
A Local-Global Implementation of a Vertical

Slice of the ATLAS Second Level Trigger

P. Maley�z J. Schlerethy J. Dawsony E. Denesz

R. Dobinsonz D. Francisz G. J. Cronex

R. Cran�eldx G. Boorman{ B. Green{ J. Strong{

M. Damk H. Bertelsenk J. R. Hansenk B. Renschk

January 27, 1998

1 Introduction and Project Aims

ATLAS/DAQ 81

In this paper we report upon a project which forms a part of the ATLAS
level-2 trigger Demonstrator-B programme [1]. The aim of this project is
to implement a vertical section of the level-2 trigger [2] using technology
available at the present day.

We have set ourselves the following principal aims:

� To implement a system conforming to \architecture-B" (de�ned in sec-
tion 2).

� To demonstrate that the proposed protocol is functional and stable.

� To measure parameters of the system's performance which can be used
as input into modelling studies of much larger systems.

�Liverpool University
yArgonne National Laboratory
zCERN
xUniversity College London
{Royal Holloway, University of London
kNeils Bohr Institute

1

2

The structure of the paper is as follows: section 2 describes the archi-
tecture-B protocol and de�nes terms which are referred to in the rest of the
paper. Section 3 describes the hardware and software of the actual imple-
mentation we have constructed. We present the results of the measurements
performed on the system in section 4 and compare them with the predictions
of a simple model. Finally in section 5 we draw some conclusions from the
project and comment on possible future investigations.

2 Trigger Architecture

The ATLAS trigger system is based upon the notion that within the chaos
that is an LHC event there maybe one or more Regions-of-Interest (RoI) [3].
The level-1 trigger identi�es RoIs which warrant further investigation and
passes pointers to these regions to the level-2 trigger system. The function
of the level-2 trigger is to analyse a sub-set of the data from the detector
in those regions indicated to it by the level-1 and decide whether an event
merits further consideration or should be rejected.

Figure 1 shows the functional model of the architecture-B level-2 trigger.
The components shown in the �gure and their respective functions are out-
lined below and a possible implementation of this architecture is shown in
�gure 2.

Supervisor (Sup)

The Supervisor, as its name suggests, is the overall coordinator for the level-2
system. It receives the RoI list from level-1 and passes on the information
to the RoI-Distributers (RoIR message). Incoming level-2 decisions (GOutR
messages) are passed onto the Level-3 trigger and also to the RoI-Distributers
(T2DR messages).

RoI-Distributer (Dist)

The main function of the RoI-Distributer is to identify the Readout-bu�ers
containing the front-end data for a given RoI and notify them (RoIRC mes-
sage). It is also responsible for passing on level-2 decisions to the readout-
bu�ers.

Demonstrator B | Project Con�dential 3

RoB

FEX

Sup GTP

Dist

Level-1

RoID

FeXD

GOutR

RoIR, T2DR

RoIRC, T2DR

Detectors

Level-3

Figure 1: The architecture-B functional model.

4

Readout-Bu�ers (RoBs)

The Readout-bu�ers contain the bu�ered front-end data. The data is held
there until the RoB is instructed to either send it to a level-2 processor (RoID
messages) or discard it. architecture-B is a requested-push architecture [1],
in the sense that data is sent from the RoB to a level-2 processor on receipt
of an RoIRC message from the RoI-Distributer.

Local Processors (FeXs)

architecture-B requires that RoIs are �rst analysed individually in dedicated
processors called Local processors or Feature extractors (hence \FeX"). All
of the RoBs pertaining to a given RoI are sent to the same FeX where the
data is collected together and analysed. Each RoI is analysed on a separate
FeX. The results of this analysis are then sent onto a Global processor (FeXD
messages).

Global Processors (GTPs)

The Global processor collects together all the analysed RoIs for a given event
and makes an overall decision as to whether to reject the event or not. The
decision is passed back to the level-2 Supervisor.

3 Implementation

3.1 System Overview

The system which we have built consists of several technologies:

� 5 readout bu�ers, implemented with C40 embedded processors.

� C40 to DS-link interfaces.

� 4 local processors, implemented with TransAlpha modules.

� 2 global processors, implemented with TransAlpha modules.

� A DS-link switching network.

� The supervisor: implemented with 3 PowerPC processors and some
custom hardware.

Demonstrator B | Project Con�dential 5

R
oI

 D
is

tr
ib

ut
er

R
oB

R
oB

R
oB

R
oI

 D
is

tr
ib

ut
er

R
oB

R
oB

R
oB

R
oI

 D
is

tr
ib

ut
er

R
oB

R
oB

R
oB

FE
X

FE
X

FE
X

FE
X

FE
X

FE
X

Sw
itc

hi
ng

 N
et

w
or

k
Sw

itc
hi

ng
 N

et
w

or
k

Sw
itc

hi
ng

 N
et

w
or

k

G
T

P
G

T
P

G
T

P
G

T
P

SUPERVISOR

Su
bd

et
ec

to
r

1
Su

bd
et

ec
to

r
2

Figure 2: A possible implementation of architecture-B.

6

Several aspects of the system are non-optimal but are constrained by the
hardware available. The hardware implementation is shown in �gure 3. and
the components are described in the following sections.

Since architecture-B is a requested-push protocol, the RoBs need to be
informed of where to send their data, and furthermore the local processors
also need to be informed of a destination GTP. There are several possible
schemes that may be adopted, but for the tests described in this paper we
do as follows:

� Global processor allocation is done by the supervisor on a round-robin
basis.

� Allocation of local processors is performed by the RoI-Distributer ac-
cording to the value of the RoI �-index (see below).

To drive the system we preload a set of events into the supervisor (or
the level-1 emulator). Each event contains one or more RoI descriptors and
each RoI has � and �-indices. In ATLAS for a given RoI the values of both
of these indices would be used by the RoI-Distributer to decide which RoBs
have data for that RoI. For the purposes of the demonstrator, we use only
the � index for this. The � index is used instead to allocate a local processor
to the RoI. Several schemes are possible for local processor allocation and we
chose this one simply for convenience.

The �-to-RoB mapping and FeX allocation scheme is shown in table 1,
where in the � table \�" implies the RoB has data to send.

The information required in each component of the system is carried in
the message headers, as de�ned in [4]. Apart from the data in these headers,
which is required to ensure the system runs according to the architecture-B
protocol, no actual data (in the sense of simulated detector data) is passed
around the system. When data is sent, say, between the RoBs and the FeXs
it is simply dummy. Similarly, we emulate the local and global algorithms
by wait loops.

3.2 Level-2 Supervisor

3.2.1 Supervisor Hardware

The supervisor consists of commercial PowerPC processor single board com-
puters (CES 8061) and a custom built router bus developed at ANL. Input

Demonstrator B | Project Con�dential 7

D
S

IN

Sl
in

k
Su

pe
rv

is
or

C
40

R
oB

C
44

:T
9

C
40

R
oB

C
44

:T
9

C
40

R
oB

C
44

:T
9

C
40

R
oB

C
44

:T
9

C
40

R
oB

C
44

:T
9

R
IO

-2
R

oI
 D

is
t

Sl
in

k
IN

T
ra

ns
A

lp
ha

T
ra

ns
A

lp
ha

T
ra

ns
A

lp
ha

T
ra

ns
A

lp
ha

T
ra

ns
A

lp
ha

T
ra

ns
A

lp
ha

Fe
X

Fe
X

Fe
X

Fe
X

G
lo

ba
l

G
lo

ba
l

SW
IT

C
H

D
S-

L
in

k

V
M

E

Figure 3: The hardware implementation used in the tests.

8

� FeXId

0 1
1 2
2 3
3 4

� RoB Id
1 2 3 4 5

0 �

1 � �

2 � � �

3 � � � �

4 � � � � �

5 �

6 � �

7 � � �

8 � � � �

9 �

10 � �

11 � � �

12 �

13 � �

14 �

Table 1: Speci�cation of RoB hits and FeX allocation.

from the level-1 trigger system and output to the RoI-distributer(s) is via
S-link [5]. The components of the router bus are an input router, an output
router, a central arbiter, a two channel bus and PCI mezzanine cards to in-
terface the bus to the PowerPC boards. Each of the cards on the bus has a
unique destination and source address. The central arbiter grants the bus to
source cards requesting the bus, including the input router, on a round-robin
basis.

The input router has an S-link protocol connector which can accommo-
date an S-link physical layer card. Data received are bu�ered in a 4K word
deep FIFO memory. RoI pointers received from a level-1 emulator are routed
to a destination address based on the event ID using a lookup table. The
destination address is a PMC located on one of the PowerPC boards RoI
pointers are stored in a 4K word deep FIFO memory on this card and read
onto the RoI processor in �xed length blocks. A more detailed discussion of
the software follows in a later section.

Demonstrator B | Project Con�dential 9

In order to send records to the RoI distributer, the output router is used.
This card is assigned a unique destination address on the router bus and when
one of the PowerPC boards is ready to send data it does so by selecting that
card ID as the destination address, and writing a record to the 4K word
deep output FIFO memory on the PMC interface. After the record has been
transferred to the output FIFO, the card requests the bus. When the card
has been granted the bus, it transfers the record to the output router's FIFO
memory. As soon as this FIFO is not empty, the output router starts the
S-link data transfer,
agging the �rst word as an S-link control word. The
�nal word is also
agged as an S-link control word, by the change of the
FIFO's state to empty.

After the level-2 system has processed the event, a dedicated PowerPC
board receives the decision record from the DS-link network through a DS-
link PMC interface and forwards the record to the supervisor board over the
VMEbus.

For the tests we report here, the level-1 system was emulated by a Pow-
erPC RIO 8061 board with a CERN Simple PCI to S-link (SPS) interface
card. RoI pointers were generated and stored to a �le. At the beginning of
a run, the entire �le was dumped into memory and the events were cycled
through. Each RoI pointer was sent over the S-link interface with a leading
and trailing control word to the input router.

3.2.2 Supervisor Software

The tasks of the supervisor are as follows:

� Read raw data records from level-1 and pack the RoI pointers into a
structure.

� Build RoI records to be sent to the ROBs when the complete level-1
information has been received.

� Send the RoIR to the RoI-Distributer (and thus to the RoBs).

� Handle global decisions returned from the level-2 GTP farm.

� Forward the decisions to the RoI-Distributer (and hence to the ROBs).

In order to balance the processing load among the global processors, events
are assigned to available global processors on a round-robin basis. A preset

10

number of events are permitted to be queued to a global processor pending
the receipt of a global event decision. A list of free global processor tags
is maintaned such that an item is removed form the list as a global tag is
assigned when building the RoIR and retruned to the the list when a global
decision has been received.

The recipt of the global decision is handled by a dedicated PowerPC
with a DS-link network interface card. This implementation, which decou-
ples the supervisor from the network, has several advantages. Since the
Demonstrator-B programme is also investigating SCI networks, a common
supervisor program supports both projects by changing only the network in-
terface card and drivers. In each case, the global decisions are forwarded to
the supervisor over the VMEbus. The design is also extensible to additional
supervisors on the router bus which can operate in parallel, all receiving
decisions from the same network card forwarded over the VMEbus.

Figure 4: Block diagram of the Supervisor components.

Demonstrator B | Project Con�dential 11

The supervisor provides the measurements of the overall rate and round
trip latency presented later. The rate measurement is straightforward but
that of the latency is more di�cult. Ideally, one would measure the latency as
the time from which the event arrives from the level-1 to the time the decision
is received by the RoBs. Due to the lack of a common clock accessible to
all the processors, the latency is measured only within the supervisor. The
latency is de�ned as the time from when the supervisor assigns a global
processor to an event to the time it receives a decision from the global farm.
Thus it excludes the time to read an event from the level-1 RoI source and
the time to build an event from the RoI pointers.

The supervisor software was developed at Argonne Lab, USA.

3.3 RoI-Distributer

The RoI-Distributer is based on the CES RIO 8061 PowerPC board running
software developed at CERN. An S-link PMC attached to the VME board
handles the input from the supervisor and it communicates with the Readout
bu�ers via the VME backplane. Software for both the S-link and the VME
message passing was taken from the Prototype -1 project [6].

The function of the RoI-Distributer is to interpret the RoIR messages
coming from the supervisor and pass on the information to the appropriate
RoBs. Which RoBs are part of a given RoI depends upon the �-index of the
RoI according to a lookup table (see table 1).

The performance of the program has been measured as follows:

� Time to receive a message on the S-Link: 17 �s.

� Processing time: 5 �s.

� Chained DMA setup time: 17 �s.

� VME transfers: 11 �s per RoB.

In principle, the receipt of incoming messages from the supervisor (on
S-link) and the output of messages to the RoBs (across VME) can occur
concurrently. However since both must go across the PCI bus, and the S-
link data is received by a series of single word reads, these two operations
become e�ectively sequential.

12

3.4 Readout Bu�ers

3.4.1 Hardware

Each ROB emulator is implemented by a VME processor card. The cards,
designed and built by RHBNC [7], contain a 60MHz TMS320C40 (C40) Dig-
ital Signal Processor from Texas Instruments, some local program memory
and some memory shared between the C40 and the VMEbus. The C40 pro-
cessor has 6 communication ports which are all routed to the front panel of
the card.

Figure 5: Block diagram of the C40-based RoB emulator board.

3.4.2 Software

The ROB emulator software, developed at UCL1, is implemented as a simple
polling loop. Messages from the RoI Distributor are input through a circular
bu�er in the VME shared memory. RoI data records are output through one
of the communication ports using the C40's built-in DMA controller. Each
time round the polling loop the program dealt with a single message if found
in the shared memory.

1University College, London

Demonstrator B | Project Con�dential 13

If an RoI request message is seen (and there is space in the queue) an
RoI data record and an associated DMA descriptor are prepared and added
to the queue of records for output. If the queue is full the program waits for
the currently active DMA transfer to �nish in order to reuse its queue entry.
The queue has space for ten RoID records. Decision records are received,
read and then ignored.

After checking for incoming messages the software checks the status of
the DMA controller and its output queue, starting a new DMA if the last
one has completed and the queue is not empty.

3.5 C40 to DS interface

To connect the C40-based ROBs to the FeXs via a DS-link network a C44-
T9 interface has been designed and built at NBI. Each interface consists of
two processors (a 25 MHz T9000 and a 40 MHz TMS320C44) that exchange
data via a dual ported memory (DPM). The C44 is responsible for reading
data from the RoB to the DPM and the T9000 takes data from the DPM
and outputs it into the DS-link network. For synchronisation purposes each
processor can interrupt the other one. The interfaces are housed on 6U VME
format boards (for power only).

The software model to drive the interface is shown in �gure 6. The
DPM is partitioned into four queues of �xed length bu�ers. Access to these
queues (and also to the interrupt and acknowledge locations) is guarded
by semaphores to prevent simultaneous access within and across processor
boundaries. Messages are read into the DPM from the C40 link by the C40
and then written to the DS-link by the T9000. The interface is thus a store
and forward node.

Two DS-links are used to connect each T9000 to the DS-link network to
match up with the bandwidth of a C40-Link. In the test system we have a
RoB to FeX header-to-trailer latency given by:

(45 +Nbytes=3:25)�s

The RoB to FeX throughput has been measured as a function of message
size and is shown in �gure 7.

14

T9000 C44

Dual Port Memory

Producer

Consumer

B
uf

fe
r

IN

B
uf

fe
r

OUT

Producer

Consumer

B
uf

fe
r

IN

B
uf

fe
r

OUT

1
2

4

3

add tail

add tail

1
Intrp

t/A
ck Intrpt/Ack

3

2

4

rem
ove head

rem
ove head

Figure 6: The C44 to DS interface.

3.6 Local-Global Network

The switching-network is the communication medium between the RoBs (af-
ter the C40 to DS interfaces); the local processors; the global processors; and
from the global processors to the supervisor.

The network is implemented using IEEE 1355 DS-links [8]. These are
point to point serial links operating at 100 Mbits/s. In addition to the links
there are 32 port switches (C104s). These switches implement worm-hole
routing and support the grouping of links.

Figure 8 shows the layout of the network. All links are point to point,
though some are shown as multiplexed together for clarity. The layout of
this network was determined largely by the hardware available. The T9000s
(T9s) at the top of the �gure form part of the RoB C40-DS interface. These
are housed on VME modules as described above. The central C104 is also
mounted on a VME board. The T9000s at the bottom of the �gure form
part of the TransAlpha modules (see section 3.7 implementing the local and
global processors.

These modules are housed on motherboards in boxes with a limited num-

Demonstrator B | Project Con�dential 15

One C104
Two C104s

0 500 1000 1500 2000 2500
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

Message Size [Bytes]

B
an

dw
id

th
 [M

B
yt

es
/s

]

Figure 7: Bandwidth versus message size for C40 to T9000 transfers via one
(top curve) and two (bottom curve) C104(s).

ber of external connections. For this reason the RoB to FeX data paths
traverse two C104s and the FeX to GTP data paths traverse either one or
two C104s. The result of this is that there are unequal bandwidths between
di�erent elements, e.g. the bandwidth from FeX1 to GTP1 is not the same
as that from FeX1 to GTP2.

The input from the GTPs to the supervisor is also shown on the �gure.

3.7 Local and Global Processors

3.7.1 Hardware

The local and global processors are implemented by a hybrid module called
the TransAlpha module [9] developed by a collaboration of Liverpool univer-
sity and Parsys Ltd..

The module was designed to be plugged directly into an existing trans-
puter-based system. It has a T9000 transputer which acts as a communi-
cations coprocessor for a 233MHz DEC ALPHA. The two processors can

16

T9

Host

0

C104

T9 T9
2 0

0 1 8 9

1 3 1 3

24 26 2725

0

C104

T9 T9
2 0

0 1 8 9

1 3 1 3

24 26 2725

0

C104

T9 T9
2 0

0 1 8 9

1 3 1 3

24 26 2725

0

T9T9T9T9T9

C104

PPC
(edge)

Global Processors Local ProcessorsLocal Processors

Input to the
Supervisor

Readout Buffers

Figure 8: Schematic of the Local/Global DS-link network.

Demonstrator B | Project Con�dential 17

exchange data between their respective memories across a PCI bus. This
bus has a PLX PCI960 bridge controller which supplies DMA and interupt
services.

3.7.2 Software

The functionality of the local and global processors maps well onto a module
such as the TransAlpha. The one micro second context switch time and
the integrated hardware for utilising DS-links makes it ideal for collecting
together the di�erent fragments of an RoI or the RoIs of an event. The
Alpha is then solely responsible for running an algorithm on the data. Its
e�ciency for computation being maximised, since it does not need to deal
with an interrupt every time a message is received.

Figure 9 shows the mapping of the processes in the module. A number

Collector

Algorithm
engine

In Q

In Q

In Q

Out Q

Transputer Processes Alpha Process

DS Links

Figure 9: Mapping of processes to the module. For the these tests all pro-
cesses (including the algorithm engine were run on the T9000).

of Input-Queue tasks receive data from either the bu�ers or local processors.
The information required to collate the di�erent fragments is extracted and
passed to a collection manager task while the bulk of the data is stored ready
for DMA transfer to the Alpha.

The Collector task is responsible for the book-keeping. It identi�es which
event fragments belong together and when a complete set of fragments has
been collected a descriptor with pointers to all the fragments is queued to
be used by the algorithm process on the alpha. For the purposes of the
demonstrator we do not use real data and so the \algorithm" is in-fact a
simple wait loop, which further-more is executed on the T9000 itself.

18

Details of the performance of the TransAlpha module can be found in
reference [9].

3.7.3 Performance

Both the local and global processor implementations use almost identical
code. We parametrise the performance of the processors by two numbers as
below.

The time di�erence between the entry of an RoID message into a FeX
and the exit of a FeXD message has been measured to be 80 �s in the case
that no fragment collection is done (i.e. an RoI consisting of one single RoB).
Additionally, the time required by the fragment collection process has been

1 2 3 4 5
0

20

40

60

80

100

120

140

160

180

Number of Buffers

C
ol

le
ct

io
n

T
im

e
[u

s]

Figure 10: Variation of fragment collection time with the number of sources.

measured as a function of the number of fragments collected (e.g. the number
of RoBs in an RoI). The result is shown in �gure 10. The curve is essentially
linear and shows that approximately 40 �s of processing time are required
to unpack the message and do the book-keeping for each source.

We thus parametrise the local and global processor latency as:

Latency = 80 + 40 � (Nfragments � 1) �s

Demonstrator B | Project Con�dential 19

Where for a local processor Nfragments is equal to the number of RoBs in an
RoI and for a global processor it is equal to the number of RoIs.

3.8 Global Processors to Supervisor

In order to pass the level-2 decisions from the global processors back to the
supervisor we use a DS-link PCI Mezzanine Card (PMC), designed and built
by DESY Zeuthen. This card provides a DS-link interface for embedded
processors, in particular for the RIO 806x boards we use here.

The software library developed to allow an application to utilize the link
emulates the DS-link hardware of the T9000, implementing the same packet
and message protocols. Figure 11 shows the bandwidth obtained between
the PowerPC and a T9000 as a function of message size. For these tests the

0 500 1000 1500 2000 2500
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Message Size [Bytes]

B
an

dw
id

th
 [M

B
yt

es
/s

]

Figure 11: Performance of the DS-link PMC: T9000 to RIO2 via a single
C104.

messages between the GTPs and the supervisor are always twenty bytes and
the interface can run at upto 20kHz for messages of this size.

Data is passed between the PowerPC and the Rx/Tx FIFOs of the PMC
by DMA transfer. In order to avoid context switching overheads the PowerPC

20

is not interrupted on the arrival of every packet. Instead it polls the registers
of the STC101 (the chip which actually drives the DS-link). This has the
dis-advantage that a heavy load is placed on the CPU. In order to prevent
this interface being the system bottleneck, the supervisor has one CPU whose
sole task is handling the DS-link.

The current software implementation does not allow multiple message
sources to be handled concurrently and for this reason a small multiplexer
task runs on one of the TransAlpha modules. This task collects the decisions
from both GTPs and sends them one at a time to the supervisor. It has the
e�ect that the latency from the second global processor to the supervisor is
longer (by around 10 �s) than from the �rst global processor because the
messages must traverse an extra link.

4 System Performance

4.1 Overview

We have performed a series of measurements of the event throughput and
decision latency of the vertical slice.

The event throughput is simply the number of events per second that the
level-2 system can process, while the decision latency (as used in this report)
is the time between the arrival of a level-1 \yes", in the level-2 supervisor,
and the arrival of a level-2 decision in the supervisor.

We have measured these parameters with a variety of di�erent processor
and RoI con�gurations, and also varying several system parameters such as
the local processor processing time and the amount of data passed between
the RoBs and the FeXs, etc.

To perform the measurements we run the system in one of two modes:

� Fixed rate.

� Free running.

In �xed rate mode, the supervisor receives level-1 triggers from a level-1
emulator program. The desired rate is set before the run is started. If the
level-2 system cannot cope with the rate set then the bu�ers �ll very quickly
and the supervisor aborts. Otherwise the system runs stably. This mode is
clearly closest to the manner in which the level-2 system would run within
ATLAS.

Demonstrator B | Project Con�dential 21

In, so-called, free running mode, no level-1 emulator is used. Instead
the supervisor controls itself when an event is sent in to the level-2 system.
This control is done via a single setable parameter which is the number of
events allowed to be inside the level-2 system concurrently (this parameter
is referred to also as the \queue size"). For example, suppose this parameter
is set to three, then after the supervisor has sent out three events (usually in
very quick succession) then no more events may be sent out until a decision
has come back to the supervisor. On the return of a decision the next event
is released.

All measurements of latency and throughput are performed by the su-
pervisor and mean values and distributions are available at the end of a run.
Runs consist of between several hundred thousand and several million events.

The system was run in three basic con�gurations, which we refer to as:

� Single Pipeline

� Multi-Pipeline

� \Wide" Systems

An explanation of these con�gurations and the results obtained are presented
in the following sections along with a simple model which attempts to inter-
pret them.

As noted above, �xed-rate running is the most realistic running mode,
however free running is useful for determining the key parameters of the sys-
tem. In order to extract the unloaded latency and the maximum sustainable
throughput of the di�erent con�gurations we run the system in free-running
mode. The number of events allowed concurrently in level-2 is set to one in
order to measure the latency, and eight (sixteen when there are two GTPs) in
order to measure the throughput. We also ran some con�gurations in �xed-
rate mode in order to measure the latency as a function of the throughput.
The results are presented in the following sections.

Unless stated otherwise, all measurements are performed with 128 bytes
of data (not including the 32 byte message header) passed from each RoB
to the FeXs and with only the 32 byte message headers passed between the
FeXs and the GTPs.

22

4.2 Pipeline Results

In the Single pipeline con�guration, a single RoI per event is used. This RoI
corresponds to a single RoB (always the same RoB), the RoB data is sent
always to the same FeX and then the FeX sends its data to a single Global
processor - a classic pipeline.

4.2.1 Free Running: The E�ect of Queue Size

The variation of the latency and the throughput of the system with queue size
is shown in �gure 12. The inverse throughput is plotted as \micro seconds
per event", i.e. inverse event rate. Remember that the queue size refers to

0 5 10
100

150

200

250

300

350

400

450

Queue size

m
ic

ro
−

se
co

nd
s

pe
r

ev
en

t [
us

]

0 5 10
400

500

600

700

800

900

1000

1100

1200

1300

Queue size

La
te

nc
y

[u
s]

Figure 12: Variation of the number of events in level-2.

the size of the queue of available global processors held in the supervisor (see
section 3.2.2), and is just the number of events which the supervisor allows
to be within the level-2 system concurrently.

We have a simple model for the latency and the throughput of the pipeline
con�guration.

The pipeline consists of a number of components, e.g. the RoB, the FeX,
a DS-link etc. An event passing around the system takes a certain time to

Demonstrator B | Project Con�dential 23

pass through each component and we refer to these times as the component
latencies: Ti.

When only a single event is allowed within the level-2 at any given time
the latency, i.e. the time to pass around the system, is just given by the
sum of the individual component latencies as there are no other events to
impede its progress. We term this the fundamental latency of the system.
The inverse throughput (the \number of micro-seconds per event") in this
case is just equal to the latency, as the supervisor only allows a new event to
enter the system when the previous event has returned.

To understand what happens when more events are allowed to be con-
currently within the level-2 system consider �gure 13. The �gure shows a
pipeline system consisting of three elements with component latencies equal
to T1 = 2, T2 = 4, and T3 = 3 units of time. The evolution of the system
is shown for the cases with queue sizes equal to two and three. An event
is allowed into the system only if the number of events already there is less
than the queue size. Otherwise an event must wait for a previous event to
leave the system before it can enter. These �gures show that the transient
states at start-up are practically non-existent and steady running is achieved
after a very few events.

Looking at the left-hand �gure we see that the inverse throughput is 4.5
time units, i.e. 1

2
(T1 + T2 + T3), while for the right-hand �gure the inverse

throughput is T2.
Similarly while the latency for a queue size of two is just equal to the

sum of T1, T2 and T3, for a queue size of three, the latency is now 12 units
of time, i.e. equal to 3� T2.

This leads us to the following model for the latency and inverse through-
put of a system with a set of component latencies, Ti:

Latency = Max

 X
i

Ti; NQTMax

!

Throughput�1 =
1

NQ

Latency

where NQ is the number of events that the supervisor allows to be concur-
rently in the level-2 system (the queue size), TMax is the largest of the set
of component latencies, and Max(a; b) is equal to a when a > b and b when
a < b.

As can be seen from �gure 12 allowing two or three events into the system
concurrently causes practically no increase in latency (an increase of 8 �s

24

����
����
����
����

�����
�����
�����

�����
�����
�����

����
����
����
����
����
����

����
����
����
����
����
����

����
����
����
����

����
����
����
����

����
����
����
����

����
����
����
����
����

����
����
����
����
����

����
����
����
����
����

����
����
����
����
����

����
����
����
����
����

����
����
����
����
����

����
����
����
����
����
����

����
����
����
����
����
����

����
����
����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����

����
����
����
����
����

����
����
����
����
����

����
����
����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����
����
����

����
����
����
����
����
����

����
����
����
����
����
����

����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����

����
����
����

����
����
����

����
����
����
����
����

����
����
����
����
����

����
����
����
����

����
����
����
����

����
����
����

����
����
����

����
����
����
����
����
����

����
����
����
����
����
����

����
����
����
����

����
����
����
��������

����
����
����

����
����
����
����

����
����
����
����

����
����
����
����

����
����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����
����

T1 T2

����
����
����

����
����
����

�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����

����
����
����
����
����

����
����
����
����
����

����
����
����
����

����
����
����
����

�����
�����
�����
�����
�����

�����
�����
�����
�����
�����

����
����
����
����
����

����
����
����
����
����

����
����
����
����

����
����
����
����

�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����

����
����
����
����

����
����
����
����

����
����
����
����
����
����

����
����
����
����
����
����

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����

����
����
����
����
����

����
����
����
����
����

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����

����
����
����
����
����
����

����
����
����
����
����
����

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���

T3

����
����
����
����

����
����
����
����

�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

����
����
����

����
����
����

����
����
����
����
����

����
����
����
����
��������

����
����
����
����
����

����
����
����
����
����
����

����
����
����

����
����
����

����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����

����

����
����
����
����

����
����

����

����

����

����

����

����

����

Time

T1 T2 T3

Figure 13: Timing diagrams for queue sizes of two (left �gure) and three
(right �gure). See text for explanation.

Demonstrator B | Project Con�dential 25

between one and three events) whereas the simple model predicts no increase.
When four events are allowed into the system, the latency becomes dominated
by the events queueing at the bottle-neck component, i.e. the component
with the largest component latency. From this point onwards the latency is
given by: NQTMax.

The throughput similarly has two distinct regimes. When less than four
events are in the system it is not saturated and the inverse throughput is
simply the fundamental latency divided by the queue size. When four or more
events are in the system this time becomes less than the maximum component
latency and events are forced to wait before passing this component. Thus
the inverse throughput levels o� at a value of TMax.

Thus from these measurements we can determine two quantities that
characterise the system:

Largest component latency TMax 127 �s

Fundamental level-2 latency
P

i Ti 405 �s

The fundamental latency is the lowest latency possible in the system, and
the largest component latency determines the maximum rate at which the
system may be run in �xed rate mode, i.e. as it would be run in ATLAS.

Table 2 shows the measured component latencies and their total. The to-
tal latency is in good agreement with what we measure; the exact agreement
is merely fortuitous, since some of the times are estimates good only to a few
micro seconds.

There is however a notable discrepancy. No single component has a la-
tency of 127�s as we would expect from the model. We would expect the
inverse throughput to be limited by the FeX and GTP components at 80
�s per event. We return to this point below, when looking at the e�ect of
varying the RoID message size.

We have investigated the variation of two other parameters in the simple
pipeline con�guration: The e�ect of changing the amount of data passed
between the RoBs and the local processors (�gures 14 and 15); and the e�ect
of increasing the processing time in the local processor (�gures 16 and 17).

There are several things we learn from varying the amount of the data
passed in the RoID message (RoB to FeX). The variation of both the latency
and the inverse throughput vary linearly with the amount of data passed.
This is exactly the behaviour we would expect for the latency, since the time

26

0 100 200 300 400 500 600 700 800 900 1000
350

400

450

500

550

600

650

700

750

RoID data size [Bytes]

La
te

nc
y

[u
s]

Figure 14: Variation of level-2 latency with RoID data size.

0 500 1000
100

150

200

250

300

350

400

RoID data size [Bytes]

M
ic

ro
−

se
co

nd
s

pe
r

ev
en

t [
us

]

0 500 1000
2

3

4

5

6

7

8

9

10

RoID data size [Bytes]

T
hr

ou
gh

pu
t [

kH
z]

Figure 15: Variation of throughput with RoID data size.

Demonstrator B | Project Con�dential 27

Pipeline component Latency [�s]

Supervisor to RoI-Distributer 17
RoI-Distributer processing 5
RoI-Distributer to RoB 28
RoB processing 50
RoB to interface 50a

interface to FeX 45b

FeX processing 80
FeX to GTP 7
GTP processing 80
GTP to Supervisor 7
Supervisor processing 36
Total 405

aFor 128 bytes of data.
bFor 128 bytes of data.

Table 2: Component latencies for the pipeline con�guration.

to send a message across a link is given by:

Overhead +Message size=Bandwidth

Thus the time to send the message, and hence the total system latency, is
linearly dependent upon the message size.

However, the fact that the inverse throughput is also linearly dependent
on the message size implies that TMax is linearly dependent on the message
size and thus that this message transfer is somehow part of the system bot-
tleneck. This would be expected for very large messages, but not for small
ones where the transfer times are less than 50�s.

If we consider the e�ect of reducing the amount of data transfered from
128 bytes to 4 bytes we see that the latency decreases by 45 �s (from 412 �s
at 128 bytes to 365 �s at 4 bytes) and the inverse throughput decreases by 30
�s (from 132 �s at 128 bytes to 101 �s at 4 bytes). The only way that it is
possible to reduce the latency by more than the inverse throughput is if two
component latencies are simultaneously reduced. This is in fact precisely
what is happening. The RoB to FeX transfer passes through the C40-DS
interface which as described in section 3.5 is a store and forward node. Both

28

the transfer time from the RoB to the interface and from the interface to the
FeX are linearly dependent on the message size and thus both are reduced.

The bandwidth of the C40 link is twice that of the DS-link and so the
reduction in the RoB-to-interface latency is half that of the reduction from
the interface-to-FeX. Thus of the total reduction in latency of 45 �s: 15 �s

is due to to C40 link and 30 �s is due to the DS-link.

Now this 30 �s is just the reduction we see in the inverse throughput. So
the implication is that the transfer from the interface to the local processor is
contributing to the bottleneck component latency. Furthermore, the latency
of such a transfer for RoID messages with 128 bytes of data is 45 �s, which
when added to the latency of the FeX, 80 �s, is suggestively close to our
bottleneck component latency of 127 �s.

The implication then, is that the reading of the data into the FeX and the
internal FeX processing (at least the book-keeping in the fragment collection
process) are not concurrent activities but together form a single pipeline
component.

Figures 16 and 17 show the e�ect of increasing the processing time in the
local processor. The processing time is emulated by causing the algorithm en-
gine process (see section 3.7) to sleep for some number of microseconds. The
latency measurements shown in �gure 16 are consistent with (for processing
times greater than zero):

Latency = Latency(no processing) + Processing time + �

For zero processing time the actual wait code was not present.

The extra time � is due to the implementation of the wait. This is done
by instructing the algorithm engine to do nothing until a number of clock
ticks has passed. For a low-priority process on the T9000 each tick is 64 �s.
The time between the issue of the wait instruction and the next tick can
vary between zero and 64 �s, thus to ensure that a whole tick has passed the
T9000 waits for the following tick before scheduling the process again. Thus
a requested wait of n ticks will result in a delay of anywhere between n and
n+ 1 ticks, or (n+ 1=2) � 64 �s on average, giving a � = 32 �s.

Looking at the inverse throughput (�gure 17) we see that it similarly
increases linearly with the processing time. This implies that TMax is in-
creasing linearly with the processing time, and identi�es the local processor
as the bottle-neck component in this con�guration.

Demonstrator B | Project Con�dential 29

0 100 200 300 400 500 600
400

500

600

700

800

900

1000

FeX Processing time [us]

La
te

nc
y

[u
s]

Figure 16: Variation of level-2 latency with the processing time in the FeX.

0 200 400 600
100

200

300

400

500

600

700

FeX Processing time [us]

M
ic

ro
−

se
co

nd
s

pe
r

ev
en

t [
us

]

0 200 400 600
1

2

3

4

5

6

7

8

FeX Processing time [us]

T
hr

ou
gh

pu
t [

kH
z]

Figure 17: Variation of throughput with FeX processing time.

30

4.2.2 Fragment Collection in the FeX

Keeping a single local and a single global processor, but now varying the
number of RoBs in the RoI, we can investigate the behaviour of the fragment
collection in the local processor

The behaviour we expect is that presented in section 3.7.3, whereas that
observed is show in �gures 18 and 19. If we consider the latency variation, we
see that it increases linearly with the number of RoBs as expected. However,
instead of an increase of 40 �s per RoB the increase is closer to 45 �s per
RoB.

The throughput as we have already seen in section 4.2.1 does not agree
with our expected value of 80 �s per event for a single RoB. However if we
modify the parametrisation of section 3.7.3 to:

Latency = 80 + 45 � (Nfragments � 1) �s

then for four and �ve RoBs we predict around 220 �s and 260 �s per event,
in reasonable agreement with those measured.

If we accept the inference (section 4.2.1 that there is no concurrency in the
receiving of data into the FeX and the internal processing of the data, then
we see that this becomes less true as we increase the number of data sources.
In principle all of the incoming RoID messages may be received concurrently,
with the data packets interleaved in time on the DS-link and thus even in
the event of no concurrency between the receiving and processing, we still
bene�t from the concurrency in the receiving of data.

Accepting that the exact dynamics of the fragment collection remains
unclear, we parametrise the FeX collection time for use in the model of
section 4.4.1 as:

Latency = Max(125; 80 + (NRoIs � 1) � 45)

4.2.3 Running with the level-1 Emulator

The level-2 system proper will of course be running in what we have termed
�xed rate mode. Thus we must consider how the latency of the system
varies with the throughput. For the simple pipeline con�guration we have
considered so far, since there are no points of contention we would expect the
latency to be independent of the throughput until we reach the maximum
rate, at which point the system bu�ers will �ll up and the system will fail.

Demonstrator B | Project Con�dential 31

1 1.5 2 2.5 3 3.5 4 4.5 5
400

420

440

460

480

500

520

540

560

580

Number of RoBs

La
te

nc
y

[u
s]

Figure 18: Latency as a function of the number of RoBs.

1 2 3 4 5
120

140

160

180

200

220

240

260

280

Number of RoBs

M
ic

ro
−

se
co

nd
s

pe
r

ev
en

t [
us

]

1 2 3 4 5
3.5

4

4.5

5

5.5

6

6.5

7

7.5

8

Number of RoBs

T
hr

ou
gh

pu
t [

kH
z]

Figure 19: Throughput as a function of the number of RoBs.

32

1 2 3 4 5 6 7
410

415

420

425

430

435

440

Event Throughput [kHz]

La
te

nc
y

[u
s]

Figure 20: level-2 latency as a function of level-1 input rate.

The measured variation is shown in �gure 20. It is fairly
at, increasing by
about 1%, from 1kHz to 6KHz but then starts to increase rapidly.

This sharp increase at 7 kHz is unexpected but unfortunately we have not
had time to investigate this behaviour in more detail. It would be interesting
to investigate whether the system would run faster, since from �gure 12 we
expect it to be capable of running up to 7.9 kHz.

The distribution of the latency is shown in �gure 21. The distributions
are practically identical up to 6 kHz, but then the shoulder starts to increase
at 7 kHz. The number of events in the shoulder is several orders of magnitude
down on the number in the peak and so are not responsible for the latency
increase. However the peak for the 7 kHz run is slightly wider than the
others.

4.3 Multi-Pipeline Results

The multi-pipeline con�guration has more than one RoI per event, but every
event in a given run is identical, i.e has the same RoIs. Each RoI corresponds
to a single RoB and each RoB sends data to a di�erent FeX (each RoI is

Demonstrator B | Project Con�dential 33

Runs at 1−6 kHz
Run at 7 kHz

0 1000 2000 3000 4000 5000 6000
10

0

10
1

10
2

10
3

10
4

10
5

10
6

Latency [us]

N
um

be
r

of
 E

ve
nt

s

Figure 21: level-2 latency distributions at di�erent rates.

allocated its own FeX in architecture-B). The data from the FeXs is then
collected into a single GTP and the decision sent back to the supervisor.
Thus we have several RoB to FeX pipelines followed by collection into a
single global processor.

Running the system in this con�guration with multiple RoIs allows us
to investigate the fragment collection process in the global processors. We
would again expect the behaviour parametrised in section 3.7 as the coding of
the local and global processors is practically identical. The actual behaviour
observed is shown in �gures 22 and 23. Looking at the throughput variation
we see that the measurements for three and four RoIs are consistent (to
within 5%) with the parametrisation of section 3.7.3:

3 RoIs: 80 + (3� 1) � 40 = 160 �s

4 RoIs: 80 + (4� 1) � 40 = 200 �s

The lower two points (for one and two RoIs) do not match, but neither
would we expect them to because for those con�gurations the GTP is not
the bottleneck for the system. The limiting component for those two points

34

1 1.5 2 2.5 3 3.5 4
400

450

500

550

Number of RoIs

La
te

nc
y

[u
s]

Figure 22: Variation of latency with the number of RoIs.

1 2 3 4
120

130

140

150

160

170

180

190

200

Number of RoIs

M
ic

ro
−

se
co

nd
s

pe
r

ev
en

t [
us

]

1 2 3 4
5

5.5

6

6.5

7

7.5

8

Number of RoIs

T
hr

ou
gh

pu
t [

kH
z]

Figure 23: Variation of throughput with the number of RoIs.

Demonstrator B | Project Con�dential 35

is the local processor which as we saw from section 4.2.1 limits the system
to 127 �s per event.

From these measurements we cannot determine the magnitude of the
GTP latency for one and two RoIs, however, we will show in section 4.4.1
that the measurements point towards a GTP latency of 80 �s for a single
RoI.

Since the coding of the GTP and FeX is practically identical we should
try to understand why they perform di�erently. There are two di�erences:
The size of the data passed between the RoBs and the FeXs is 160 bytes,
or 5 packets on the DS-link whereas the FeXD messages (FeX to GTP) are
always 32 bytes, or a single DS-link packet with only about 7 �s latency.
Secondly the global processor used in these measurements shares the T9000
with the multiplexer task as described in section 3.8.

The presence of the multiplexer task may be related to what seems to be
an inconsistency. That is, if we look at the variation of the latency with the
number of RoIs, from the arguement above we would expect it to increase
by 40 �s with each RoI. In fact the latency increases by 50�s with each ad-
ditional RoI. A di�erence between the increase in latency and the increase in
throughput again implies some not understood concurrency in the processor.

4.4 Wide System Results

4.4.1 Free Running

In the so-called wide system con�gurations we again use a single RoI per
event but now this RoI can correspond to several RoBs. All RoBs are col-
lected together in a single FeX as determined by the architecture-B protocol,
but several local and global processors are available. Successive events are
routed to di�erent FeXs and GTPs in a round-robin fashion. The full list of
con�gurations measured along with the results is given in table 3.

We perform the measurements as for the pipeline con�guration, namely
running in the free running mode with the supervisor limiting the number of
events concurrently within the level-2 system. To determine the latency we
run with a queue size of one, and to determine the throughput we run with
a queue size of eight events per GTP.

For the con�guration of �ve RoBs, four FeXs and 3 GTPs, we have per-
formed some additional measurements running in �xed-rate mode.

Also presented in the table are the numbers we expect from our simple

36

Con�guration Throughput Latency Limiting
GTPs FeXs RoBs [�s]=event [kHz] [�s] component

1 1 1 127 (125) 7.9 405 (405) FeX
1 1 2 151 (125) 6.6 447 (450) FeX
1 1 3 180 (170) 5.6 487 (495) FeX
1 1 4 221 (215) 4.5 534 (540) FeX
1 1 5 262 (260) 3.8 579 (585) FeX
1 2 1 81 (80) 12.4 408 (405) GTP
1 2 3 95 (85) 10.5 490 (495) FeX
1 2 5 139 (130) 7.2 587 (585) FeX
1 3 1 81 (80) 12.4 409 (405) GTP
1 3 3 82 (80) 12.2 495 (495) GTP
1 3 5 102 (94) 9.8 594 (585) Dist
1 4 1 81 (80) 12.4 408 (405) GTP
1 4 3 82 (80) 12.2 494 (495) GTP
1 4 5 103 (94) 9.7 588 (585) Dist
2 1 1 126 (125) 7.9 420 (405) FeX
2 1 3 195 (170) 5.1 507 (495) FeX
2 1 5 287 (260) 3.5 622 (585) FeX
2 2 1 65 (63) 15.4 455 (405) FeX
2 2 3 94 (85) 10.6 498 (495) FeX
2 2 5 148 (130) 6.8 610 (585) FeX
2 3 1 60 (50) 16.7 442 (405) Dist
2 3 3 73 (72) 13.7 505 (495) Dist
2 3 5 99 (94) 10.1 605 (585) Dist
2 4 1 58 (50) 17.2 451 (405) Dist
2 4 3 69 (72) 14.5 505 (495) Dist
2 4 5 103 (94) 9.7 601 (585) Dist

Table 3: Summary of the wide-system measurements. The numbers in paren-
theses are the predictions of the model.

Demonstrator B | Project Con�dential 37

model extended to these con�gurations (see below). The �nal column shows
which component, according to the model, is the limiting component of the
system.

To extend our model to these con�gurations we need do two things: Allow
for the fact that the latency of a component may depend on the con�guration,
e.g the fragment collection time in the FeX depends upon the number of RoBs
in the RoI (see section 4.2.2); and take into account that we no longer have
a pipeline, but that multiple FeXs and GTPs are now available.

As discussed in section 4.2.1, if we have a pipeline of components each of a
given latency, then the system latency is given by the sum of the component
latencies,

P
i Ti , (for a queue size of one) and the throughput is determined

by the largest component latency: TMax.
For the local and global processors which collect event fragments together

the latency depends upon the number of RoBs and RoIs respectively. Simi-
larly for the RoI-Distributer, the latency depends upon the number of RoBs
to which it must send RoIRC messages. We parameterise the dominant la-
tencies as follows:

TRoIDist = 50 + (NRoB � 1) � 11 �s

TRoB = 50 �s

TFeX = Max(125; 80 + (NRoB � 1) � 45) �s

TGTP = 80 + (NRoI � 1) � 40 �s

where for the local and global processors we use parametrisations re
ecting
what we have learned from the simpler con�gurations.

In order to extend the model we used for the pipeline con�guration, con-
sider, say, the local processors. If a local processor has a latency of TFeX�s
then it can process one event every TFeX�s. If there is more than one FeX
then the set of FeXs may process an event every TFeX=NFeX�s.

Thus with the de�nitions given above we extend the simple model thus:

Throughput�1 = Max
�
TRoIDist; TRoB;

TFeX

NFeX

;
TGTP

NGTP

�

Looking through the table we see that our model certainly gets the basic
trends correct. If we consider that our model has six parameters and is
predicting a table of �fty-six numbers to within 10% almost everywhere, and
often more precisely, we can regard it as quite successful. An indication that
the GTP latency for a single RoI is indeed 80 �s (as suggested in section

38

4.3) can be seen from the throughputs measured for the con�gurations with
a single GTP and multiple FeXs, where the GTP would be expected to limit
the system. The model predicts this, and the measurements con�rm it.

The latencies are calculated by simply summing the component latencies
as done in table 2 but now with TFeX depending on the number of RoBs. The
latency for the RoI-Distributer is held �xed for the calculation because the
stagger in the passing of messages over VME (Dist to RoBs) is concurrent
with the (longer) FeX collection time and thus is not seen.

Since a single RoI is used per event the only point at which event frag-
ments are collected together is in the Local processors. Now if all processors
are equal and if they are supplied by equal network bandwidth, then the
latency does not depend on which processor deals with the event. Thus the
only factor a�ecting the event latency is the collection time in the FeX. Look-
ing only at the results for systems with a single GTP we can see that this is
the case to within 2 %.

For systems with two global processors the latencies increase somewhat.
The reason for this is that as noted in section 3.6 not all processors are sup-
plied with equal bandwidth, and in fact to get to the second global processor
two C104 switches must be traversed. Additionally, events which go to the
second GTP must then traverse an extra DS-link in order to pass through
the multiplexor task as described in section 3.8.

It is not obvious why the di�erences in the latencies between con�gura-
tions with one GTP and those with two GTPs are as large as they are, but
apart from one measurement, it remains the case that the latency depends
only upon the number of RoBs contributing to the RoI.

The model predictions for the throughput are not a�ected so much by this
last point, as the throughput is insensitive to low latency components (such
as an extra DS-link traversal), and depends only on the limiting component.

4.4.2 Fixed Rate running

For the largest system we had available, �ve RoBs, four FeXs and two GTPs
we have perfromed some additional measurements in �xed-rate mode.

Figure 24 shows how the latency varies with throughput. There is a
de�nite upwards tendency above 5 to 6 kHz. This is to be expect in this
wide-system con�guration (as opposed to the pipeline) because now we may
have contention across the switch. At 8 kHz with an RoID message size of
160 bytes, each FEX is receiving data at about 1.6 MBytes/s, about half

Demonstrator B | Project Con�dential 39

1 2 3 4 5 6 7 8 9 10
585

590

595

600

605

610

615

620

625

630

Event Throughput [kHz]

La
te

nc
y

[u
s]

Figure 24: Latency as a function of throughput in �xed rate mode.

Run at 1 kHz

Run at 5 kHz

Run at 10 kHz

0 1000 2000 3000 4000 5000 6000
10

0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

Latency [us]

N
um

be
r

of
 E

ve
nt

s

Figure 25: Latency distributions at di�erent rates

40

0 100 200 300 400 500 600 700
550

600

650

700

750

800

850

RoID data size [Bytes]

La
te

nc
y

[u
s]

Figure 26: Latency as a function of RoID message size.

0 100 200 300 400 500 600
600

700

800

900

1000

1100

1200

FeX Processing time [us]

La
te

nc
y

[u
s]

Figure 27: Latency as a function of FeX processing time.

Demonstrator B | Project Con�dential 41

of the bandwidth of a single link. The latency distributions, �gure 25, can
be seen to be fairly constant, until at 10 kHz, the main peak is becoming
signi�cantly wider.

The latency as a function of RoID message size and FeX processing time
is shown in �gures 26 and 27. These measurements were made at a rate of 5
kHz (4 kHz for the last point of �gure 26).

4.5 Soak Test

The full system con�guration (i.e. �ve RoBs, four FeXs and two GTPs) was
left running at around 10 kHz for a total of seventeen million events. It was
then stopped by the supervisor because the number of timed-out events was
set at sixteen. It is likely that these events were distributed fairly evenly
in time and were not due to a system failure, i.e. the system would have
continued to run if this parameter had been set higher.

A reason why timeouts should occur at all can be inferred from looking
at �gure 28. This shows how the sampled latency, i.e. the level-2 latency
averaged over a four second interval, varies with time. The two large peaks

0 50 100 150 200 250 300 350 400 450
600

610

620

630

640

650

660

670

680

690

700

Time [s]

S
am

pl
ed

 L
at

en
cy

 [u
s]

Figure 28: Variation of latency with time.

42

are probably due to one of two things:

� Background network activity on the networked processors (i.e. the
RIO2s)

� Periodic printing of statistics from the Transputers (over Ethernet)

Either of these things can a�ect the accuracy of measurements made in
the shorter runs, and we were careful to avoid them as much as possible.

5 Conclusions

We have constructed a vertical section of the level-2 trigger and demonstrated
the architecture-B protocol to be functional. We have performed a series
of measurements of the system and produced a simple model with a few
parameters which �ts the measurements to within about 10 %.

References

[1] Note in preparation.

[2] ATLAS Technical Proposal CERN/LHCC/94-43 p 139.

[3] ATLAS Technical Proposal CERN/LHCC/94-43 p 139.

[4] Fred Wickens Proposed Data Formats for T2 Demonstrator Programme

{ Draft 1.1

[5] See http://www.cern.ch/hsi/s-link/

[6] See http://atddoc.cern.ch/Atlas/

[7] See http://www.hep.ph.rhbnc.ac.uk/atlasT2/C40.ps

[8] See http://www.cern.ch/hsi/dshs/

[9] T.C. Carden et al. High-performance computing nodes for real-time par-

allel applications NIM A394 (1997) 211-218

