
Enable++: A second generation FPGA processor�

H. H�ogl, A. Kugel, J. Ludvig, R. M�anner, K.H. No�z, R. Zoz

Lehrstuhl f�ur Informatik V

Universit�at Mannheim

Abstract

Two years of experience with the two prototype FPGA processors

Enable-1 and DecPeRLe-1 reveal that �eld programmable processors are
the best choice for realizing a data-driven second level (L2) trigger for

ATLAS. This paper presents Enable++, a 2nd generation FPGA processor

that o�ers several substantial enhancements to the previous systems:
In order to meet the varying demands of all ATLAS subdetectors

Enable++ is structured into three di�erent state-of-the-art modules for

providing computing power,
exible and high-speed I/O communication

and powerful intermodule communication with a raw bandwidth of 3.2

GByte/s by an active backplane. The technical realization of all three

modules is guided by the maximum usage of �eld programmable logic.
The actual demand of computing- and I/O-power can be satisi�ed by the

number of modules plugged into the crate.

Enhanced features of Enable++ comprise the con�gurable processor
topology provided by programmable crossbar switches. In combination

with the 4�4 FPGA array and 12 MByte distributed RAM the Enable++

computing core o�ers strongly increased and scalable computing power.
For building new applications the system provides a comfortable program-

ming and debugging environment consisting of a compiler for the C-like

hardware description language spC, a simulator and a source level de-
bugger for hardware design. The goal in planning the hardware design

environment for Enable++ from scratch is to transfer established method-

ologies in software design to the design of digital logic.
The most computing intensive tasks in L2 triggering are the feature

extraction algorithms. From experience with Enable-1 we expect that

Enable++ surpasses modern RISC processors by a factor of 100 to 1000.
The new processor will be available in summer 1995 and the participation

in the common ATLAS run in Sept. 1995 is foreseen.

�This work has been performed within the RD-11 and ATLAS collaborations and has

been supported by the Bundesministerium f�ur Forschung und Technologie (BMFT) under

grant PH/-RS6-93/09 and the Gesellschaft f�ur Schwerionenforschung (GSI) in Darmstadt,

Germany, under grant MAM�AK.

1

1 Introduction

The concept of a data-driven 2nd level trigger in ATLAS requires processors
keeping up with the high event rate of 100kHz. These processors have to be
fully programmable in order to allow algorithm optimizations even after the ex-
periment has started to run. The
exibility of this type of data-driven processor
has to be high enough to serve as a L2 trigger for all subdetectors of ATLAS.

Recon�gurable hardware built with �eld programmable components is an
ideal concept for constructing data-driven trigger processors combining both
the speed of a hardware and the
exibility of a software solution. This type of
processor consists of a computing core using a set of Field Programmable Gate
Arrays (FPGAs) which are con�gurable by software to form a hardware imple-
mentation of an algorithm. Two exemplary implementations of this concept are
Enable-1

1 and DecPeRLe-1
2.

In 1991 the EAST RD/11 collaboration carried out a benchmark compe-
tition in order to �nd candidates for a L2 trigger processor. The task was to
implement the TRT algorithm within given requirements. The only system that
met the full benchmark requirements was Enable-1 [BBB+93]. During the last
two years the FPGA processors Enable-1 and DecPeRLe-1 were studied inten-
sively in beam tests and simulations [BBB+94]. Enable-1 has demonstrated its
ability as a feature extractor for a full-scale TRT running under LHC conditions.
On DecPeRLe-1 several algorithms for test detectors (TRT, SCT, Calorimeter)
were successfully implemented.

This paper is the result of two years of in-depth experience with FPGA
processors for EAST. It presents Enable++ as the genuine 2nd generation of
FPGA processors for L2 triggers. The new processor combines advantages from
Enable-1 and DecPeRLe-1 and introduces several new features. Section 2 gives a
brief overview of the hardware architecture of Enable++. The most important
improvement is that Enable++ is programmable in a high-level language similar
to C, that makes application devolopment more convinient. This programming
environment is discussed in section 3. Section 4 deals with the expected perfor-
mance of Enable++ as a data-driven trigger. The last chapter closes with an
overview over the current status of the project.

2 The Enable++-System

The general view of the whole system will be a standard workstation which
is connected to the Enable++ hardware. All hardware parts are contained in
one (or up to three) 9HU sized VME crates. The workstation will remain
in any respect an ordinary `working environment', enhanced with additional

1Built at Lehrstuhl f�ur Informatik V, Universit�at Mannheim [NZK+93].
2DecPeRLe-1 was developed by the Paris Research Laboratory (PRL), a research labora-

tory of Digital Equipment (DEC) [BRV93].

2

capabilities by the fact that it is connected to a powerful FPGA processor. For
this purpose one can use either a standalone model or a VMEbus based plug-in
board. The physical connection depends on the type of frontend: If a VMEbus
type workstation is used, one has the advantage of connecting both by a high
bandwidth system bus (e.g. SBus) and/or by a serial bus which is part of the
systems service network and is realized by a transputer link. Using a standalone
workstation one is restricted to use only the serial bus because of the distance
between both systems. Both buses o�er the same functionality, which means
that both have the ability to access all system resources.

After connecting the frontend workstation to Enable++, the user will concen-
trate on writing applications. For this purpose he will deal with the Enable++
Development Environment (EDE) which o�ers all the functionality for breaking
down a high-level speci�cation of a new application to an Enable++ con�gura-
tion. The user can choose among di�erent functions as there are compiling of a
system description, hardware source level debugging and simulation. EDE o�ers
with spC its own brand of hardware description language. It is derived from
both C and Hardware-C and
avoured with additional constructs for describing
systolic data processing. spC is the attempt to realize a hardware description
language which is intermediary with respect to abstraction level and hardware
control. Because EDE is planned to �t tightly in a UNIX environment, the user
will have in addition dozens of useful and well established tools for free.

After outlining the main `look-and-feel' of the whole Enable++ system, this
section will proceed with a closer look at the hardware components of Enable++.
As depicted in �gure 1 there are three di�erent types of components:

� Computing Array Boards (CA)

� I/O Boards (I/O)

� an active Backplane (AB)

Computing power is mainly located on the Computing Array Boards. On
each board a matrix of FPGAs is connected with high-speed RAM and a net-
work of I-Cube3 crossbar-switches (FPIDs) building an extremely high-powered
computing core which can be adapted to a broad range of di�erent topologies.

The I/O Boards deal with incoming and outgoing data from di�erent sources
and sinks (SBus4, FibreChannel5, HIPPI6, SCI7, etc.) and may use di�erent
types of receivers and transmitters. A single board uses four di�erent ports for

3Field Programmable Interconnect Devices (FPIDs). We use the IQ240, which o�ers 240

connectable I/O pins.
4SUN System I/O Expansion Bus
5FibreChannel is a high-speed optical connection, 1062 MBd
6High Performance Parallel Interface with 100 MByte/s data rate.
7Scalabel Coherent Interface

3

V M
E-Slo

t

V M
E-Slo

t

LCM

C
o

n
fig

u
ra

b
le

 T-Sw
itc

h
 Slo

t

C
o

n
fig

u
ra

b
le

 T-Sw
itc

h
 Slo

t

C
o

n
fig

u
ra

b
le

 T-Sw
itc

h
 Slo

t

��
��

�

Computing

Array Board

FPGA

Arra
y

Figure 1: Enable++ system overview

data transmitters or receivers. By the use of FPIDs another convenient usage
of this board is that of a router. Source and destination of all four ports can be
other ports or the active backplane.

The concept of an active backplane was realized after investigating general-
ized backplane concepts. The backplane now constitutes a �eld programmable
module in the same way as the other two components. It connects I/O boards
and CA boards and is mainly responsible for high-speed data transfer between
them. Its open interconnection scheme has the ability to implement a variety
of communication models in multiprocessing applications. A possible protocol
could be token-ring based with a raw bandwidth of 3.2 GByte/s.

Furthermore both CA and I/O boards are supplied with a novel bus inter-
face architecture based on FPGAs and local accessible dual-ported RAM. This
interface is capable of doing high-speed pre- and postprocessing of data
owing
to and from the board (e.g. formatting) and of synchronizing the data
ow
between the on-board logic and the backplane.

For the purpose of system maintenance we introduced the concept of Lo-
cal Control Modules (LCMs) which are connected via an autonomous service
network. All of the modules introduced above contain a LCM module which
serves for standalone board level test, board initialization, board monitoring
and debugging support.

2.1 Computing Array Boards

The main functional parts of the Computing Array Board (CA) are the FPGA
array and the bus interface. In terms of absolute FPGA resources each CAB
has a complexity of approx. 288,000 gates (using the Xilinx �gures for sixteen

4

XC4013- and eight XC4010-type FPGAs). The FPGA array consists of 4�4
XC4013-type FPGAs which are connected as shown in the left part of �gure 2
(for the sake of clarity we omitted the connections to the lower half of the bus
interface).

Matrix FPGA Xilinx XC40xxI−Cube Crossbar Switch Dual ported RAM

128KByte static
memory

Dual I/O FPGAs

 (16 x XC4013, 8 x IQ240)
Bus interface
(8 x XC4010)

Computing Array

Figure 2: Major building blocks of a Computing Array Board.

Besides nearest neighbour connections, FPGAs are connected through I-
Cube crossbars so that di�erent global topologies can be achieved via con�gu-
ration. Possible topologies are for example linear arrays, rings, cubes and hyper-
cubes (see �gure 3). This highly regular connection scheme allows for very fast
and broad pipelined
ows of data as needed with systolic algorithms. We believe
that with this architecture high utilization is achievable for many regular sys-
tolic designs and that even random logic can be mapped on this topology with
acceptable losses. In comparison with Enable-1 we have nearly the same count
of con�gurable logic blocks (CLBs) due to less but higher integrated FPGAs.
By the new design we end up with improved routing possibilities, higher I/O
bandwidth and extended interconnect possibilities.

In addition there will be 96 high-speed 128 kByte synchronous SRAM chips
on board. This is in total 12 MByte of extremely fast local RAM. These
RAMs are located at the direct interconnections between neighbouring FPGAs
as shown in the right part of �gure 2. A scheme like that is suitable for pipelined
lookup tables (FPGA1-RAM-FPGA2) with up to 17 input bits and 16 output
bits and general read/write RAM. In both cases these RAMs have no wait state
and one clock cycle latency at 50 MHz system clock. The total throughput is
thus 4.8 GBytes/s.

5

Broadcast

Hypercube

Connection

Cube

FPGA

Mesh/TorusChain/Ring

FPGA

Connection

Figure 3: Examples of possible con�gurations.

The computing array is connected via the crossbars to a bus interface (shown
in the middle part of �gure 2), comprising eight XC4010-type FPGAs and fast
dual-ported RAMs. This circuit decouples the synchronously operating array
from asynchronous bus protocols on the backplane and bu�ers incoming or
outgoing data. Connection to the backplane is done by eight 40-bit buses (32
bit plus 8 bit control) which can be operated synchronously up to the full clock
speed of 50 MHz. This equals a data rate of 1.6GByte/s.

2.2 Enable++ I/O subsystems

The Enable++ I/O subsystems connects the computing core of Enable++ to
its real-world environment via high-speed datapaths. It is scalable to achieve
an overall data throughput capability equivalent to the installed computing
power. To provide a maximum
exibility in connecting to external data sources
or destinations a modular design of the I/O boards was selected. Every I/O
motherboard can carry up to four I/O daughterboards, each one implementing
a speci�c transmission protocol and media access. The LCM module described
in section 2.4 can be used as a �fth virtual I/O port in addition to its primary
functions. Together with the four bu�ered ports connecting to the backplane
bus, there is a total of 9 data channels on one I/O motherboard. Every channel
can be arbitrarily con�gured as input or output. Programmable logic (FPGAs
and FPIDs) serves for routing and preprocessing of the data. All 9 data channels
can deliberately be connected to any one or more of the other channels.

With these features the I/O system is well suited to perform complex rout-

6

ing operations which go far beyond a trivial point-to-point connection. Possible
operations are interleaving of two external channels to one of the backplane's
subbuses, replication of incoming or outgoing data, even format or protocol
conversion can be done. The on-board bandwidth for every one of the 9 chan-
nels is 50 MHz by 32 bits (200 MByte/s). Although the 4 backplane ports
can keep up with this speed, this value is obviously limited in the case of the
outbound channels by the properties of the speci�c I/O daughterboard. I/O
daughterboards to be manufactured in the nearest future will connect to the
HIPPI channel and to the SBus of SUN-type workstations. There are also plans
for ATM8 and FibreChannel interfaces. For special purposes there will also be
a module providing several Megabytes (approx. 32 : : :128) of bu�er memory
with a bandwidth of 200 Mbyte/s in block access mode.

2.3 Backplane

Handling as high data rates as done by Enable++ is viable only with a spe-
cial kind of bus system. Since Enable++ is intended to be a multiprocessing
system care must be taken to avoid any kind of bottleneck. For this reason a
con�gurable active backplane bus is integral part of the system. It will have
a multiple-T topology where at every slot the same kind of router circuit will
bu�er, split, bridge and route signals coming from neighbouring slots. Thus
static and dynamic recon�guration of the system is possible. It furthermore
enhances overall data rates since an active routing scheme makes it feasible to
use wider buses on the backplane than on the Computing Array Boards and
have other than nearest-neighbour connections. Every slot is splitted horizon-
tally into eight 40 bit wide subbuses, each having 32 bit of data and 8 bits
for control. With this architecture it is straightforward to implement systolic
datapaths with the full system speed of 8� 200 MByte/s data-rate in total.

2.4 Enable++ Local Control

One important feature of the Enable++ system is the implementation of a uni-
form local control module (LCM) on each of its module boards. The main
elements of this LCM are a T425 transputer with 4 to 32 MByte dynamic RAM
and 4 transputer links plus an XC4005-type FPGA. Mechanically the LCM is
a piggy-back daughterboard to be plugged onto the speci�c Enable++ mother-
board: Computing Array, Backplane or I/O board respectively. An additional
LCM may be used in conjunction with a special interface board in the host
computer, if needed. Each LCM can be connected via its transputer links to up
to 4 other LCM modules or other link interfaces. Typically all LCM modules
in the system form a daisy-chain by connecting via two links each to its left
and right neighbour. At least one link connects from the daisy-chain to the

8ATM is a network protocol used in high-speed serial connections (155 MBd, 622 MBd

available)

7

host computer. Through the FPGA the transputer gains access to all hardware
resources of the motherboard it is controlling. Additionally the FPGA has the
capability to interrupt the transputer on an internal event or on request from
the motherboard, and to perform direct-memory-access to the dynamic RAM.

The tasks of the LCM are

� standalone board level test

� board initialization

� board monitoring

� debugging support

2.4.1 Standalone board level test

In this basic mode the LCM is connected to a host computer via one of its links.
The transputer performs JTAG/boundary-scan compliant board level testing
plus special test algorithms, if necessary. Our goal is to achieve 100% test of all
connections and functions of the motherboard.

2.4.2 System initialization

The host computer transfers all con�guration data to the LCM module which
�rst stores it in its internal memory. For a full-scale Enable++ CA board this
will take about 1.5 Mbyte of memory. Depending on the memory resources on
the LCM, alternate con�guration data sets may be transmitted subsequently
to provide means for dynamic con�guration changes. The LCM transputer
performs con�guration of the motherboard by selecting any group of up to 32
con�gurable logic chips and transferring the data either under program control
or via direct-memory-access. Typical con�guration or recon�guration times will
be less than 50 ms for a full-scale Enable++ CA board. With a large memory

to store di�erent con�guration data sets the LCM may perform complete or
partial dynamic recon�gurations of the motherboard, either on demand by the
host computer or after an interrupt generated by the motherboard. Algorithms
may take advantage of this self-modifying-hardware capability.

2.4.3 Board monitoring

The FPGA chip on the LCM can be connected to some user de�ned status lines
on the motherboard. Application speci�c designs can be developed for the LCM
to trigger on certain conditions on these status lines. Various timers, counters
or logical equation checks may be implemented. As the transputer is not fast
enough to keep up with the speed of the motherboard, the FPGA brings the
real-time capability to the LCM module.

8

Any kind of error handling and logging procedures can be run on the trans-
puter. Samples of data can be taken for online monitoring, either small data
sets at full speed or arbitrary data sets with a reduced speed. Thus data can
be transferred to the host computer via the transputer link without interfering
with the main datapath on the backplane bus.

2.4.4 Debugging support

Support for debugging relies on several properties of the components used on
all boards or modules and on special features of the LCM:

� The clock system of each motherboard can be controlled by the LCM

� All FPGA and FPID components support full JTAG boundary scan ca-
pability

� All FPGA components support a non-destructive readback capability of
all internal states and memory locations/registers

� Each motherboard provides a set of programmable status lines

� Each LCM runs a special debug task communicating with the Enable++
system debugger

� High-speed trigger conditions on the motherboard can be handled by the
LCM

� All LCM modules form a link-based network independent from the main
datapath.

The LCM performs the mapping of source level node names to local hardware
resources with the help of the debugging database (see chapter 3). The average
access time from the LCM to any given resource on its motherboard varies with
the location of that resource (memory, I/O bu�er, FPGA internal register) but

will not exceed a few milliseconds - fast enough for interactive debugging. As
the data
ow between the host computer and the LCM modules consists mainly
in control information the speed of 20 MBd on the link network will be fairly
su�ccent.

Debugging of the Enable++ system can be performed not only board-by-
board but on system level and with the comfort of a high-level debugging tool.
The LCM assists the main debugging task running on the host computer by
virtualizing the hardware on the Enable++ board components.

9

3 The Design Environment

One major criterion in the design of the Enable++ machine is the underlying
general hardware architecture which allows a broad range of applications in
di�erent �elds such as pattern recognition, number crunching, fast networking
and logic simulation. Because the system's con�guration space is enormous, it is
most important to supply the Enable++ hardware environment with powerful
tools for designing and debugging new applications. Our goal is to establish
a toolset which shifts the design process for hardware as far as possible to a
standard which has been well established for years in software design.

The EDE (Enable++ Development Environment) we are currently building
is designed with the following principles in mind:

� The procedure of building an application for Enable++ should be very
similar to building an ordinary software application.

� The operation of Enable++ is tightly bound into a program running on
the host workstation. Both host and Enable++ functionality is speci�ed
in one common set of source �les.

� A source level debugger allows comfortable testing and debugging of En-
able++ applications while the hardware is actually operating.

� A simulation tool provides the possibility to test Enable++ algorithms
completely prior to any hardware implementation.

3.1 Overall structure of the design environment

The usefulness of a large FPGA processor like Enable++ depends heavily on
how easily the system can be used and adapted to new applications. In an
extreme scenario a human operator would solely write ordinary software without
being aware of using application speci�c recon�gurable logic. An intelligent
design system would decompose the software speci�cation and automatically
map parts of the software to hardware. With Enable++ we will provide a design
environment which o�ers an intermediate solution to the design problem which
is much more useful in application design than the above `radical' solution: Both
hardware and software is explicitely speci�ed in one common set of source �les.
In case of the software part on the host computer the language is C, in case
of the hardware part it is spC (systolic parallel C, a derivative of both C and
Hardware-C), which is designed for describing systolic and parallel logic systems.

10

Common specification of host (C)
and Enable++ (spC) functionality.

C

spC Enable++ Development Environment (EDE)

Enable++ access library

System bus (SBus)
Memory mapped device driver

SimulatorDebugger spC compiler C compiler

spcc spcsimspcdebug gcc a.out

I/O Board

Matrix Matrix Matrix

Service network

Backplane

Highspeed backplane

Host−part of application
code

Host system (sun−4 architecture)

Enable++ system

Transputer−Link

LCM LCM LCM LCM

LCM

Figure 4: Overview of Enable++ Development Environment EDE.

As shown in �gure 4, the EDE consists mainly of four di�erent tools. The
spC compiler spcc, the host C compiler gcc, the hardware debugger spcdebug
and the hardware simulator spcsim. The principal processing of the two paths
(host software/Enable++ hardware) of an application program is done by the
compilers gcc and spcc.

The paradigm shift of specifying hardware by software makes well established
rules in traditional software design applicable in hardware design. One of the
most important rules states that a programming system is only as useful as its
debugging facilities. We adopted this rule and plan the source level debugger
spcdebug to have complete control of the hardware design in the debugging
phase similar to the debugging capabilities of C source level debuggers (gdb,
ups) in traditional software design. For this purpose spcdebugmakes use of the
LCM service network to access Enable++ hardware.

With the simulator spcsim we want to enhance the development environ-

11

ment with a tool to verify the behavior of algorithms prior to any mapping in
Enable++ hardware.

Figure 4 also shows the approach we chose in communicating between host
and FPGA processor. There are in principle two possibilities for connecting a
host workstation to the hardware. First, if the host computer is a standalone
workstation, then the connection is established via a Transputer Link to the
Service Network. Second, a VMEbus based host machine can be plugged into
the Enable++ crate with either Link or SBus connection or both to an I/O

board. A layered communication software provides an abstract and structured
way of accessing and exchanging data between both entities. The access point
for services like EDE and application programs is the Enable++ access library.
The low-level device driver and physical I/O are in this way hidden from the
application programmer.

3.2 The development cycle

As shown in �gures 4 and 5, a mixed description consisting of C and spC code
is the starting point for a new design. A preprocessor handles the separation in
C and spC code.

C path: The C code output by the preprocessor constitutes the host computer
part of the application program. For accessing the FPGA processor the code
has furthermode to be linked with the Enable++ access library.

spC path: The spC code is processed with the spcc compiler which uses a
con�guration �le for controlling various task speci�c hardware parameters (e.g.
con�guration of the FPIDs). spcc outputs code for three di�erent purposes:

a) VHDL code for specifying the functionality of the FPGAs.

spcc converts the spC description to VHDL code. We chose this format
because of the recent availability of commercial CAD tool which map
VHDL code to di�erent FPGA technologies, e.g., Synopsys and Asyl+.
With one of these tools the VHDL code is further processed to Xilinx
con�gurations (LCA �les).

b) A simulator database which can be \executed" with the simulator kernel
spcsim. The simulator database contains data structures which are built
during compilation with spcc.

c) A debugger database which allows source level debugging of the Enable++
hardware with spcdebug (see also section 2.4.4). For source level debug-
ging it is essential, that the elements of the synthesized logic are mapped
to corresponding code fragments of the initial spC description.

Relevant parts of the debug database are distributed across the LCM net-
work. The debugger task on each LCM module transparently performs the

12

gcc

Preprocessor

Hardware
configuration

(.cfg)(.xc)

C/spCCommon specification of host
and FPGA processor

spcc

Enable++

spcsim

database
simulator

Simulator

VHDL

(.lca)

VHDL to LCA

FPGA configuration

spcdebug

debugger
database

DebuggingHost−Software

Host
software

a.out

Enable++ access
library

gcc

a.out

C path spC path

(.c)

(.spc)
code

Figure 5: Design paths for building Enable++ applications.

accesses to the hardware ressources, setting and checking of breakpoints and
inspecting/modifying of variable registers.

4 Performance

After description of hardware and software we will now discuss the performance
of Enable++ as a part of the L2 trigger. This discussion is based on a set of
L2 benchmark algorithms de�ned in [BHL94]. All benchmark algorithms are
de�ned as C programs representing the actual physics and detector assump-
tions and are believed to be representative for algorithms being implemented in
ATLAS. The strict speci�cation of all algorithms details including input data
formats allows a performance comparison of di�erent architectures.

13

As long as the Enable++ hard- and software is not completed and direct
measurements therefore impossible the benchmark algorithms are formulated
in spC, and speed as well as resources are manually estimated. This method is
simpli�ed by the pipelined structure and the lack of data dependencies in the
algorithms. The accuracy of the performance estimation is acceptable (between
10% and 20%) as experiences with a similar method for Enable-1 have shown.

In a pure data-driven L2-trigger as well as in a hybrid system (consisting in
a data-driven feature extractor combined with a farm based global decision) the
feature extraction is the most computing intensive and therefore time critical
operation. For that reason we will focus in this chapter on the feature extraction
algorithms only: the calorimeter-, the drift time TRT-, and the Silicon Tracker
(SCT) algorithm. The principle idea of implementation combined with the
required FPGA resources is given for each feature extraction algorithm, table 1
at the end of this section summarizes the performance estimation on Enable++.
For a detailed description of the algorithms refer to [Leg94] (calorimeter, TRT)
and [KM94] (SCT).

4.1 Transition Radiation Tracker (TRT)

The trigger task of the endcap TRT is to determine the most signi�cant electron
track in the �/z projection of the detector. Particle tracks appear as straight
lines of slope d�/dz in the ROI image; the ROI dimensions are 96 planes (of
constant z) times 16 straws (along �). Electrons are identi�ed by their transition
radiation production rate along a track (corresponding to the ratio of high and
low threshold hits in the ROI).

The basic idea of the TRT algorithm consists in a Hough transform for track
recognition and an weighted maximum �nding for the electron identi�cation.
Input data arrive as a zero-suppressed list of 16 bit pixel coordinates. In the
implementation of the Hough transform this pixel list is asserted to a huge
lookup table of 64k� 256 bins where each bin corresponds to a track of a certain
slope and starting angle. After histogramming all bins for the complete list

(independently for both high and low threshold), a weighted maximum of all
histogram channels is evaluated.

pixel coordinate list

RAM

FPGA 1
16

32

Hough transform
lookup table

shift

histogram RAM

FPGA 8
16

32

Hough transform
lookup table

shift

histogram
RAM

FPGA 2
16 16

32

Hough transform
lookup table

shift

histogram

. . .

. . .

Figure 6: Implementation of the TRT algorithm.

To implement the TRT algorithm on Enable++ the coordinate list is fed into
a pipeline of FPGAs and accompanied RAMs as shown in �gure 6. Each stage

14

of the pipline contains a part of the full Hough transform lookup table (imple-
mented in the RAM) and the corresponding histograms channels (implemented
in the FPGA). Note that the time to build the Hough space is equal to the time
required for the I/O of the coordinate list (exept a minor latency of 0.2 �s).

The whole algorithm (Hough space histogram building as well as evaluation)
can be performed within 9�s. In term of logical resources per FPGA it consumes
55% for the 64 9 bit histogram counters, 2% for the evaluation pipeline and about
10% for control and datapath logic, leaving 1/3 of the FPGA unused. Because
the algorithm only uses one half of the FPGAs and RAMs, two TRT ROIs
can be executed concurrently on a single Enable++ board. The performance
estimation for the TRT is very accurate, because the needed circuitry is very
similiar to that implemented on Enable-1.

4.2 Silicon Tracker (SCT)

Similar to the TRT algorithm a Hough transform is used to �nd tracks in the
r-�-projection of the SCT (ROI size is 4 layers of 1000 bins each). Because
both TRT and SCT use a zero suppressed pixel coordinate list as input, the
principle implementation shown in �gure 6 is used for the SCT too. The major
di�erences to the TRT are the 8 times wider (16 times less deep) Hough space
(4k� 2048 bins) and a di�erent histogram evaluation algorithm .

To save RAM resources four di�erent Hough lookup tables are implemented
into one RAM and addressed sequentially for each list entry. This leads to
a speed reduction by a factor of four that is acceptable because of the low
occupancy of the SCT (1% : : :2.5% corresponding to 40 : : :100 list entries). As
for the TRT algorithm the execution time is strongly dominated by the time to
generate the histograms. Table 1 lists the execution time for the SCT in di�erent
occupancies assuming a board frequency of 50 MHz. The logical resources used
per FPGA consists in 128 3 bit counters for the Hough histograms (consuming
40% of the logic), correlator logic for the histogram evaluation (7% FPGA logic),
and some datapath and control logic (below 15% logic).

4.3 Calorimeter algorithm

The calorimeter input data consists in 3 electromagnetic (em) and 4 hadronic(ha)
layers of size 20�20 (em) and 5�5 (ha). The features that have to be extracted
are the center of gravity of the total energy deposition, the hadronic energy
fraction and the 2nd moment for every electromagnatic layer. In contrast to
the previous algorithms this requires a huge amount of arithmetic circuitry. Be-
cause the 2nd moment depend on the center of gravity the algorithm has to be
divided into two steps. In a �rst step the input data are accepted by Enable++

and stored in a dual-port memory. During this step the center of gravity and
the hadronic fraction is calculated. The found center of gravity serves as base
pointer for the 2nd moment coe�cent tables. In the second step data of the

15

electromagnetic layers are read from the dual-port memory and the 2nd moment
calculation is performed. At the same time the 2nd moments are calculated,
the center of gravity for the next event can be evaluated.

Dual Port RAM

list of energy values
(3 em layer, 1 sum of 4 ha layer)

center of gravity

center of gravity
hadronic fraction

2nd moment
em layer 1

RAM
coeff.(1) coeff.(3)coeff.(2)

energy values of 3 em layer

2nd moment
em layer 2

RAM

2nd moment
em layer 3

RAM

Figure 7: Implementation of the calorimeter algorithm.

Both the center of gravity and the 2nd moment calculation are pipelined
and executed at the speed of the incoming data. The two parts of the algorithm
require the I/O time of 9.4 �s plus a minor latency of 0.5 �s each. Although the
latency of the calorimeter algorithm is 20 �s, the use of the dual-port memory
reduces the frequency to 10 �s. The logic resources used for this algorithm
consist of four Computing Array FPGAs, which allows the concurrent execution
of four ROIs (�gure 7).

4.4 Benchmark results

The benchmark results listed in table 1 show that Enable++ is able to handle
the high event rate of 100 kHz expected for LHC. Because for some algorithms
(TRT and Calorimeter) several ROIs can be executed in parallel on a single
FPGA board a rather compact system consisting of two or three crates for the
full feature extraction can be designed. Note that the execution time estimations
always include the I/O time.

algorithm Calorimeter TRT SCT (2.5%) SCT (1.0%)

execution time te [�s] 10 9 8.5 4
nROI

9 4 2 1 1
te / nROI [�s] 2.5 4.5 8.5 4
<speedup>10 430 180 580 600

Table 1: L2 trigger benchmark results for Enable++

9Number of ROIs implemented on Enable
10Mean speedup is the ratio of the mean execution time on three modern RISC processors

(Alpha, PowerPC and Sparc10) reported in [1] and on one Enable++ board (considering the

16

5 Conclusions and Status

The Enable-1 machine and DecPeRLe-1 have proved that FPGA processors are
well suited for the high-speed processing required for a data-driven 2nd level trig-
ger in ATLAS. Nevertheless the second generation FPGA processor Enable++
o�ers several substantial improvement on its predecessors.

� A new feature of Enable++ is the
exible processor topology provided by
a computing array con�gurable by �eld programmable crossbar switches.
In combination with the state-of-the-art FPGA resources and 12 MByte
distributed RAM, Enable++ o�ers strongly enhanced computing power.

� To meet the requirements of di�erent types of subdetectors a major part of
Enable++ focuses on a
exible and extremely powerful I/O system. The
division of the system in Computing Array Boards and I/O Boards con-
nected by a programmable FPGA bus provides a high degree of scaleabil-
ity.

� For building new applications the Enable++ Development Environment
EDE has been planned and up to now partly realized which consists in
the �nal version of the following tools: A compiler for the high-level hard-
ware description language spC, a simulator and a source level debugger
for hardware designs.

Once realized this concept will be an extreme improvement in our FPGA-
design capabilities, since it breaks up the design process in small steps which are
well de�ned and independent. This gives programmers freedom in developing
complex applications because they can work most of the time on an abstract
level without thinking about all pitfalls of hardware design. Debugging of logical
errors and �rst tests can be done with spC and VHDL code while optimisation
and hardware debugging are done afterwards. Very fast designs can be im-
plemented using the low-level tools if appropriate. Hardware debugging and
system monitoring allows veri�cation of designs for real-time data and real sys-
tem environments. Together with its inherent scalability Enable++ will be a
very powerful, universal and user-friendly FPGA processor system.

All type of boards are under construction and will be operating in a pro-
totype version until summer/fall 1995. An �-release of the spC compiler is
already available now and for 9/1995 we scheduled the release of an �-version
of the EDE. A full featured stable version of the EDE with complete debugger
and simulator support is expected to be available at 6/1996. Thus we are able
to take part in the common ATLAS run in fall 1995.

number of ROIs processed in parallel). Note that only for Enable++ the time required for

I/O is considered.

17

References

[BBB+93] J. Badier, R.K. Bock, Ph. Busson, S. Centro, C. Charlot, E.W.
Davis, E. Denes, A. Ghorghe, F. Klefenz, W. Krischer, I. Legrand,
W. Lourens, P. Malecki, R. M�anner, Z. Natkaniec, P. Ni, K.-H.
No�z, G. Odor, D. Pascoli, R. Zoz, A. Sobala, A. Taal, N. Tchamov,
A. Thielmann, J. Vermeulen, and G. Vesztergombi. Evaluating Par-
allel Architectures for two Real-Time Application with 100KHz Rep-
etition Rate. IEEE Tr. Nucl. Sci., 40(1):45{55, 1993.

[BBB+94] D. Belosloudtsev, P. Bertin, R.K. Bock, P. Boucard, V. D�orsing,
P. Kammel, S. Khabarov, F. Klefenz, W. Krischer, A. Kugel,
L. Lundheim, R. M�anner, L. Moll, K.-H. No�z, A. Reinsch,
M. Shand, J. Vuillemin, and R Zoz. Programmable Active Mem-
ories in real-time tasks: implementing data-driven triggers for LHC
experiments. EAST note 94-27, subm. to Nucl.Inst.Meth.A, 1994.

[BHL94] R.K. Bock, R. Hauser, and I. Legrand. Algorithms in econd-level
triggers for ATLAS and benchmark results. ATLAS DAQ note 94-
27, EAST note 94-37, 1994.

[BRV93] P. Bertin, D. Rincin, and J. Vuillemin. Programmable Active Mem-
ories: A Performance Assessment. Technical report, Digital Equip-
ment Corporation. Paris Research Laboratory, 1993.

[KM94] W. Krischer and L. Moll. Implementation of a pattern recognition
algorithm for the Si tracker on DecPeRLe-1. EAST note 94-21, 1994.

[Leg94] I. Legrand. Data collection and preprocessing for the ATLAS second-
level trigger. EAST note 94-30, 1994.

[NZK+93] K.-H. No�z, R. Zoz, A. Kugel, F. Klefenz, and R. M�anner. Results
of On-Line Tests of the ENABLE Prototype, a 2nd Level Trigger
Processor for the TRD of ATLAS/LHC. 1993.

18

