. Some of its main parameters, de�ned in the �gure 1, are given in table 1. The amount

of lead crossed by a particle does not depend on � if the absorbers are aligned as shown on this

picture. This gives an ideal uniformity in the � direction. But the following condition has to be

satis�ed:

h = �p; (1)

where � is an integer number (in our case � = 3). The substitution of the de�ned parameters leads

to the following equation:

tg
�(R)

2
=

1

�
�

N

2�R
�

L

2M
; (2)

which gives an expression for �(R):

�(R) = 2arctg(
1

�
�

N

2�R
�

L

2M
): (3)

The uniformity in the � direction has to be considered by taking into account that a signal
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in such a calorimeter depends not only on the total ionisation in liquid argon (propotional to

the energy deposited in LAr), but also on the electric gap and on the high voltage applied. This

behaviour is given by:

signal / (
XLAr

Xtot

) �
v(E) �E

U
; (4)

where U is the high voltage, E = U=gap is the electric �eld, v(E) is the drift velocity (which

could be parametrized as v(E) / Eb, b = 0:3), and (XLAr=Xtot) is the sampling fraction. After the

substitution of these parameters in the expression, we get:

signal / (
XLAr

Xtot

) �
U b

gapb+1
: (5)

Thus, beside the gap, which is a function of the radius in the endcap accordion approach, two

independant parameters can control the signal nonuniformity. The lead thickness acts on the energy

deposition in LAr. The high voltage acts on the signal produced by the deposited charge in LAr.

Therefore, a variable high voltage can be applied to compensate for the gap variations and get a

constant signal. In this case, sampling fraction nonuniformities could also be compensated if the

high voltage is calculated by the following formulae:

U / (
Xtot

XLAr

)

1

b

� gap
1

b
+1: (6)

The sampling fraction should be rather uniform to provide an energy resolution independent of

�. This is the reason why the deposited energy and the produced signal are tried to be kept uniform

in the present calculation. An expression of the sampling fraction can be given by considering a

thin cylindrical layer of a calorimeter with a radius R and a thickness �R. The volume of lead in

such a layer could be expressed by:

VPb = e(R) � lzig(R) ��R � 2MN; (7)

which gives after a division by the layer cross section (�S = 2�R�R), the equivalent thickness of

lead:

LPb =
e(R) � lzig(R) � 2M

2�R

N

: (8)

In the considered case of only two materials (lead and liquid argon), the inversed sampling

fraction (Xtot=XLAr) could be derived from LPb as follows:

(
Xtot

XLAr

) = 1 +
X0

LAr

X0
Pb

�

1
Ltot
LPb

� 1
; (9)

where, X0

LAr and X
0

Pb are the radiation length respectively for LAr and for lead, and Ltot = d � 2M

is the total thickness of the calorimeter. Thus the condition (Xtot=XLAr) = const is equivalent to

LPb=Ltot = const which leads, from equation 8, to:

e(R) � lzig(R)

d � 2�R
N

= const: (10)

Therefore, the lead thickness as a function of the radius can be express by:

e(R) /
2�R

N
�

d

lzig(R)
; (11)
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which turned out to be, after sustitution of lzig(R):

e(R) /
2�R

N
� sin

�(R)

2
: (12)

Thus, the sequence of endcap parameters calculation is the following:

1. determine �(R) using (3)

2. determine e(R) from (12)

3. determine U(R) from (6)

2.3 Boundary position between two wheels

The simple relation, tg �
2
/

1

R
, derived from the condition 3, shows that giving �in and �out,

the values of the boundary openning angles, leads to give the inner Rin to outer Rout radius ratio

of one wheel of endcap accordion. This can be expressed by:

tg �in
2

tg �out
2

=
Rout

Rin

: (13)

Limitations in the technologies used in the production of absorbers of accordion shape imply that

the openning angle � should be kept in the following boundaries:

600 < � < 1200: (14)

These boudaries and equation 13 give a constraint on the outer to inner radius ratio for one wheel

of endcap:

Rout

Rin

< 3: (15)

But, according to the overal dimensions of endcap calorimeter, de�ned in section 2.1, the outer to

inner radius ratio for the whole endcap is 6.7. Thus, in order to be close to the above constraint, it

has been chosen to have a two wheels geometry for the endcap calorimeter.

An almost identical Rout=Rin ratio for both wheels should be taken to ease the building of

the wheels. But such a choice would mean a crack position between the two wheels in the middle

of the � coverage region 1:4 < � < 3:2, i.e. �crack = 2:3. And this leads to a width of the kapton

electrodes for the inner wheel larger than 61 cm which is di�cult to produced with standard

technologies available today. Thus, �crack = 2:4 has been chosen as a good compromise. In this

case, Rout=Rin = 3:00 for the outer wheel and Rout=Rin = 2:55 for the inner wheel, which is not

symmetrical, but still in the range.

2.4 Di�erent factors a�ecting the uniformity of response

In the section 2.2 we have got an expression of the openning angle and of the lead thickness

that provide the signal uniformity for an "ideal" endcap calorimeter. These formulae should be

modi�ed to be closer to the reality. The presence of inactive materials others than lead (stainless

steel, glue,kapton) with a thickness independent of the radius have to be taken into account. Thus,

the optimal lead thickness given by equation 12 should be slightly modi�ed. Moreover, the angles

of accordion are not sharp, they have a curvature radius. Then, the condition for the absorbers

alignement should be modi�ed as well.
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2.4.1 The e�ect of inactive materials

By analogy with the expression 8, the equivalent total thickness in the calorimeter for a

material i is:

Li =
ei � lzig(R) � 2M

2�R=N
; (16)

where ei is the thickness of a layer of material i per one absorber plate. Then, the equivalent

thickness of liquid argon can be expressed by:

LLAr = Ltot � (ePb(R) +
X

i

ei) � lzig(R) �
N

2�R
� 2M; (17)

where ePb(R) is the thickness of lead. The number of radiation length in liquid argon XLAr is equal

to :

XLAr = LLAr=X
0

LAr =
2M

X0
LAr

(d� (ePb(R) +
X

i

ei) � lzig(R) �
N

2�R
): (18)

Thus, the total number of radiation lengths in the inactive materials Xabs can be de�ned as:

Xabs = Xtot �XLAr = (
ePb(R)

X0
Pb

+
X

i

ei

X0
i

) � lzig(R) �
N

2�R
� 2M: (19)

From the evident equation:
Xabs

XLAr

=
Xtot

XLAr

� 1; (20)

the condition of the sampling fraction uniformity can be expressed in the following form:

Xabs

XLAr

= const = �: (21)

Then, after substitution of (18) and (19), this condition becomes:

(d� (ePb(R) +
X

i

ei) � lzig(R) �
N

2�R
) �

�

X0
LAr

= (
ePb(R)

X0
Pb

+
X

i

ei

X0
i

) � lzig(R) �
N

2�R
: (22)

Solving the previous equation leads to the following expression for the lead thickness:

ePb(R) = [
2�R

N
�

d

lzig(R)
� �

X

i

ei(
X0

LAr

X0
i

+ �)]=(
X0

LAr

X0
Pb

+ �); (23)

which is naturally compatible with (11), when ei = 0.

2.4.2 The e�ect of round folds of accordion

The presence of non-zero curvature radius in a fold region alters the uniformity in � direction.

Thus a modi�cation of the alignement condition is necessary. The alignement principle illustrated

by �gure 2 can be used to minimize the nonuniformities produced by round folds.

In fact, the alignement condition 1 is unchanged, but the value of accordion height h is

de�ned now, as shown on �gure 2, as a distance between the extreme points of accordion, and can

be expressed by:

h =
d

tg �
2

�

2�

sin�

2

+ 2�+ e; (24)
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Figure 2: Lay-out of accordion absorbers with round angles.

Figure 3: Lead thickness as a function of radius; (a) circles - optimal geometry, (b) stars - linear

approximation.
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where � is the curvature radius corresponding to the center of absorber plate and e is the total

thickness of the absorber. The formulae 23 for the lead thickness is correct in the case of round

folds, but the expression for lzig used in an ideal case, should be replaced by:

lzig =
d

sin�

2

�

2�

tg �
2

+ (� � �)�: (25)

After these modi�cations, equations 1 and 23 become nonlinear, but they can be solved numerically

by iterative method in order to obtain �(R) and ePb(R). This solution is called \the optimal

geometry".

The behaviour of e(R) and lzig as a function of the radius, got from such calculations, are

shown on �gure 3 and 4 for the whole range of radius, covering both wheels. These behaviours

are signi�cantly nonlinear inside each wheel. Such a shape cannot be done with the nowadays

technologies used in the absorbers production. Therefore, only a linear behaviour can be achieved

and a linear approximation for each wheel has then been chosen as shown on the �gures 3 and 4.

The average deviation from the optimal curve has been minimized in the region of performance

optimization de�ned in section 2.1. Starting from the linear approximation of lzig(R), the equa-

tion 25 can be solved to determine �(R) and then ePb(R) from equation 23. This solution is called

\the approximative geometry". In this last case the condition 1 is not satis�ed. Thus, parameter

�h = h� � � 2�R=N , characteristic of the defect of alignement can be de�ned.

2.5 Number of waves

On the �gure 5 the behaviour of the accordion openning angle as a function of � is shown

for di�erent number of waves M in the inner and the outer wheels. M = 9 for the outer wheel and

M = 12 for the inner wheel are the compromise values chosen to satisfy the technological limitation

given in expression 14 on the openning angle.

2.6 Analytical calculations of the geometrical parameters

The behaviour of the di�erent parameters as a function of � are presented on the �gures 6 to 14

for two cases: optimal geometry (circles) and approximate geometry(stars). In the optimal case, a

constant sampling fraction XLAr=Xtot = 0:075 was chosen to provide a total calorimeter thickness

larger than 28 radiation lengths. In the approximate geometry case, a deviation of the sampling

fraction (�g.10) from a constant value is seen. It is compensated by a high voltage variation (�g.14).

The analitical calculations presented here are planned to be completed by detailed Monte-

Carlo simulation of a shower development in the end-cap. From those studies the energy resolution

and �-modulation of a signal will be obtained.

In the calculation of the high voltage, a minimum value of 0.3 kV/cm for the electric �eld

has been taken in order to have always normal charge collection conditions. This value was the one

used in the tested prototype [1] [5]. It is taken for the inner radius of each wheel as a limit. Then

the other high voltage values are calculated from equation 6 to get a constant current signal inside

each wheel. To get an identical signal for both wheels the ampli�ers for outer wheel will have 10%

higher gain than for inner wheel.

To compensate the decrease of the sampling fraction for approximate geometry at � < 1:6

(see �g.10), the ampli�ers in this region have a gain 25% higher than in inner wheel. This permits

to keep the high voltage less than 3 kV for this part of the calorimeter.

In these calculations the high voltage was considered to be a function of radius, which is

not the case for the real calorimeter. High voltage in reality is �xed for read-out cells, having a
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Figure 4: Zig-zag length as a function of radius; (a) circles - optimal geometry, (b) stars - linear

approximation.

Figure 5: Openning angle versus � for accordion shape absorbers with di�erent number of waves

(M). Outer wheel (� < 2:4): circles - M=8, triangles - M=9, squares - M=10; inner wheel (� > 2:4):

circles - M=11, triangles - M=12, squares - M=13.
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Figure 6: Zig-zag length as a function of �; (a) circles - optimal geometry, (b) stars - approximate

geometry.

Figure 7: Lead thickness as a function of � ; (a) circles - optimal geometry, (b) stars - approximate

geometry.
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Figure 8: Openning angle as a function of � ; (a) circles - optimal geometry, (b) stars - approximate

geometry.

Figure 9: Total number of radiation lengths as a function of � ; (a) circles - optimal geometry, (b)

stars - approximate geometry.
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Figure 10: Sampling fraction XLAr=Xtot as a function of � ; (a) circles - optimal geometry, (b) stars

- approximate geometry.

Figure 11: Defect of alinement �h as a function of � ; (a) circles - optimal geometry, (b) stars -

approximate geometry.
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Figure 12: Electric gap as a function of � ; (a) circles - optimal geometry, (b) stars - approximate

geometry.

Figure 13: Electric �eld as a function of � ; (a) circles - optimal geometry, (b) stars - approximate

geometry.
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Figure 14: High voltage as a function of � ; (a) circles - optimal geometry, (b) stars - approximate

geometry.

pointing geometry. However, as it was shown by the prototype beam tests [5], the linearity of the

calorimeter can be preserved by using di�erent high voltages for longitudinal segmentations of a cell.

The appropriate values of high voltages will be chosen from the detailed Monte-Carlo simulation.

3 Induced behaviour of the detector linked to the choosen geometry

3.1 Detector capacitances

The detector capacitances have been calculated for each readout pad on each Kapton foil by

using the parameters given in section 2.6. It is not an exact calculation. We used a planar capacitor

aproximation with the following formulae:

Cd = �r�0 �
Surface

Gap
: (26)

�r = 1:6 is the relative permittivity of liquid argon, Surface, is the surface of the pad aproximated

by using the exact calculation of its projected surface onto the accordion plane times the ratio of the

exact length of a waves to the corresponding projected length. Gap, is the mean gap calculated at

the mean starting radius of the pad strip. For information, we have �Kapton ' 3:5 and �epoxy ' 3:5�5.

The strip capacitance due to the argon gap has been calculated and is showed on �gure 15. This

capacitance is the individual capacitance of each Kapton strip. On each side of a Kapton foil, there

is an high voltage strip and a signal strip burried between them inside the Kapton electrode. Due

to the small thickness of the Kapton foil compared to the argon gap, the capacitance of this gap is

much smaller than the one of Kapton. Thus, because these two capacitance are added in series, the

e�ect of the Kapton capacitance can be neglected. So, the detector capacitance can be aproximated

to the two liquid argon gap (HV strips) capacitance added in parallel.
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Figure 15: Endcaps high voltage pad capacitance versus �

As described in [7], the outer wheel is made of thin strips groupped by 12 in � for the �rst

depth segmentation (5X�), of strips groupped by 3 in the second segmentation (14X�) and groupped

by 6 in the third one (10X�). In the inner wheel, the chosen depth segmentation is roughly the same

as for the outer wheel (5X�, 14X�, 9X�) but without thin strips in the �rst segmentation. Then the

strips are groupped in � by 3, 3, and 6 for respectively �rst, second and third segmentation. With

these parameters, the detector capacitance of each signal cell has been calculated and is showed on

the �gure 16.

3.2 Electronic noise

The signal cell of the end cap calorimeter are read out with 0T preampli�ers. This preampli�er

and the relation between its electronic noise and the detector capacitance have been described in [6].

Using the behaviour of the equivalent noise charge (ENC) and of the peaking time with respect to

the detector capacitance as shown in [6], the electronic noise for each signal cell can be computed.

But, in order to give this result in terms of energy deposited, one need to know the ratio

between energy deposited in a cell and induced current. Thus, the charge deposited by an incoming

particle in the liquid argon is needed. The total ionisation charge deposited is given by [8]:

Q =
E

Wi

�sam (27)

in which Q is the value of the deposited charge (Q electrons and Q ions), E is the incoming particle

energy, Wi = 26eV is the energy needed to create one pair electron-ion in the liquid argon, �s is the

dE/dx sampling fraction and aM = 0:7 is a supression factor for electromagnetic showers. Usually

Q is calculated as a factor for 1MeV deposited energy. We will now use this de�nition for Q. For

the encaps, after an exact calculation of the dE/dx sampling fraction, we got roughly a value of (in

the calculation the exact value will be used):

Q = 5500 (e�=MeV deposited): (28)
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Figure 16: Endcaps cell capacitance versus �

Then, the conversion of an electronic noise current into a noise in MeV is given by the

conversion factor:

I0 = Q=tdr; (29)

where tdr is the drift time for charge deposited in the liquid argon gap. This drift time is linked

to the applied electric �eld as said in section 2.6. Therefore, by using the electric �eld and the

gap calculated in section 2.6, we got the complete behaviour shown on �gure 17 for the various

signal cells. A simple way of calculating this noise has been given in [6] and use the expression :

�el(MeV ) = 19
L

0:075 � Cd(pF ). The corresponding behaviour is shown on �gure 18.

3.3 High voltage current

To ease the choice of the type of high voltage needed for the electromagnetic endcaps, two

quantities are important to know: the required voltage range given in section 2.6 and the forseen

current.

There are two possible high voltage current sources in the endcaps. The �rst one is produced

by high energy electrons produced in the Z0 decay. The second one is coming from the constant

background of pile up particles seen by each endcap cell.

3.3.1 Current induced by a single particle

In order to calculate the current induced by a single particle for a given high voltage cell, we

need to know the deposited charge (as de�ned in section 3.2) and the integration time at the high

voltage level (a few micro seconds). This time is RHTCHT where CHT (�gure 15) is the high voltage

pad capacitance and RHT = 1M
 is the value of the resistor connected to each high voltage pad.

The deposited current in one cell is given by the following expression:

Icell =
2Qqe�E(MeV )

RHTCHT

: (30)
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Figure 17: Electronic noise on each Endcap cell versus �

One should mention that the RC of a group of identical cell connected in parallel is the same as

for an elementary cell (a pad cell (Kapton))(if there are \n" \Kapton cells" in a read out cell, the

corresponding \RC" is nC �R=n).

3.3.2 Pile-up current

The mean energy deposited by a standard event in an endcap cell with a 0:05�0:05 granularity

has been estimated by Monte-Carlo studies. The results are given in �gure 19. Furthermore, at a

luminosity of 1034, there is an average of 18 such events per bunch crossing. This leads to the mean

energy deposited in a 0:05� 0:05 cell represented on �gure 20. These calculations have been made

without any sampling in depth. But the values are low enough to assume that the energies are

mainly deposited in the �rst sampling (5X�).

As de�ned in the previous section, the high voltage integration time is long enough with

respect to the bunch crossing time to allow several bunch crossing (nbunch = RHTCHT=25 � 10
�9s)

to occure in the mean time. Thus, by taking the expression 30 given for a single event times nbunch,

the induced current becomes:

Icell =
2Qqe� < Ecellpileup(MeV ) >

25 � 10�9
; (31)

which leads, taking the rough value of Q = 5500, to the following expression (independant of the

cell capacitance and of the cell resistance) :

Icell = (70nA) < Ecellpileup(MeV ) > : (32)

But each high voltage power supply is forseen [7] to be connected to 16(�(0:05))� 1(�(0:05)) cells

for the inner wheel and 4(�(0:2))� 16(�(0:003125)) strip cells for the outer wheel. This gives a

high voltage granularity of 0:8(�)� 0:05(�). Then the total current on each high voltage is given
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Figure 18: Electronic noise on each Endcap cell versus � calculated with �el = 19
L

0:075 �Cd (pF)

in MeV

Figure 19: Mean energy deposited by standard events in a 0:05� 0:05 endcap cell versus �
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Figure 20: Mean pile-up energy deposited in a 0:05� 0:05 endcap cell versus �

by (with Q = 5500) :

IHV cell = (1:1�A) < E0:05�0:05cellpileup(MeV ) >; (33)

which leads, by using the results given in �gure 20 and the exact calculation of Q to the current

given in the �gure 21. It has been assumed, in �rst approximation, that the total deposited energy

in each high voltage cell could be estimated by using a calculation made for 0:05� 0:05 cells.

The induced high voltage loss has to be calculated at the level of each "high voltage pad

resistor". In the inner wheel, one cell is based on three Kapton foils, and each Kapton foil is double

sided. Thus, as the "pad resistor" is a 1M
 resistor, the induced loss is given for an average

Q = 5500 by :

HVloss = 1M
�
(70nA)

6
< E0:05�0:05cellpileup(MeV ) >; (34)

which leads to a range of 2.5 to 4.5V of induced high voltage loss (cf �g. 22). In the outer wheel,

the energy deposited in a region of 0:05 � 0:05 granularity is distributed on to six double sided

Kapton foils with 16 � strips on each. Thus, if the "pad resistor" is still a 1M
 resitor, the induced

loss is given by :

HVloss = 1M
�
(70nA)

96
< E0:05�0:05cellpileup(MeV ) >; (35)

which leads to a range of 0.06V to 0.16V of induced high voltage loss (cf �g. 23). As a matter of

fact, the high voltage current for each high voltage pad strip is just the high voltage loss divided

by 1M
 and is represented on �gure 22 and 23 on the left scale.

3.3.3 High energy electrons current

The mean energy deposited in the EndCaps by electrons created in the decay of a 5 TeV

Z0 have been estimated by using Monte-Carlo simulations. The � distribution and the momentum
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Figure 21: Pile-up current on the EndCaps high voltage power supply versus �

Figure 22: High voltage loss induced on each cell by the pileup versus � for the inner wheel of the

EndCaps (1M
 resistor). Right scale: induced current
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Figure 23: High voltage loss induced on each strip by the pileup versus � for the outer wheel of the

EndCaps (1M
 resistor). Right scale: induced current

distribution of such electrons are given in �gure 24. One can assume, regarding the very small cross

section of such events, that only one such event can be produced at least in the integration time

given in section 3.3.1. In addition, the energy is high enough to assume that the full energy can be

seen, in �rst approximation by a "HV cell" in the inner wheel. Thus the maximum induced current

is given by :

Icell =
2Qqe�E(MeV )

RHTCHT

; (36)

which leads to (assuming a typical mean capacitance of 30pF and a 1M
 resistance :

Icell = 60�AEe�(TeV ); (37)

This means that, according to the �gure 24, the current on an high voltage of the inner wheel is

below 300�A. For the outer wheel the currents in the various sectors will also be below this value.

3.4 Maximum signal in the endcap

The maximum signal that can be seen by the endcap calorimeter is the one induced by

the decay of a 5 TeV Z0. Assuming that we want to see 95% of these high energy events, this

means, according to �gure 24 that the detector has to withstand e� with a momentum of 5 TeV.

The longitudinal energy pro�le given in the PDG [9] rescaled at a 5 TeV energy allow for a �rst

estimation of the maximum signal deposited by an electron of 5 TeV in the inner wheel and in the

outer wheel. One can take as for the barrel calorimeter an average of 60% of the energy deposited

in the central cell. Taking an average of 2X� of matters before the active region (28 X�) of the

calorimeter and assuming that in the worse case, the electron has started its shower at the beginning

of this forward matters leads to the energy given in table 2.
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Figure 24: � and momentum distribution of electrons produced in the Z0 decay in the inner and

the outer wheels

outer Front Middle Back

Depth 5 14 10

Maximum energy 200 GeV 2500 GeV 500 GeV

Inner Front Middle Back

Depth 5 14 9

Maximum energy 200 GeV 2500 GeV 500 GeV

Table 2: Maximum signal in each endcap wheels
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