ATLAS Internal Note
LARG-NO-003
16 November 1994
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HADRONIC CALORIMETER

semi-analytic approach

Guy Le Meur

Laboratoire de I'Accélérateur Linéaire, Orsay

The aim of this work is to estimate the forces, due to the eddy currents, acting on
the plates of the hadronic calorimeter of the ATLAS detector in case of a quench in the
supraconducting solenoidal coil.

Preliminarily to eventual computations using general eddy currents simulation
tools, which would be anyway delicate and costly, we have tried to get realistic
estimations of the phenomena by writing a simple program based on analytical formulas
justified by specific approximations assuming an axisymmetric geometry.

We expose first, with some details, the numerical method, which lies on a matrix
formulation, together with the encountered difficulties and the hypothesis we have
assumed in order to avoid them.

After giving some results on test cases we provide the results for an “initial
configuration” and a modified one. For the initial configuration the most important force
acting on a plate has a value of 35000 N. For the other configuration this force is of the
order of 10000 N.
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1. STATEMENT OF THE PROBLEM

A simpliﬁed geometry of the problem is shown on figure 1. A set of P coaxial
copper plates (here P=50) is located in the stray field of the solenoid (at a distance of
345m fr_om the solenoid center). The thickness of each plate is e=30 mm. The spacing
between plates is constant (h=8 mm). The total dc current in the solenoid coil is Ig. At a
time t=0 the current breaks down following a law of the form I(t)=Ipf(t).

An other configuration is considered. It will be given beyond.

2. NUMERICAL APPROXIMATION

In order to use analytic formulas we replace each plate by a set of S concentric
coplanar wires. The total number of plates is represented by P.S wires. A wire is
assumed to consist of an infinitely thin conductor, without transverse dimension. A
resistance Rq and a self inductance Loy is attributed to each wire (denoted by an index
o) following some criteria which will be given later on. Mutual inductances Lf3 will be
evaluated as well. The problem consists of computing the induced currents in each wire.

The flux of the magnetic field through the wire o can be written :
PS_
D, (t) = My I(t) + leLaﬁIB

where M((, is the mutual inductance between the solenoid and the wire o ; igy is
the current in the same wire Q.

From the Lenz’s and Ohm’s laws we get the following relations :

dd, di(t) RS dig ]
- =My, ——2— ¥ Lg——=R,i
dt T B%l L TR
Or, using matrix notation :

dt dt
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L is the symmetric square matrix of (self and mutual) inductances, R is the
diagonal matrix of resistances, # is the vector of mutual solenoid-wire inductances , 7

the vector of the unknown currents.

This system of differential equations can be solved using standard methods.
Starting from computed currents one can get the forces.

Remark :

The stored electromagnetic energy is W = 1/2 t7 £ 9 tmeans 7 transposed). It
follows that 7 must be positive definite.

Remark :

If the solenoid current breaks down instantaneously from I to O (Heaviside
distribution), the right hand side of the previous equation is a Dirac distribution.
Integrating this differential equation between times -€ and € (¢ being an infinitely small
time) one gets initial eddy currents values in the wires :

J=-L'MI,

In the following this case will be called “Dirac case"

3. IMPLEMENTATION

3.1 SPLITTING INTO WIRES AND RESISTANCE MATRIX COMPUTATION

Let rmax be the radius of each plate. One plate is splitted into a number S of
wires. The mean radius of the wire numbered s is : rg=u/2 +(s-1) u, with u=rmgax/S. The
resistance of that wire is evaluated assuming that each wire represents a slice of the plate
with radial width equal tou:

Rs=p (2n 15)/(u €)

(we assumed a copper resistivity of : 1,7 108 Q m)

3.2 INDUCTANCES

For two coaxial wires o and B, with respective radii rg, and rf3, located at
positions zg and zp, the mutual inductance is (Durand p.175):
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Log = 2”"”"‘ Hl———]h(k) Jz(k)]

with :

4r, 13
(ra +r|3)2 +(za —ZB)

J1 and J7 are the first and second kind elliptic functions :

2

/2 d‘l’ /2

J1= Jo= | Y1-k*sin® ydy
' (j)\[l—kzsinzw ’ 0\/

Strictly speaking, the self inductance of a wire & is infinite. It can be verified on
the expression of Ly by putting a=P : J1 becomes infinite (k=1). Durand (p. 215)
gives an asymptotic expression of Ly, for a wire with a vanishing radial width A :

161, 7}
A 4

Loo = HoIg {Log

The problem is then to match A. Intuitively A must be less than u (u having here
the same meaning as before). Let be 1 such that A=n.u, with 0<n<1. If we choose 1 too
close (or equal) to 1 the inductance matrix will not be diagonal dominant and
consequently will not be necessarily positive definite. This fact will not be compatible
with an interpretation of this matrix in terms of energy. At first glance taking 1 to small
leads to very big self inductances and the previous equations will not be very
representative of the behaviour of a plate. In order to fix | we made some tries (see
below).

3.3 MUTUAL INDUCTANCES BETWEEN THE SOLENOID AND A WIRE

From the axisymmetric geometry, only the azimuthal component A of the vector
potential of the magnetic field produced by the solenoidal coil (radius rg and lenght 2 b) is
different from zero. At a point (r,z) the value of Ag¢ is (Durand p. 99), choosing z=0 at
the center of the solenoid :

1
A, (r,z)= EEUOch[G(rrZ;b) —G(r,z;-b)]

with :
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G(r,2z:0) = 3”0(:—"9[1}202 - 11)+(;1—2-—1j03 - h)J

and :

S e B WL LU

I - (rp + 1‘)2

J1 and J2 are the first and second kind elliptical functions, J3 is the third kind
elliptical function :

an dw
0 \/1—k2 sin? \|f(1—m2 sin? w)

Ja(k,m)=

Kd is the superficial current per unit of solenoid length.

On can get the flux of the solenoid magnetic field through any wire from this
vector potential value using the relation :

(I)Oa = ZTCraA(p

dividing by the total current circulating in the coil we get the mutual inductance.

Remark :

If one wishes to work with a (computed or measured) field map, these mutual
inductances will be evaluated through numerical integrations.

3.4 MATCHING THE PARAMETER 1|

We achieved some tries, in the Dirac case, for a unique plate with a radius of 2 m
(thickness : 30 mm) in an homogeneous magnetic field of 1 T (constant Bz independent
of the location, By=Bg=0). Fig 2a shows the total eddy current in the plate versus the
number of wires in the plate, for different values of 1 lying between 0.1 and 1. It can be
checked that, for any value of 1 the total current converges to a unique value of 2.02 MA.
The order of this value is confirmed by a rapid evaluation of the current which should
circulate in a wire of radius 1 m for producing a magnetic field of 1 T : this last evaluation
gives 1.67 MA.

In addition, the figure mentioned above shows that the best convergence is
obtained for n=0.5.
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Taking two plates (spacing between plates : 8 mm) we can test the importance of
the mutual inductances between wires belonging to different plates. It can be noted (fig.
2b) that, for 1j=1, this matrix is positive definite only for those values of wire number per
plate which are greather than 11, whereas the minimum wire number per plates is only 3
for n=0.1. This circonstance seems to indicate that the leading factor here is really the
diagonal dominance : the mutual inductance (off diagonal term of the matrix) between
wires having same radius but belonging to neighbouring plates is very high and
decreasing 1 enforces the diagonal dominance.

It could be found better to minimize 1| but fig. 2b shows that it is not true because
the convergence to the right current value as a function of the number of wires per plate
becomes worse and at least 15 wires per plate will be necessary as well in order to get
good values.

It can be seen in this two plates computation that, provided that the inductance
matrix is positive definite, the solution converges to an unique value when the number of
wires per plates increases : it is a good indication for the validity of the method.

Runs with 50 plates confirmed the value of 0.5 for 1 and gave an optimal number
of wires per plate of 20.

3.5 TIME SCHEME

We have used a classical "8-method" for the time discretization of the differential
equation :

g™l = g™ 4 At [—9(9{7”*1 +M %(tn+1 )) -(1- e)(m“ + M %(tn )ﬂ

where the currents are calculated at the discretization time n+1 starting from the
current values at the previous time n ; At is the time step. After achieving some tests we
adopted 0=0.5. The method reduces then to the Crank-Nicholson scheme.

3.6 COMPUTATION OF FORCES ACTING ON THE PLATES

This computation does not present any difficulty. The force acting on a plate
consists of two parts : a) Laplace’s force due to the fact that eddy currents circulating in
the plate are immersed in the residual field of the solenoid, b) Laplace’s force between
eddy currents of the considered plate and the ones of the other plates (“mutual forces™).
The first one can be obtained by derivating the vector potentiel written above. The second
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one is obtained as resultant of one-to-one forces whose analytical axpression is (with
same notations as before ; Durand p. 177) :

2

oy (20— .
2 J2

Fop =— =J1 (k) +
B \/(fa“ﬂ)z*(za‘zﬂ)z 1

r,> +rB2 +(za —ZB)

(e =15)" + (20 2

4. RESULTS FOR PLATES IN AN HOMOGENEOUS MAGNETIC
FIELD

In order to check the validity of the method we made some computations for plates
in an homogeneous magnetic field of 1 T in the Dirac case.

4.1 AN UNIQUE PLATE (FIG. 3)

One can see that the exterior wires have the highest eddy currents (fig.3a) ; that is
very plausible. In addition, the shape of the time evolution of the total current (fig.3b)
looks like a decreasing exponential law (a fit by an exponential fonction gave a relaxation
time of the order of 0.85 s).

4.2 50 PLATES (FIG. 4)

At the initial time eddy currents in the plates located at the two extremities are
much more important than in the plates located in the middle (fig.4a). It can be probably
explained by the following arguments : eddy currents in a plate provide a magnetic flux
through this plate opposite to the flux variation which causes these eddy currents. The
middle plates cumulate their effects through the mutual inductances. That is not true for
plates at the extremities where the compensation comes only from one side.

The middle plates have eddy currents circulating opposite to the eddy currents of
the extreme plates (except for external wire). The currents decrease rapidly in time and go
to an equilibrium by the influence of the mutual inductances and the inertia due to the
resistance.

A fit of the time evolution of the total current in all the plates (fig.4b) by a
decreasing exponential function gives a relaxation time much greather than the one we
have got in the case of an unique plate : roughly 27 s.
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The forces given on figure 4c (there actual values does not import here) provide
the right symmetries : they are equal with opposit signs for corresponding symetric
plates ; they become rapidly zero. )

S. RESULTS FOR PLATES IN THE FIELD OF THE SOLENOID

5.1 “DIRAC CASE”

The plates are now assumed to be in the field of the solenoid. This field is
computed as indicated before. The field breaks down instantaneously and the time
evolution of the system is computed.

Figure 5a shows the repartition of the currents as a fonction of time. The first plate
(closest to the solenoid) “sees” the greatest part of the solenoid field, that is why the
currents have a much higher value in it. At the initial time, the currents in other plates
circulate in opposite direction (except for external wire). The repartition becomes
homogeneous during the evolution. If the decreasing of the current is fitted by an
exponential function, the relaxation time is found to be a little bit lower than the previous
one : 19 s. It can be probably explained by the fact that less plates are concerned with the
phenomenon because of the decreasing shape of the solenoid field in the positive z
direction.

Figure 5b represents the forces acting on the plates as a function of time.
Obviously the maximum force arises at the initial time. It acts on the first plate, its value
1s approximately 106 N.

5.2 NOMINAL CASE

It is assumed that the current in the solenoid breaks down following a law of the
form : I=I( exp(-t/t) with 7=40 s. The time evolution is observed.

The total eddy current (fig. 6a) increases for approximately 30 s and decreases
afterwards. Nevertheless if we have a look on the detail of the plates, in particular the
first plate on which acts the most important force, it can be seen on this last a maximum
of current at a time of 12 or 15 s. The force acting on this plate is maximum around 8 or 9
s and its value is 35 000 N (fig. 6d).

These figures show that the last plates (from 30 to 50) do not take part to the
phenomenon. Some runs of the program have shown that it sufficient to take 20 plates in
order to get approximately identical results. This consideration will be interesting in using
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sophisticated eddy current codes which will be more expensive in terms of computing
ressources.

Remark :

We were asked to consider a case where the material of the plates has an almost
zero resistivity. In this situation the matrix equation to be solved is exactly the same as the
equation solved in the Dirac case, except that the integration has to be made between zero
and infinity rather than between -€ and +€ : the current, and consequently the force,
follow an increasing exponential law with the same relaxation time as the decreasing of
the solenoid current. The final values will be identical to the initial values of the Dirac
case, namely 109 N for the force.

6. MODIFIED CONFIGURATION

The geometry of this configuration is shown on figure 7. The solenoid is shorter
(5,4 m instead of 6,3 m). First elements where eddy currents are expected can be seen as
two aluminium plates (thickness 30 mm, space between plates 30 mm, resistivity 0,28
10-7 Q.m). The set of 50 copper plates is located 60 cm further. Figures 8 a,b,c give the
behaviour of this system. Obviously the aluminium plates have the most important eddy
current. The maximum force is now decreased to 10 000 N. This new value is essentially
due to the lower stray field of the solenoid seen by the plates because of its shorter
length.

7. TO GO FURTHER

The simplified semi-analytic approach we have implemented seems to provide
realistic results, with the given specific hypothesis. We are now developping a more
accurate formulation, starting from the Maxwell’s equations for eddy currents. This
formulation will be implemented in our Maxwell 2D and 3D codes, PRIAM and
ANTIGONE. It will be possible to consider more sophisticated conductor shapes than
axisymmetric plates and to evaluate eddy current in more complicated situations. These
developments will be exposed in a following paper.



page 12 -

Reference : Durand, Magnétostatique (Masson-1968)
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