
ATLAS Internal Note

DAQ-NO-72

7 August 1997

Diagnostic Software for the

ATLAS Level-1 Calorimeter Trigger

J.Leake, M.Landon, D.Rees, S.Hillier, A.Connors,
E.Eisenhandler, N.Gee, T.P.Shah

(UK Level-1 Calorimeter Trigger Group)

1 Introduction

The ATLAS Level 1 Calorimeter Trigger group has been involved in a continuing demonstrator pro-

gramme to evaluate some of the technologies required for the �nal ATLAS Trigger system. This has

involved building a number of VME modules. The diagnostic software described in the note was

required in the �rst instance for the testing and debugging of individual VME modules. From the

outset it was realised that the modules would be part of a larger and more complex system and hence

a design goal was that the system should be easy to con�gure in di�erent ways. It should allow access

to registers and memories in individual modules, provide useful context related help and, at the same

time, be extendible to larger and more complex systems consisting of several modules. Lastly, but

most importantly, a key aim of any diagnostic software is to expose errors in the behaviour of part or

all of the system. This means building into the diagnostic software the ability to model the behaviour

of the hardware, starting from a single module and growing to a system consisting of many modules.

We chose to use C++ as the programming language and the graphical user interface was implemented

using Tcl/Tk. The software runs on VMEbus single-board computers under LynxOS (a real-time

POSIX-compliant form of Unix); the display is on X-terminals (or X emulators) with a Motif-like

style.

In this note we describe briey the motivation for choosing the programming language and the

graphics tool (Section 2). Section 3 outlines the Tcl commands that were added to the interpreter.

These commands provide the link between the user interface and the class library. The user interface

to the class library is discussed in Section 4, and Section 5 describes the essential components of the

C++ class library itself. This implements the hardware components (the modules, registers etc.) of

the trigger system and also contains the simulation classes. Details of the Diagnostics Software and

the hardware can be found on the Web at:

http://hepwww.rl.ac.uk/atlas/l1/l1 slice.html

1



2 Choice of the User Interface and the Programming Language

In order to make the con�guration of complex systems more transparent, and enable the diagnostic

software to be run by design engineers, technicians and physicists without an in-depth knowledge of

the software involved, a graphical user interface was considered essential. We decided to use Tcl/Tk

as the software tool to generate this interface. Tcl/Tk is free and is readily extendible and widely

portable. It is also relatively easy to learn and, using the Tk toolkit, simple scripts can be written

which present a pleasing graphical interface to the user.

From the perspective of the software, digital electronics modules share common features: they all

consist of sets of registers and memories. In particular the Level-1 trigger modules conform to some

programming model guidelines. This suggested that the inheritance and modularity features of the

object oriented programming approach would be natural for this project. We chose to use C++ as it

is the most widely supported object oriented programming language, and the software development

team also had some previous C++ programming experience. On LynxOS the C++ compiler is GNU

g++, which is also freely available on almost every other computing platform. Using g++ enabled

the code development to be done on more convenient operating systems such as Digital UNIX and

HP-UX.

3 The Graphical User Interface using Tcl/Tk

One of the advantages of Tcl (Tool Command Language) is that the set of commands understood by

the Tcl interpreter can be extended to include user de�ned commands written in C (or C++). This is

the facility we used to implement the user interface to our class library. Extensions to Tcl are usually

implemented as \packages". A Tcl package typically consists of one globally visible initialisation

routine and a suite of static support functions. We discuss two of these packages below.

3.1 l1 Package

The l1 package declares two commands: l1 and l1obj. The l1 command is used to set and query

global options a�ecting the whole package and the class library. The options it accepts are described

in the subsections below. The l1obj command creates named C++ objects of class XComponent or

its subclasses. It also creates a new Tcl command, with the same name, to control the object, issue

commands to it, etc. This is similar to the scheme used by the Tk part of the Tcl/Tk package for

creating widgets, where a command to create a widget of a given class (e.g. a button) also creates a

Tcl command to con�gure the widget.

3.1.1 The l1 Command

Many forms of the l1 command are used to set or query global ags applying to the whole package.

They take an optional value which is used to set the ag. If the value is omitted, the current value of

the ag is reported. Two of the more useful commands are fakevme and forever. The l1 fakevme

command queries or sets the \fake VME mode". If selected, this means that VME I/O is done to a

small internal array and not to real VME. This feature was useful while developing the code. The l1

forever command can be set to cause any VME access to loop forever, repeating the same operation.

This is useful for debugging the hardware with an oscilloscope. Other l1 commands just give help or

information about the package.

2



3.1.2 The l1obj Command

The l1obj command creates C++ objects of class XComponent or its subclasses. These classes are

described further in section 5. l1obj also creates an associated Tcl command with the same name

as the XComponent object. The Tcl command is used to control and communicate with the C++

object.

The following examples illustrate the use of the l1obj command:

l1obj rack r1 -height 20

l1obj txm txm2 -base 0xd20000 -module id 0x2107 -number 2 -x 14

The �rst command creates a Rack object called r1 which is 20U high while the second command

creates a level-1 Transmitter Module (TXM) called txm2 with a VME base address of d20000 (hex)

and module ID of 2107 (hex). It is TXM number 2 in some human-friendly numbering scheme and is

in slot 14 of its enclosing crate (if any). Additional commands are available to create Crate objects

and add modules (e.g. a TXM module) to crates.

The new Tcl command txm2 can then be used to read, write or test registers and memories in the

module, e.g.:

txm2 /Control read

This command returns the value read from the control register of the TXM.

3.2 component Package

The component command creates a Tk widget which can be used to display a picture of an XComponent

object and its subcomponents (if any). It is typically used to draw the System object and its component

Racks, Crates and Modules. The l1test program described below invokes this command to display

the system of racks, crates and modules under test.

4 The l1test Program

The l1test program is used for performing the testing and debugging. It starts by displaying the

main con�guration window (see Fig. 1) which consists of the following major elements: an \active"

display of the known con�guration; various buttons to load, save and initialise the con�guration; a

row of options; a scrolling text area for error messages and other information. The dominant feature

of the \ATLAS Level 1 Trigger Diagnostic Software" window is a picture of the con�guration showing

a few (in this case three) racks, each with one or more crates containing several labelled modules.

This con�guration is initialised when the program starts but can be modi�ed by reading a di�erent

con�guration �le by clicking the Read Config button. The Init VICs button initialises the vertical

interconnect modules (VICs) connecting the VME crates, which downloads all the necessary inter-

crate mappings. The con�guration picture is active: it responds to the mouse in two ways. Firstly, as

the mouse cursor is moved over the diagram, the information display above the picture shows some

information about the object that is currently under the mouse cursor. Secondly, if the mouse is

clicked over the picture a pop-up menu appears. This menu varies according to what lies under the

mouse pointer. Over a module this menu shows a list of windows that can be opened for that module

and other commands the module accepts; above an empty slot, the menu allows one to add a new

3



Figure 1: The con�guration window for the l1test program

module to the crate. New crates can also be added to existing racks, and new racks to the whole

system con�guration. Options are always present to delete an object or add a new one. Modules can

be repositioned within a crate and rack sizes can be changed. Finally, any altered con�guration can

be saved for future use.

Below the con�guration picture is a row of options. For instance, the option Read/write forever

uses the l1 forever command to repeat the next VME operation in a tight loop for \scope" tests.

4.1 Register and Memory Windows

Register windows can be opened by choosing the Registers option from the pop-up menus for the

Cluster Processor Module (CPM), Timing Control Module (TCM), Transmitter Module (TXM) and

Flash Analogue-to-Digital Converter Module (FADC). An example of a TXM Register window is

shown in Fig. 2. It shows the type of module and its VME address in the title line followed by a row

of global command buttons which act on all the registers displayed in the rest of the window. There

is also a display of individual registers, each of which can be read, written and tested individually.

This display makes it easy to control and interpret the individual bits in the registers.

Similar detailed windows are available for the TXM, CPM and FADC memories. The Memory

windows allow whole memories to be read, �lled and tested with various patterns. The Tcl/Tk

interface makes it relatively easy to include additional panels to perform operations in logically separate

components of the module, such as individual ASICs. For example, on the Level-1 CPM module there

are 15 ASICs of a particular type, each having the same internal register and memory structure. Each

ASIC can be fully manipulated by one window which behaves in the same manner for each ASIC.

4.2 Autotest Windows

Autotest windows are opened by choosing the Autotest option from the pop-up menu for CPM, TCM

and TXM modules. This is designed to enable the user to perform a series of pre-packaged tests on

4



Figure 2: The TXM Register window

the particular module in question (e.g. \soak" tests). These tests typically make use of the simulation

of the module to compare its actual and expected behaviour. A similar scheme has been implemented

to test the links and data ow between two separate modules. It is foreseen that this scheme will

be extended to perform more elaborate system tests by tracking data ow through a whole chain of

modules.

5 Class Library

In the following sections the main parts of the class library are presented in diagramatic form. For

clarity these have been shown in separate diagrams. Two broad areas, covering the core classes and

the simulation classes, are briey described below.

5.1 Primitive Classes

The class hierarchy diagram for \primitive" classes is shown in Fig. 3. The base class for most of

the important classes is the UserIO class. This is a pure virtual class which de�nes an object that

can be addressed by the user interface. It has a name, an internal class type, and methods which

provide the connection to Tcl/Tk. The next few levels, Subcomponent, Component, XComponent and

their immediate subclasses, implement a \containment" or \con�guration" hierarchy. A diagram

of a simple con�guration is shown in Fig. 4. The con�guration hierarchy is quite distinct, almost

orthogonal, to the class hierarchy. The idea is that most elements of the trigger system may contain

subcomponents and may themselves be subcomponent of larger elements. For example, crates may

contain a variable number of modules; modules consist of a �xed set of registers and memories.

5



UserIO

Subcomponent

System RackCrate Module

VMEAccess VME VMEModel

Diagnostic

Memory

Register

L1ModuleFADCBabarVic

CPM TCM TXM

dlink

ID_Register

Key:

XComponent

Component Tlist<Subcomponent>

Asics, etc

B inherits from A B is a data member of AA B A B

Figure 3: The class hierarchy diagram for \primitive" class

The Subcomponent class is at the bottom of the con�guration hierarchy. It can only be a subcom-

ponent of another object, i.e. their \container". In contrast, the Component class can additionally

contain Subcomponents of its own. XComponent objects are Components that can be drawn on the

screen (using X windows) as part of the con�guration diagram. Their state can also be saved to

and initialised from a con�guration �le, whereas other subclasses of Component or Subcomponent are

expected to be in �xed con�gurations, such as Registers in a Module.

XComponent subclasses, such as System, Rack, Crate and Module are the basic elements in the

con�guration. They can be dynamically created from the Tcl/Tk interface using the l1obj command.

Among their data members are their �ll colour and text colour; their x and y dimensions and their x

and y positions within their container, e.g. slot number in a crate or height (in U) within a rack.

Most XComponent subclasses have additional functionality: the System class knows about the

\system crate", i.e the Crate in which the Lynx-OS CPU resides; Crate objects know about Vic

modules which handle the VME address mapping between crates; Modules know their own VME base

address, etc.

VMEAccess is a stand-alone class which implements the actual access to VME by the system. This

is (almost) the only class which needs to contain any system dependency; there is also a dummy

version for systems with no real access to VME but which may be used for code development. In the

latter case the I/O to \VME" is always faked by I/O to a small internal array.

There is a single global instance of VMEAccess which is referenced by the VME class. VME is the base

class for hardware access to a VME memory or register. It has a base address, and via VMEAccess

it can Read and Write to Long or Word o�sets from that address. VMEModel is the basis for the

simulation of a VME register or memory. The Reads and Writes are done to an internal data member.

The functionality of both VME and VMEModel are combined in the Diagnostic class which is the

key to the testing strategy of the diagnostic software. It is the base class of the Register and Memory

6



Configuration Hierarchy

System

Rack Rack

Crate Crate Crate

TCM VICVIC VICTXMFADC •••• CPM CPM••••MVME
167

Reg AsicReg Mem Reg MemReg•••• •••• Asic•••• •••• ••••

Reg Mem Reg Mem

Key: Configurable (XComponents) Fixed (Subcomponents)

B is a subcomponent of AA B

Figure 4: A simple con�guration

objects that comprise most Module subclasses. Any Read or Write operations are performed to both

the real hardware (VME class) and to the software model. Comparing the states of the hardware and

model after an arbitrary sequence of operations allows the correct operation of the hardware to be

checked in detail.

5.2 Simulation Classes

The simulation class library is a subset of the level 1 diagnostic software that provides a mechanism

for modelling the behaviour of the hardware. The hardware description language VHDL has provided

many of the concepts and terminology used in the simulation class. A diagram of the simulation class

hierarchy is shown in Fig. 5. There are four main classes in the simulation class library: Signal,

Port, Entity and Simulator. The Signal class objects are used to pass information between the

entities in the model. Signal objects usually belong to an Entity. The Port class objects enable an

entity to read and drive signals which are external to it; objects of Entity class are functional units

that represent a digital system. A model will typically be built from a number of entities which are

connected together by signals via ports. Finally, a global object of the Simulator class is in charge

of the whole simulation process.

The simulation class provides a library of digital components (e.g. simple gates, memories, latches

etc.) which can be connected to each other to simulate a new component capable of performing more

complex tasks. To illustrate how the simulation works an example follows. A register in a module is

a subclass of Entity. Writing a value to it drives signals from its ports to ports on other entities in

the module. The simulator propagates changes until a new steady state is reached.

7



dlinkEntity SchedulerSimulator

Driver

Signal

Action

Port

Key:

Tlist<Action>Tlist<Driver>

Tplist<Port>

Tlist<Signal>

BCID Counter DLatch Gate Merger Multiplexer SRLatch ModelMemory<T>

Memory

NANDAND NOR OR

B inherits from A B is a data member of AA B A B

Figure 5: The simulation class hierarchy

6 Conclusion

The diagnostic software developed for the testing and debugging of VME modules of the ATLAS

Level-1 Trigger processor has been described. A graphical user interface has been developed using the

Tcl/Tk tool and the underlying software has been written in C++ using object oriented methods.

This software package has been already extensively used and is being further developed in response

to user requirements. It has proved to be exible and user-friendly tool, easy to use for software

non-experts for debugging and testing a variety of modules.

8


