
1

Abstract

Control Protocols for parallel Event Building in HEP DAQ
Systems are described. It is shown that these can be based on
two simple data structures suitable for a wide class of
architectures. A few examples of different push and pull
architectures are given.

1 Introduction
A parallel Event Builder is illustrated in Figure 1. Data is
produced by nData Sources each containing eventfragments,
numbered sequentially 1,2,..i,.., which are combined into
whole events in one of the mData Destinations.

We allow that only a subset of the sources contributes to the
Event Building process. Examples of Event Builders can be
found in the proposed implementation of the CMS [1] “Virtual
Level-2” and Level-3 Trigger as well as the ATLAS [2] Second
and Third Level Trigger. The sources may be thought of as
Read-out Dual-Port Memories (RDPM, for CMS [1]) or LVL2
Buffers or Processors (ATLAS [2]), the destinations as Second
or Third Level Trigger Processors, interconnected by a
network.

Fig 1. Parallel nxm Event Builder

i+1

i+2

1 2

i

i+1

i+2

n

... ...

n Data Sources

i

1

i+1

i+1

i+1

2 m

... ...

m Data Destinations

Switching Network

i

i

i

i+2

i+2

i+2

i

i+1

i+2

First, we shall describe a broad class of Event Building
protocols and show that these can be based on two elementary
data structures which keep track of the location of the
fragments which eventually will constitute the whole event.
Event Building protocols may then be described by algorithms
which update the data structures. These may either be executed
directly by the sources and destinations if the tables are located
in shared memory, or indirectly by the exchange of messages
with an Event Manager that controls the tables. Event
management and tables may be distributed if required for
scalability or modularity of the detector. Protocols have to
address a multitude of issues such as data copying or just data
access, push/pull architectures in case of copying, trigger
decision latencies, scheduling of processors, distributed or
centralized event management and robustness/error
recovery [3]. A strategy for choosing control protocols is given
in [4]. The choice of actual protocols and implementation
details may depend on the technology. A few examples will be
given. Detailed results from demonstrator systems and
simulations can be found in specialized literature [5],[6],[7].

2 Event Building Protocols

2.1 Terminology
Event building protocols are naturally layered indata
transmission, dataflow control andconfiguration.

Event and control data may betransmitted over a unique or
separate network for which drivers and higher level software
are often required.

The dataflow is controlled by Event Building protocols
which assign destination processors. They ensure correct
movement of data and synchronisation of processors. Ideally,
they make maximum use of the bandwidth of the interconnect,
do not leave processors idle, minimize trigger decision
latencies (to minimize memory), recover from malfunctioning
of equipment and allow flexibility in the implementation of
trigger algorithms.

Configuration is traditionally part of the Run Control and
involves selection and initialization of all the components
(processors, memories, interconnects, trigger algorithms). The
Run Control will need to continuously monitor the system, log
anomalies and reconfigure in case of persistent malfunctioning.

The termsource/destination drivenindicates how the data
flows. In a source driven architecture, data iswritten by the
sources. In a destination driven architecture, data isread by the
destinations. In systems supporting shared memory it is
possible that data is (remotely) accessed (read) rather than
transferred in its entirety. This is a particular case of a
destination driven architecture.

Event Building Protocols

VERSION 1.0 June 1995

André Bogaerts1, Manfred Liebhart1, Jean F. Renardy2, Ralf Spiwoks1, Per Werner1

1 CERN, ECP Division, 1211 Geneva-23 Switzerland
2 CEA SACLAY DAPNIA/SPP F91191 Gif/Yvette CEDEX France

ATLAS Internal Note DAQ NO. 46
31 August 1995

Event Building ProtocolsEvent Building Protocols

2

The term push/pull relates to the dataflow control and
indicates that the source/destinationinitiates the transfer. It is
thus possible to have a destination driven push architecture,
e.g. when the source has the possibility to activate a DMA
device in the destination.

This is perhaps the place to dispel a few myths. Push
architectures allow multiple parallel data transfers to the same
destination, but this may unfortunately overload the receiving
port resulting in data loss (ATM), long delays (in establishing a
connection, Fiberchannel) or thrashing (caused by retry traffic,
SCI). Sources cannot start pushing data as soon as this is
available but must wait till the destination is ready to accept it.
Equivalently, in a pull architecture a destination may initiate a
transfer when it is ready and data is available in the source.
Push architectures cannot therefore guarantee low latencies in
general and the choice depends on detailed considerations.

Destination processors can be assigned centrally by an Event
Manager or the task may be distributed over sources and
destinations. Several strategies are possible to determine the
destination for an event. In addition, it must be known if the
destination processor has queue space available and in some
cases the address of the destination buffer must be supplied.

Non-deterministic algorithms (e.g. based on pseudo random
number generators to associate a destination with an event) are
for this reason not very suitable. Deterministic algorithms may
investigate the queue sizes of the destinations to make the
“best” decision. A very simple deterministic algorithm is
round-robin scheduling where the destination is a simple
function of the event number that can be calculated by any
source and destination. The algorithm can easily be distributed.
Another popular algorithm is to choose a processor which has
no or the least number of events queued. This minimises
latencies.

3 Data Structures
It is assumed that data is collected and buffered in the data
sources. In push architectures destinations must also buffer
events. How this is done (random access buffer, fifo, circular
buffer, linked list, ...) and what the buffer size should be is
outside the scope of this paper (see [4] for more details). Event
Building and data management becomes much simpler if it is
not required that an event occupies a contiguous block of
memory. This allows sources to push blocks of data of
unknown size, or for certain pull architectures, direct access to
data without memory remapping. Fortunately, most Physics
Analysis Software assumes that data is organized in smaller
logical entities (“banks”).

Two data structures form the basis for the Event Building
protocols. Although we shall refer to these structures as tables
they may be implemented in different forms such as linked lists
or fifos.

A local, one-dimensionalFragment Table (indexed by event
number) in each source or destination keeps track of the
buffered event fragments. Each entry consists of an event
fragment descriptor which contains all the information
necessary to access a data fragment such as: a pointer to the
event fragment data, its size and status.

A global, two-dimensionalEvent Table keeps track of all
stored events (and its fragments) which are being processed

(“alive”). The elements are also event fragment descriptors.
One dimension (“row”) is indexed by event number and
associates all fragments belonging to one event with a
destination. The second dimension (“column”) is indexed by
source identification and associates fragments with the source
from which the data originated.

Figure 2 shows an example of these tables for apull
architecture. Rows in the Event Table contain pointers to
fragments in allsources that contribute data to the event (some
may be empty). A destination can start building an event as
soon as it has the information of a complete row. A scheduling
algorithm assigns rows to destination processors.

Figure 3 shows an example for apush architectures. Each
row of the Event Table contains pointers to the buffers in the
destinations to which each source must transfer the data. A
source can start transferring data to the various destinations
once the column information becomes available; a destination
can start event analysis as soon as a row is complete (some
fragments may be empty).

The Event Building process can be viewed as read and
update operations of the Event and Fragment Tables which
requires communication between sources and destinations.
There are two practical ways to achieve this.

The tables may be accessed through messages to a unique
owner e.g. a data source or destination for the Fragment Table,
or an Event Manager for the Event Table.

Alternatively, tables may be kept in shared memory. If data
items are modified by several processors access may have to be
protected by (global) semaphores. This method can be very
efficient and is particularly suited to SCI. Updates may have to
be accompanied by messages, or even simply interrupts, if
immediate action is required though simple polling in the
“event loop” is often sufficient.

Fig 2. Event and Fragment Table for a pull architecture

...i+2i+1i i+2i+1i

1 n...

1 n...

1 n...

Event Fragment Table Event Fragment Table

Event Table

Event i

Event i+1

Event i+2

Source 1 Source n

3

Event Building Protocols

An important implementation issue is the physical location
of these tables. For instance, the Event Table could be kept
inside a unique Event Manager (which communicates through
messages) or aglobally shared memory segment (for SCI). For
large systems this may not be scalable and the Event Manager
or shared memory may be overloaded, apart from the practical
connection problems to provide a communication path. It
might therefore be necessary to decompose an Event Manager
or distribute the table over shared memory. The table need not
have a fixed size and might be implemented as a list of linked
lists. For SCI, coherent caching would automate the
distribution.
.

3.1 Event Fragment Table
For pull architectures it is convenient to locate Fragment
Tables in each source. Since new elements are inserted in the
table for each new event by the source, accessed sequentially,
and deleted under instigation of the destination, a practical
implementation is a simply linked list ordered by increasing
event number as illustrated in Figure 2. Elements are a inserted
at the tail and deleted in the vicinity of the head.

For push architectures the destinations manage the memory
which is to receive the data and maintain therefore the
Fragment Table. Fragments are grouped into events and several
events may be queued which suggests that a two-dimensional
table might be used. Otherwise, Fragment Tables could be
integrated in standard Buffer Managers or implemented by
software packages for Physics Data Management.

Fig 3. Event and Fragment Table for a push architecture

...

Each column corresponds to data from one source

n21 n21

1 n...

1 n...

1 n...

Event Fragment Table Event Fragment Table

Event Table

Event i

Event i+1

Event i+2

Destination j Destination k

3.2 Event Table
The Event Table must keep track of all “live” events in the
system. It is reasonable to keep an upper bound N on their
number. Stale events may be timed out and forcefully deleted.
Taking the ATLAs Second Level Trigger as an example, a
reasonable value is N ~ 1000. This corresponds to 10ms data
taking at 10µs mean event arrival time and results in a size of a
∼ 1 Mbyte for ~ 200 sources. A small fraction of the events
may stay much longer in the system. T1 should ensure unique
event numbers during this time. The Event Table can than be
organized as a l inear array of size N and indexed by
event # mod N for efficient access to each event. Each element
of the Event Table must provide pointers to elements in the
Event Fragment Table as indicated in Figure 2 and Figure 3.

For SCI the Event Table could be located on a shared
memory segment, physically distributed over the sources or
destinations. Event Management becomes then part of the
event building process using the same network as for the data
transport. Such an implementation is scalable and provides the
redundancy required for robustness.

4 Examples of Event Building with SCI
As a practical illustration we describe a very simple SCI

based system. This is not a production DAQ system but a test
vehicle to study event building protocols. Initially, the system
consists of 4 SUN Workstations and an SCI switch to form a
2x2 event builder with two sources and destinations. The
system is being expanded to incorporate a composite SCI
switch (4 four-switches) and C40.

The system is constructed from three simple, single threaded
programs: n Data Producers, m Event Builders and a
rudimentary Run Control Program (see Figure 4). Event Table,
Fragment Tables and event data are located in shared memory.
For simplicity, we assume that all Data Producers contribute
fragments to the full event. Destinations are assigned in round-
robin fashion. Event management is fully distributed over the
sources and destinations which communicate using variables in
shared memory.

All SUN Workstations run SunOs and are equipped with an
SBUS/SCI interface from Dolphin, based on the first
generation of CMOS interface chips. Despite the rather
ineffecient first generation hardware this results in fast,
scalable protocols with a measured rate of ~ 25 KHz (pull) -
50 KHz (push) for zero-length events (measuring protocol
overhead only) [8].

4.1 Destination driven Shared Memory Pull
Architecture.

Each source has a segment containing a Fragment Table and
event data which is mapped in all destinations. Events may be
accessed directly without transferring all the data. Because of
the round-robin scheduling, destination i only needs access to
every ith entry in the Event Table which can therefore be
physically distributed over all destinations. Each source maps
to the complete Event Table. Rows in the Event Table provide a
“handle” to a complete event by following the pointer chain.
The format of both the Event and Fragment Table is compatible
with ZEBRA-like data structures allowing an event to be
scattered in memory.

All communication is through shared memory. There are
neither interrupts nor calls to the Operating System to avoid

Event Building ProtocolsEvent Building Protocols

4

spending time in context switching for normal event
processing.

For a pull architecture, event building consists of reading the
event data fragments serially. Several choices are available:
transfer the totality of the event (using DMA), transfer blocks
piecemeal or just access the data in situ (SCI transparent read/
write memory access).
The task of event management is distributed over the sources
and destinations. The number of messages (read/write
operat ions which must t raverse the swi tch) in th is
implementation is 4n (could be reduced two 2n). Assuming
n ~ 200 and an 10µs event arrival time this results in a data rate
of hundreds of Megabytes/s just for synchronisation.

4.2 Source driven Push Architecture
Many data networks can only support source driven
architectures and these have therefore received more attention.
To benefit from the potentially low latencies one has to be
careful in the design to avoid overloading the I/O system of the

Fig 4. Data Producer, Event Builder and Run Control

Skeleton of Event Builder

Initialize

Poll “Flags”

Inform SourceRun Control

Skeleton of Data Producer

Initialize

Poll “Flags”

Skeleton of Control Program

Initialize

Operator

Set Control
Flags

Input

Run Control Produce
Next Event

Insert in Delete
Event Table Event

Build Event

destination as well as waiting times in the receiving data
queues.

In this SCI implementation we shall use shared memory for
the passing of messages, as in the preceding example. Since the
destinations need to buffer events, they each hold a Fragment
Table accessible by the sources. Each entry in the Fragment
Table now contains a pointer where to receive the data of the
fragment as well as a data ready status indicator. This indicator
must be read and tested by the source which, when it indicates
ready, transfers the data and sets the status to data available.
The Data Destination should fill the Event Table with valid
pointers ahead of time for as many events as it wishes to buffer.
The Data Banks and Fragment Table combined with the
corresponding entry in the Event Table creates a ZEBRA-like
scattered data structure in each Destination Processor as
illustrated in Figure 5.

5 Examples of Event Building with HIPPI

5.1 Source-Driven Push Architecture based on HiPPI
Another source-driven push architecture can be implemented
using the HiPPI standard [9].The data sources and data
destinations are connected via a HiPPI switch [10].

Each source holds an Event Fragment Table for all the
arriving event fragments. This table can be implemented as a
linked list of event descriptors which contain pointers to the
actual data. The sources assign the destination to a given event
fragment in a round-robin manner or use a field in the event

Descriptor n

Event i

Data Bankn

Data Bank...

Data Bank1

Event i+1

Descriptor ..

Event iDescriptor 1

Event i+1

Fig 5. Data Structure in Destination Processors

Event Builder

Event Table

Data Bank n

Data Bank ...

Data Bank 1

Event i

Descriptor n

Event iDescriptor ..

Event iDescriptor 1

Event i+2

Event Builder

Event i

Event i+1

Fragment 1 Event i+2Fragment ... Fragment n

Fragment 1 Fragment ... Fragment n

Fragment 1 Fragment ... Fragment n

5

Event Building Protocols

descriptor filled by some earlier stage (e.g. T2 Trigger
Supervisor). The sources then send the data to the destinations
using the HiPPI protocol. In this protocol the sources can
“camp-on” the switch waiting till the requested destination
becomes available. Several camping-on requests are arbitrated
by the switch in a round-robin manner. The end of a transfer is
defined in the HiPPI protocol by a destination signal
propagating back to the source which can then start “pushing”
the next event fragment.

Fig 6. Push Architecture based on HiPPI Protocol

The event assembly is done in the destinations which hold
each one its part of the Event Table, this table being
implemented as a linked list of the event descriptors of full
events which point to a linked list of event fragment
descriptors.

This architecture which uses no other feedback from the
destinations than the one defined in the HiPPI protocol can
equally be implemented using FibreChannel class1
connections [7],[11].

5.2 Source-Driven Pull Architecture based on HiPPI
A source-driven pull architecture can be implemented with the
same setup as described in section 5.1 on page 5. Instead of
assigning the destination statically in a round-robin manner the
data will wait for a destination to send a request. This request
can be generated by the destination whenever it has enough
buffer space to build a new full event. The request is
broadcasted to all the sources by a network which has to ensure
that no request gets lost and that they arrive at all the sources in
the same time-order they were produced at the destinations. In
this way the request can be used by the source to assign the
“next” event fragment. A possible implementation is done
using the VMEbus for this purpose [12].

Fig 7. Pull Architecture based on HiPPI Protocol

The Event Fragment Tables are kept in the sources, the Event
Table in parts in the destination and they are both implemented
as linked lists.

This architecture can equally be implemented using
FibreChannel class 1 connections in which case the
FibreChannel links could also be used to transport the
destinations’ requests.

6 Event Building with ATM
Examples of ATLAS Leve-l2 and Level-3 architectures
are given in [13].

Src HiPPI Dst = round-robin

end of transfer

Src HiPPI

dst request

Dst

7 Trigger Scenarios
The protocols discussed above are fairly general and applicable
to both second and third level triggering. To be discussed:
ATLAS/CMS model, RoIs & ATLAS T2, T2 buffering and
event management, assignment of destination processors, local
processing, parallelism, farms, massively parallel systems,
phased event building, role of latencies, impact on memory
usage, switch capacity, CPU usage, algorithms, software
aspects, drivers, libraries, operating systems, flexibility.

8 Robustness and Error Recovery
Design of a robust system requires careful analysis of the cause
of expected errors, their frequency and the amount of error
recovery which is built into the communication network.
Treatment of residual errors and, in some cases, recovery of
data complicates and obscures production quality code
considerably. It may also lead to the choice of a particular
control protocol. For clarity, this aspect has been ignored in all
the examples.

References
[1] CMS Collaboration, “Technical Proposal”,CERN/LHCC 94-38

LHCC/P1 CERN, Geneva, Switzerland 15 Dec. 1994
[2] ATLAS Collaboration, “Technical Proposal”,CERN/LHCC 94-43

LHCC/P2 CERN, Geneva, Switzerland 15 Dec. 1994
[3] R. Spiwoks, Requirements of an Event Building System,RD13

Technical Note 111, April 1994
[4] J.F. Renardy, “A taxonomy of control protocols for event building

with switches”, To appear in the Proceedings of RT95, IEEE
Conference, Michigan, 1995

[5] S. Hunt, F. Harris, A. Bogaerts, J. Carter, R. Hauser, I. Legrand,
“SIMDAQ - A System for Modelling DAQ/Trigger Systems”,To
appear in the Proceedings of RT95, IEEE Conference, Michigan,
1995

[6] B. Wu, A. Bogaerts, H. Li, B. Skaali, “Modelling of the ATLAS
Data Acquisition and Trigger System with SCI”,To appear in the
Proceedings of RT95, IEEE Conference, Michigan, 1995

[7] W. Greiman et al., Design and Simulation of FibreChannel Based
Event Builders, RD13 Technical Note 132, Oct. 1994

[8] M. Liebhart, A. Bogaerts, P. Werner, “Event Building with SCI”,
RD24 Report, 1995

[9] HiPPI-PH, ANSI standard X3T9.3/91-005
[10] S. Buono et al. (RD13 Collaboration), Prototype of an Event

Building System based on HiPPI, to appear in Proc. of. Int DAQ
Conf., Fermilab, 1994

[11] Fibre Channel Standard, ANSI working group X3T911/FC-PH
[12] G. Ambrosini et al. (RD13 Collaboration), Studies on Switch-

Based Event Building Systems in RD13, submitted to CHEP 95,
Rio de Janeiro, 1995.

[13] D. Calvet et al. "A Study of Performance Issues of the ATLAS
Event Selection System Based on an ATM Switching Network",To
appear in the Proceedings of RT95, IEEE Conference, Michigan,
1995

