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1. Electrostatics of perfect and of imperfect drift tubes

If a 'proportional tube' is used for a coordinate measurement by recording the drift time of
ionization electrons to the wire, one has a 'drift tube’. Whether the signal at the wire is created
by a proportional avalanche — as the original name suggests — or by a self-quenching
streamer, the drift velocity and the electric field between the two conductors must be very
well known if one wants to exploit the intrinsic accuracy of this device.

Deviations from the ideal geometry of two concentric circular cylinders are caused by
displaced wires or deformed walls. In this section we discuss the electric field arising in an
eliptical right cylinder and in a hexagonal right cylinder with the wire in the centre, and the
field arising in a circular right cylinder with the wire off-centre. Since we are dealing with
relatively small deviations our method is a perturbation calculation in the first order of the li-
near deviation.

A general method of determining the solution of Laplace's equation

Vid=0 (1.1)

for the potential ® in the charge-free space between two conductors is found in my old col-
lege book [1]. After separating variables by writing

D(r, ¢, z) =R(r) §(9) Z(2) , (1.2)

we have in cylindrical coordinates

La(aR)+ 1 3% 192 _

rR ar\ or 24 5 2 fazz 0
a9 (1.3)
Assuming Z(z) = const = 1, the second term is equated to the constant -v2 so that
2
d’¢ 2
_3 = -V ¢
do (1.4)

whose solutions are



o(p) = Co' cos v + Cg" sin v@ ifv20 (1.5)
or

0(@)=Cq @ + Co' ifv =0. (L6)

The radial part becomes the Euler-Cauchy equation

2
ri(rg—R—)-v R=0
“dr\ dr ) (1.8)

If v = 0, the solution is given by

Rr) =C/ Inr + G . (1.9)

1.1 Perfect drift tube

The potential between two coaxial cylinders is a straight application of (1.9). When the outer
cylinder (radius b) is on ground and the wire (radius a) on positive potential U, one deter-
mines the coefficients to be givenby C¢'=0,C"=-C/'Inb and C,Cy" In (a/b) = U so that

¢ =
In(a/b) \b (1.10)
The electric field is directed radially outwards, and

p-_9%__U1
r ar " In(b/a) r

(1.11)
Another way to calculate E; is using Gauss' theorem according to which
E, = lr
2neg, (1.12)

where A is the linear charge density on the wire; the value of €9 is 8.856 x 10-12 As/Vm.
Therefore, the capacitance per unit length of tube is given by



(1.13)

1.2 Displaced wire
1.2.1 Solution of the electrostatic problem

Let the wire be displaced from the tube centre by the distance d in the negative y-direction
(Fig. 1.1). The wire defines the centre of the coordinate system so that the first boundary con-
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2b Fig. 1.1. Geometry of displaced wire
dition is
®@) = U independent of @ (1.14)

We must express the second boundary by the radius vector as a function of @. The
exact expression is

p = clsinq>+b‘\[l -(dz/bz)(l -SiDZ(P} , (1.15)

but we are only interested in small wire displacements. To first order in d/b we have the
boundary at



p =b+dsing, (1.16)
and the second boundary condition is
®(p)=0. (1.17)

Now we must determine the various coefficients using (1.14) and (1.17). To the first order in
d/b, we have solutions for v =0 and v = 1, and the most general solution is

® = (CoInr +COC™ + (Cl'r + G/ 1) (Copl'cos ¢ + Col" sin @) (1.18)

Inserting (1.14), we have to require

Cil'a+ CGl"/a) =0 (1.19)
which implies that C,!" can be neglected against C;!' for the entire space except in the imme-
diate vicinity of the wire surface.

When inserting (1.17) and (1.16) into (1.18), we make use of the relation

In(b+dsin@) = Inb + (d/b) sin @,

which holds to first order in d/b. This determines the constants C,%', C,0" and Cg%" as in the
case (1.10) of the perfect tube. Comparing factors that multiply the sin @ terms, we find

Cq®" CO" (d/b) + Cil'bCyl” =0

or
l' ln - __d__ U
GG =3 In(a/b;
b (1.20)
whereas Co!' = 0. This produces the solution, in first order of d/b equal to
U r U dr .
(@) = In (a/b) In (E) “ In(@ab)b b sine (1.21)

The perturbing potential &) caused by the wire displacement is given by the second
term. Using y = r sin @, the field perturbation is calculated to be



od
(El)y =T ay1 = _ln(lt;lla)f'i
(E])x = (El)z =0 (1.22)

It describes a constant field directed towards negative y, whose magnitude is (d/b) times the
value of the unperturbed field (1.11) at the wall.

For the use in Sect. 1.2.3 we also record the value of (E;)y on the wire surface (r = a).
Starting from (1.19) without the previous simplification C,!" = 0, the correct perturbation po-
tential is

2
U d a’y| .
d>1(a) = m —b—2 (I’——r') sme = 0
; (1.23)
the field in y-direction equals
E od,
( 1 (ajy = ——5—)7— (evaluatedatr=a)
=Y A sin’
EETYC e R
Averaging over ¢ we have an average extra field on the wire surface equal to
U d
<E1@)y =~ 2
b (1.24)

The average field on the wire surface is as large as the field perturbation (1.22) throughout the
volume.

1.2.2 Gravitational sag

The main reason for wire displacement is the weight of the wire. Even when strung with a
pulling force T close to the breaking limit, wires in several metre long tubes will experience a
gravitational sag that is large in comparison with the achievable accuracy of drift tubes.

In order to derive a formula for the amount of the bowing we introduce the coordinates

y (downwards) and x (horizontal). We note that on every length element dx the weight of the
wire is



pgQdx (1.25)

(p = density, Q = cross-sectional area of the wire, g = 981 cm/s2). It must be compensated by
the vertical component of the tension at this point, which is equal to the difference of the
slopes at the two ends of the interval dx, multiplied by the pulling force T:

-Tly' (x+dx) -y (x)] (1.26)
where the primes denote the first derivative. In this approximation we have assumed that the

pulling force is the same for all x, the variation due to the weight of the wire being negligible
for practical tubes.

Combining (1.23) and (1.24), one has the differential equation
-y'=C=pgQ/T (1.27)
with the solution

y=-(C2)x2 + C;x + Cy, (1.28)

Specifying that y = 0 at x = * L/2 determines the coefficients C;, C;, and the solution be-
comes

ol
214 (1.29)

The point of the maximum excursion is the sagitta, equal to

2 2
a _CL” _pgQL
s=y0 === =797 . (1.30)

The ratio T/Q is limited by the material properties of the wire. For example, a 1 m

long copper-beryllium wire strung at 500 N/mm2 — roughly 50% of the elastic limit of the
hard alloy — will sag by 22 pm.

1.2.3 Electrostatic force on the sagged wire

The displacement of the wire creates an average field (1.24) which acts on the electric charge
of the wire and produces a force which tends to increase the displacement.



The differential equation (1.27) needs to be complemented by a term which represents
the electrostatic force per unit wire length. This is given by the product

A <(Ey(@)y>,

where A is given by (1.12) in terms of the unperturbed field, and < (E; (a))y > is given by
(1.24) and is proportional to the displacement y. The electrostatic force, like gravity, points
downwards and leads to a positive term on the right-hand side of (1.27), whereas y" < 0.
Therefore, the differential equation is

y'+ky+C=0 (1.31)

with C = pgQ/T and k2 = 2meg Eg2(b)/ T. The value of k is plotted against Eq(b) and T
in Fig. 1.2.
The general solution of (1.31) is

y = Cjcoskx +Cysinkx - C/k? (1.32)

When specifying y(£L/2) = 0, the coefficients C;, C; are determined, and the solution be-
comes

C 1

Y =17 |cos D) coskx -1

(1.33)
The electrostatic force has changed the form of the wire from the parabola (1.29) to the cosine

function (1.33).
The new sagitta is

—yoy =S| L ___
s = y(0) = 2 (cos (kL72) 1) (1.34)

This means the electrostatic force has increased the sagitta (1.30) by the factor

2 s
s k2L2 cos (kL/2) (1.35)
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Fig. 1.2, Value of the constant k in (1.31), relevant for the electrostatic amplification of the

gravitational sag, as a function of the electric field Ey(b) at the tube wall, for various
wire pulling forces T

10

1

lnstabilityT
|

0 1 2 3
kL

Fig. 1.3. Electrostatic amplification factor of the gravitational sag, as a function of kL,
according to (1.35)



As the product kL approaches the value of &, the excursion tends to infinity, and the wire is
no longer in a stable position. For example, the gravitational sag of a wire strung with one N
inside a 4 m long tube will be amplified by a factor sy/s of 1.8 if the field at the wall is Eo(b)
= 500 V/cm, and the point of instability is reached at Eg(b) = 750 V/cm. In Fig. 1.3 we plot
sy/s as a function of kL.

1.3 Elliptical wall

Let the wire (radius a) be in the centre of the ellipse with half-axes b in x-direction and c
along y. Defining a mean wall radius R

R=(b+)/2 (1.36)
and the shape parameter If] << 1,
B=®-R/R (1.37)
the tube wall is given to first order in B by the length p of the radius vector as a function of ¢:
p =R +Pcos29). (1.38)
(Previously R was used (1.2) to mean a potential function.)
Referring to (1.5) and (1.6), we have solutions for v = 0 and v = 2; the most general
solution is
® = (COInr+COCe® + (C2'12 + C2"/12) (Cp?' cos 2¢ + Co?"sin2¢)  (1.39)

The two boundary conditions are

d@=U (1.40)
and ® (p) = 0, independent of ¢ (1.41)

From (1.40) we conclude

(C2'a? + C2"/a2) = 0 (1.42)
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which implies that the term containing C;2" can be neglected against C,2' except in the imme-
diate vicinity of the wire.
When inserting (1.41) and (1.38) into (1.39) we make use of the relation

In[R(1+Bcos2¢)] = InR + Bcos 2 (1.43)

which holds to first order in f. The constants C;', C;%" and C¢%" are determined as in the case
of the perfect tube. Comparing factors that multiply the cos 2¢ terms, we find

COCe™PB + C2ZC¥R2 =0 (1.44)

and Cy2" = 0. This defines the coefficients

R (1.45)

Therefore the solution , for r2 >> a2 and to first order in P, is the following:

2
U r U r
69 = () - o ? P L6

The perturbing potential &, caused by the deformation of the tube is given by the second
term. It describes a quadrupole field: using Cartesian coordinates, x =rcos ¢ and y=rsin ¢
the perturbing field E; is given by

2 2

1§ -
<l)2 (X, y) = Bln (R/a) - 2y

R (1.47)

2x

U
‘Ezix = "Bm?

2y

U
Bay = + P iy
y In (R/a) R2 (1.48)

(Ez)z =0
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The magnitude of E; is constant around the circumference of the wall and equal to 2 times
the unperturbed field Eg at the wall, compare Fig. 1.4.

1.4 Hexagonal wall

The hexagonal wall can be described in cylindrical coordinates by the condition

b
cos (pmod 60°)

(1.49)
where b is the radius of the inscribed circle of the hexagon.
In order to apply the method outlined in the beginning of this Section 1, r(p) has to be

expressed in terms of a power series in cos v and sin v@. Here we are satisfied with the low-
est term, and the general symmetry of the problem suggests we define a p*(@) by

p*(®) = b(1+d-¢€cos6p) (1.50)
We let the two coefficients 8 and € be determined by a principle of least squares:

2 % 2
X = [p(¢)— p*(cpi dp = minimum
i (1.51)

Inserting (1.49) and (1.50) into (1.51) and doing five integrals, one obtains

8 = 0.046 and
e = 0.056. (1.52)

There is some arbitrariness in using condition (1.51), and we imagine & and € to have some
uncertainty due to this reason. An even larger uncertainty arises from the actual form of the
'hexagon' which in one practical case is the product of a machine that folds a plastic foil. Ac-
count of these uncertainties will be taken in Sect. 3.4.3. We define the effective radius R,

R=b(1+38) =1.046Db (1.53)

Then in first order of 6, €,



12

Fig. 14. Graphical representation of the perturbing field E, inside an elliptical tube.
The area of each arrow is proportional to the magnitude |E,|

Fig. 1.5 Approximation of the hexagon by (1.54)
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p* = R(1-¢&cos 6). (1.54)

This approximation of the hexagon is illustrated in Fig. 1.5. The most general solution con-
tains the sixth power of the radius and is given by

® = (COInr+CO)Ce™ + (CS' 16 + C,5"/16) (Cob cos 6 + Cyb" cos 6¢)

The two boundary conditions are
d@@) = U (1.56)

D(p*) = 0 (1.57)

Going through the same steps as before yields

6

- - U In__U_[c
® =Pt P = m@R) ln(R) In @R) © (R) cos 6o (1.58)
The potential @ describes the difference of the field configurations of the hexagonal

and the circular cylindrical tubes. The field Eg has the following radial and tangential compo-
nents:

s U  6e ()
Ede=-3r "m@R R (E) cos 6¢ (1.59)

_10® U 6e (r) .
(Es)q = T 30 " m@R) R (ﬁ) sin 6o

(1.60)

We note that the magnitude of this high-multipole field is independent of ¢; in comparison
with the field at the wall of the perfect tube, it is smaller by the factor

‘J;:OL((I% ) 68‘-1;—’5 (1.61)

As one goes around, varying ¢ at constant r, the field E¢ changes its direction and goes
through six full revolutions as the wire is surrounded once (Figs. 1.6, 1.7).



Fig. 1.6. Graphical representation of the perturbing field E¢ inside a hexagonal tube. The area

of each arrow is proportional to the magnitude |Eg|

IEg) / IERR)!

0.2+

01}
l

05
r/R

Fig. 1.7. Magnitude of the field E¢ in units of the magnitude of the unperturbed field Ey(R) at
the wall of the perfectcylinder, as a function of the relative radius r/R, according to (1.61)
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2. Choice of the gas and of the drift field under practical conditions
2.1 Parametrization of the drift velocity

Being proportional to 1/r, the drift field E in a tube is quite inhomogeneous, and for the drift
behaviour of the gas in the tube we must consider the variation of the drift velocity u with E.
Drift gases exhibit a broad variety of behaviours, and in the end a given gas must be studied
on the basis of its measured function u(E).

In order to obtain an overview about possible choices of a gas in the region of low
values of E, we describe a typical u(E) by two parameters as rising from zero with mobility y,
then remaining constant at ug.

RLE E<Ey
u(E) = : 2.1
up E>Ep

The field Eq is given by L Eg = ug. Let Eg be reached at radius rq. The field E; at the wall is
related to rg by

ro=pEpb/ug 2.2)

where b is the inner tube radius. The variation of u inside the tube is shown in Fig. 2.1.

2.2 Drift space—time relation

The drift ime from any point r to the origin is

i 4
Idr _r
u Ug
0 0 (r<rg)

T(r) = (2.3)

\ (r2ro)
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1 1
b fo B
r E
Drift velocity plotted against the electric field E and against the tube radius r,
according to the parametrisation (2.1)
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Fig.2.2. Drift space-time relation according to 2.3)
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Fig.2.3. Maximum drift, expressed in units of b/ug, as a function of the p-parameter,

according to (2.4)
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It begins with a part linear in r and continues with a quadratic ierm, see Fig. 2.2. The maxi-
mum drift time T(b) depends on the ratio p =r1¢/ b; for the case that is of practical importance
(rp £ b), it takes the form

2
TR) = 2+ =2 b(p+1)

Zug " 2ury  Uo|2 2

(2.4)

This function is depicted in Fig. 2.3. We observe T(b) to remain almost constant as p is de-
creased from 1 to 0.5, but it quickly rises as p is decreased further. For example, T(b) = 2.1
b/ug atp =0.25.

A small value of p =rg / b also leads to the unfavourable situation that the drift veloc-
ity at the wall of the tube is smaller than it is near the wire by the factor

Upmnin

E::
oS

(2.5)

2.3 Influence of a magnetic field parallel to the wire on the electron drift

With a magnetic field B parallel to the wire, the electrons do not travel on radial approach
lines towards the wire, but under an angle y which is roughly given by

tany = @1 (2.6)
where ® = e/m B is the electron cyclotron frequency and T is the mean time between colli-

sions of the electrons with the gas molecules. To a good approximation Wt can be calculated
using the electron mobility

(2.8)
which results in

ot = uB. (2.9)
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The change in the drift direction makes the electron approach the wire on a curve
which is illustrated for three different constant values of wt in Fig. 2.4. The factor by which

the curve is longer than the corresponding straight line is obviously equal to

= factorof elongation

cosy (2.10)

Fig. 24.  Electron drift paths for various values of 0T

When the magnetic field is switched on, the electrons will also have the magnitude of
their drift velocity changed from u(E,0) to u(E,B). It is not easy to calculate u(E,B) for the ge-
neral case, but for the simplification (2.1), progress is possible using Tonks' theorem [2]. It

states that the drift velocity will remain the same when switching on B, provided E is changed
from E, to E;:

u(Ey,0) = u(E;,B), 2.11)
where

E; = Ey/cos W (2.12)

Using (2.1), this implies a reduction of the mobility by the factor cos v in the outer drift re-
gion, and no change in the inner one. (There is also a slight change in rg.)

n(B=0) cosy E r2ro
u(E,B) = (2.13)

Ug r<rp
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2.4 Limits on drift parameters resulting from an uncertainty in the knowledge of the
magnetic field

Although we deal with coordinate measurements and their achievable accuracy only in Sect.
3, we single out one particular source of error to be treated here under the aspect of the choice
of the drift parameters. If the magnetic field exhibits some inhomogeneity it may happen that
its value at some particular point is only known inside some latitude AB. The effects descri-
bed in Sect. 2.3 then lead to an uncertainty in the arrival time and hence in the measured
coordinate. This uncertainty may become large for small values of cos y. Therefore, there is a
necessity to restrict the value of y by a proper choice of drift parameters.

In the regime of constant mobility (r 2 ro) the drift time is stretched by the constant
factor 1/cos? y, in the regime of constant velocity (r < ro) the time is stretched by the variable
factor 1/cos y whose dependence on the radius is given by

cos?y = 1/(1+0?12) (2.14)

and
BUOr

ot(r)= B u(r)= (r<ry

ug
g:ch 2.15)

An uncertainty in the knowledge of ® results in an error Ar in the coordinate. We will
limit ourselves to an estimate of Ar in the outer region. Since the coordinate is stretched by a
constant factor 1/cos2y, we have

. 22
[r-ro} =(r-r0)/cos2\v=(r-r0] 1+ to) (2.16)

Aw 22Am 22AB
Ar = (od—r— = 2r-ro)® Tp— -2(r—ro}(oto—B—
do o ® 210 (217

Here we have neglected the change in rg due to the B-field.
Since the r.m.s. average of (r-rg) for r between rg and b is (1/93) (b-rg), we find

2 22 AB

(r2rg) (2.18)
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The smaller part of Ar which arises in the region r<ro can be worked out using (2.15), and

can be added to (2.18). For the practical purpose of establishing a limit on the drift parame-
ters, we work with the slightly conservative but simpler relation

(A)_. 2 2248B
=— 0T, —
b A3 OB

(2.19)

It implies that the Lorentz angle (c.f. (2.6)) should not exceed a value Wnax Which is given by
the relative uncertainty AB/B in the knowledge of the magnetic field and the allowed coordi-
nate measuring error Ar. This also defines, via the relation (2.9), an upper limit for the elec-
tron mobility . The upper limit py,ax On the mobility imposed by (2.19) and (2.9) is

V3@n_ /b

2AB/B B

l"’max

(2.20)
Using a numerical example relevant for the ATLAS air core toroid, we estimate for a
maximum allowed relative error of this kind of Ar/b = 15 um / 15 mm, and a typical field of

B =1T, the limits quoted in Table 2.1.

Table 2.1. Limits imposed on the Lorentz angle and the electron mobility by an uncertainty in the know-
ledge of the magnetic field, according to (2.19), using (Ar)pns/b=15pym/15mmandB=1T.

AB/B wo Vmax (deg)  p [em?/(us kV))
0.10 0.09 53 09
0.05 0.13 74 13
0.02 021 12 2.1
0.01 0.29 16 29

2.5 Summary — the difficulty of making the drift velocity high and uniform

A high drift velocity over the largest possible range of radii is desirable because it
makes the maximum drift time shorter, the drift space—time relation more linear, and the mea-
sured coordinate less dependent on variations of field or gas density. Assuming a general be-
haviour of the drift velocity as in Fig. 2.1, this implies one should choose a high electron mo-
bility it and/or a high field E. H{)wever, the value of W is limited by the size of the admissible
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influence of the magnetic field on the measured coordinate, see (2.20) and the numerical ex-
ample worked out in Table 2.1. If one fixes some admissable value of jinax, One is then led to
fix the value of p next, see (2.4, 2.5). This leads to a value of the E field at the tube wall that
is equal to .

u
Eb=Lp

Humax (2.21)

For example, Eg has to be as high as 1.2 kV/cm for ppax = 2.1 cm? / (us kV), up = 5 cm/us
and p =0.5.
Such a high field at the tube wall is not practical for tubes with a radius of one or sev-

eral cm because it requires too high wire potentials. For details, see [6]. In order to reach
more practical values of Ey, say 0.4 or 0.6 kV/cm, the product ugp must be reduced corre-

spondingly. Therefore, the drift velocity cannot be simultaneously high and uniform.
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3. Coordinate measurement using the drift time, and limitations of the
accuracy

3.1 Ionization distribution at the wire

The simple wirte at the centre of a tube detects all the ionization of a track across the tube.
After the passage of the particle, some time elapses until the first ionization electron arrives,
the last electrons come in the maximum drift time T(b) (c.f. Sect. 2.1) after the moment of the
particle passage. The distribution of arrival times t exhibits a characteristic front, which is
originally infinitely sharp, followed by a gradual transition into the constant rate of arrival of
the distant ionization. The first question of interest is how well this front is defined, given the
fact that the ionization happens in discrete clusters of variable size and also that the electrons
on their way to the wire are subject to diffusion.

YA

: Track
i

Fig.3.1.  Geometry of a track traversing the circular tube

Referring to Fig. 3.1, the average rate of arrival at the wire is given by the product of
the ionization density n = dN/dy along the track, the derivative of the track coordinate with

respect to the radius, and the drift velocity dr/dt which in turn is a function of t:

AN _dy
a¢ - ar

a.

r
t (3.1

Q.

However, it is simpler to describe the process as a function of r rather than of t —
one avoids the use of the time-dependent drift velocity. Therefore we discuss the behaviour of
the average 'radial ionization distribution'
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(=}

dN
N _ndy_q_
2

d dr =1 2
r+x (3_2)

In Fig. 3.2 we plot this distribution for five tracks located at various x.

The asymptotic value 1 at large r depends on the gas and its pressure; for example, Np
is about 42 primary clusters per cm in argon at NTP for extremely relativistic muons. This
value is based on the measurement of 27.8 + 0.3 [3] in the minimum of the ionization curve,
times a factor of about 1.5 from the relativistic rise as measured by Lehraus for the total ioni-
zation.The relativistic rise of the primary ionization in argon has not been measured, to our
knowledge. The total ionization is, roughly speaking, three times larger: n¢ = 3 mp. The ex-
pressions (3.1) and (3.2) may refer to either N or ni. T is proportional to the gas pressure.

3.2 Fluctuation of the arrival position — primary ionization

One way to visualize the influence of the primary ionization density on the accuracy of the
front is to ask at what average distance Ar behind the front one expects the first primary

cluster. With reference to Fig. 3.1, the k-th cluster is expected, on average, within the interval

Ar = x2+(—k—)2 - X

21, (3.3)
where k / 1p is the average track length for k clusters. The curves of Fig. 3.3 show Ar for var-
ious k, calculated for argon at NTP as a function of x. As it turns out, the front is very well
defined — for a track at x = 1 mm the first cluster comes within 7 pim, the second within
28, the third within 62 pm behind the front. In conclusion, the primary ionization in argon at
NTP is dense enough for accuracies well below 100 pm — provided there is sensitivity to
the first very few clusters. At higher thresholds the region of reduced accuracy near the wire
will extend.
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Fig.3.2. Radial distribution of ionization according to (3.2), for five tracks at 0.5, 1.5,3,5,
and 10 mm distance from the wire
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Fig.3.3.  Average distance Ar of the k—th primary cluster behind the front, as a function of the
track~wire distance x, calculated for a primary ionization density of 42/cm, the
approximate value for highly relativistic muons in argon gas at NTP
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3.3 Fluctuation of the arrival position — diffusion

The other mechanism to smear out the front of arriving electrons is their diffusion. An analy-
tic description of this smearing process does not exist, and one must involve a numerical si-
mulation. We must take account of the fact that electrons are created in clusters, each electron
diffusing independently on its way to the wire.

3.31 Cluster size distribution

The number ngy; of electrons created in each primary cluster follows a distribution first calcu-
lated by Lapique and Piuz [4]. Their curve was complemented for this paper towards larger
Ncjus, following [5). The resulting integral distribution is depicted in Fig. 3.4. It is worth not-
ing that very large clusters may occur at low rates — for example, it is 2% probable to ex-
ceed 20 electrons. The exact shape of the distribution is not essential for our purpose.

3.3.2 Behaviour of the diffusion

Since the diffusion constant is a function of the electric field the contribution to the width of
the single-electron diffusion will be different for every radius. Our interest here is a basic ex-
ploration of the statistical factor in the smearing of the electron front, therefore we will char-
acterize the degree of diffusion by a single effective number, 6,, defined to be the rms width
of a single-electron diffusion over 1 cm at NTP of the respective gas mixture. The diffusion
of an electron created at some radius r; and arriving at the wire is accounted for by a random
radial shift Ar according to a Gaussian distribution

2

1 (a9

Vamo. T2

K O,
® S (4)
with
o . h 1 bar

@= "1 ¥ lcm p (3.5)

where p is the gas pressure.
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3.2.3 Simulation program and results

The purpose of the numerical simulation of the diffusion process is to find the statisti-
cal factor which relates the single electron diffusion width to the variation in the space posi-
tions of the ensemble of electrons contributing to the signal. This factor depends in our ap-
proximation on the track—wire distance and on the ionization characteristics. It is assumed
that the k-th arriving electron will trigger the signal. The computer program employed for
this purpose is summarized in Table 3.1, results are plotted in Figs. 3.5 to 3.6.

As first examples we treated the cases k=1 and k=10, representative for signal triggers
in the limited streamer mode (k=1) and in a typical proportional mode (k=10). An arbitrary
and somewhat pessimistic value for the diffusion was chosen as 6, = 0.32 mm/(bar cm). The
variance 02y, of the arrival positions is plotted in Fig. 3.5 against the track—wire distance x
for various gas pressures (densities). The contribution of the diffusion is seen in the linearly
rising parts of the curves whereas the primary ionization determines the curves at low x.

Three observations are in place. The improvement in the variance with increasing
pressure is faster than inversely proportional to the pressure because the number of competing
electrons increases with the pressure.  The first electron (Fig. 3.5 a) is a good measure of

Table 3.1. Summary of the simulation program to obtain <ry> and oy as functions of x, p and 6

1. Define x, p, 61

2. Compute tracklength 1 (using tube radius) and primary cluster density 1p

3. Define 1 np random cluster coordinates y; along track, define radial cluster positions r;

4. Define for each cluster the diffusion width o(j) using o1, pand r;

5. Define in each cluster n¢,; electrons according to cluster size distribution

6. Vary each radial electron position by a random number according to a Gaussian with width oj)
7. Order all electrons according to their radial positions

8. Enter radial position of k-th electron into histogram k

9. Repeat steps '3' - '8’ 1000 times

10.Obtain average <ry> and s deviation oy of the k-th histogram

position where the ionization statistics is the dominant error source, but it is a bad measure
where diffusion is dominant. Vice versa, the tenth electron (Fig. 3.5 b) is a good measure of
position where diffusion dominates, and a bad one for ionization.

t
|

3
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Fig. 3.4. Integral cluster size distribution Q(n) for highly relativistic particles in argon at NTP,
according to [4] and [5]
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Fig.3.5. Track measuring accuracy Oy, calculated by the program shown in Table 3.1, for

various track-wire distances x and various gas pressures. the diffusion was assumed

to be G; =0.32 mm/ \/fbar cm). (a) trigger from first electron, (b) trigger from 10-th
-electron
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Fig.3.6. Tube-averaged track measuring accuracy (r.m.s) as a function of the gas pressure,
calculated for k = 1 and k = 10; (a)<(d): four differentvalues of the diffusion quantity G,
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In order to arrive at a figure of merit for the full tube the above variances must be
averaged over all radii (see also Sect. 3.6). In our example we chose tubes with a diameter of
3 cm. The resulting r.m.s. single track tube accuracy is called < oy > and is plotted in Fig.
3.6 a as a function of the gas pressure. Analogous curves (Figs. 3.6 b-d) were computed for
three other values of diffusion, corresponding to a range of typical gases. One observes the
accuracy at low pressures to be better for k=1 than it is for k=10, whereas for high pressures
the situation is reversed. The cross-over point moves to higher pressures as the importance of
diffusion is diminished.

In summary, within the ranges of diffusion and of threshold studied here we may ex-
pect to reach a measurement accuracy better than 50 pm with gas pressures up to a few bar.
The curves in Figs. 3.6 b and ¢ gave rise to a more detailed investigation of argon—carbon-
dioxide gas mixtures [6]; providing a first definition of the operating point of the ATLAS
prototypes.

3.4  Uncertainty in the coordinate measurement caused by variations in the
electrostatic boundary conditions

It was shown in Sect. 1 that the displaced wire as well as the elliptically and hexagonally de-
formed tubes cause certain field distortions. These are relevant for coordinate measurements
using the drift time, as long as the drift velocity varies with the field. In drift tubes with their
characteristic, large variation of field strength over the drift volume, the drift velocity near
the wall is usually proportional to the field strength

u = pE, (3.6)

where y is the constant mobility. Near the wire, the drift velocity usually varies less with E,
but the region of approximately constant 1 extends over most of the drift space.

When existing geometrical deformations are ignored there will be an error in the co-
ordinate measurement. We want to compute the shift Ar introduced by each of these field dis-
tortions; its value generally depends on the track direction relative to the field distortions. In
each case we will select the direction ')7 with the largest shift. We also treat the worst case of
the drift-velocity field relation by using (3.6) for all radii.
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34.1 Displaced wire

The disturbing field E,y, in the direction ; by which the tube centre has been separated from
the wire, is, according to (1.22), equal to

U d d
12

E, = i) 2 -

y = 'EEt

(3.7

in first order of d/b, the ratio of the wire displacement to the tube radius. E;, is the magnitude
of the unperturbed field at the wall.

The drift time measured for a track across the tube will be unaffected by the wire dis-
placement only if the track is oriented along ; so that the nearest electrons travel along x. The
largest effect occurs for electron drift along S;, i.e. the track oriented along x; for this case
we want to compute the apparent track shift Ay.

The measured drift time T is given by the integral over the inverse drift velocity u,

where
1 1

LE  p(Eg+E)

1
u

_ 1 _ (1 dr)
- T2

r
2
b (3.8)
to first order in d/b. Therefore,
r
T 2d
T = L ar - | = ~dr =Ty + AT
 WEyb nE,b
o (3.9)
The time shift caused by the wire displacement amounts to
3
|aT| = _d_r___3 ,
3 H Ebb 3. 10)

and the corresponding coordinate shift is given by
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3
Ay=uAT= pE 240
],I.Ebb

=4
-3

-t
crnl -

(3.11)

to first order in d/b. Near the wall, the coordinate shift is one third of the wire displacement,
for smaller r it quickly decreases. Ay has the same sign on both sides of the wire, i.e. the track

coordinate is displaced in the same direction in which the tube centre has been separated from
the wire.

In order to compute the r.m.s. average over many parallel tracks traversing the tube,
we replace r by y and let y/b vary between -1 and +1. The average and the variance of the

displacement are
<Ay>=d/9 and

) 2 2
[(Ay)] = day)> - <Ay> = d745-d781 (3.12)
The r.m.s. error is

(AY) ms = 0.10d. (3.13)

3.4.2 Elliptical wall

This case is governed by the small parameter B, where the ratio of the largest to the average
tube radii is 1 + B; the ratio of the largest to the smallest tube diameters is then 1 + 4.

The perturbing quadrupole field has the largest influence for tracks parallel to one of
the principal axes of the ellipse. For a track parallel to the x direction the drift of the nearest
electrons is along ; and the relevant field component, according to (1.48), is

_a_U 2
Egy = Bln (R/a)i_Z

2y
= Eg p==
y>0) (3.14)

to first order in B. Here Eg designates the (unperturbed) field at the tube wall.
The inverse of the drift velocity along y takes, in first order of B, the form

1 1 1

U HE  p(By+E,)
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2
1 y y
= = 1-2
R 2y? HERR ( B;{—z
NER; 1+p—=
R (3.15)
The time shift caused by the deformation is, analogously to (3.10),
1 4
AT = - 23——--y—3
HERR 4R (3.16)
The corresponding coordinate shift is
RB 1 +* 3
ay = lofar] = pE £ 2 B2
MERR® "R (.17

this shift changes sign at the wire. The average and the variance of the displacement are

<Ay> =10
2 (gR)’
[y} = day)’> = BRL
28
The r.m.s. error is
(AY) ms = 0.19 BR. (3.18)

For example, an elliptical tube having a difference between largest and smallest diameters of
100 um will cause an r.m.s. measuring error of 5 pm. Tracks that are not parallel to one of the
axes of the ellipse suffer even less.

3.4.3 Hexagonal wall

Let the hexagon be oriented with the largest diameter along X and the smallest along ; The
tracks oriented along x (¢ = 0°), ¢ = 60° and 120° will be pulled towards the wire by a shift
Ay, and the tracks oriented at ¢ = 30°, 90° and 150° will be pushed away from the wire by the
same amount. In between, the tracks along ¢ = 15°, 45°, 75°, 105°, 135° and 165° will not be
shifted. It is our task to compute Ay as a function of €, compare (1.50).
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‘The disturbing field component, according to (1.59), and using ¢ = 90°, is, in first or-
derof e

Egy ln(R/a)R(R) 6""E"(R) (3.19)

ER is again the magnitude of the unperturbed field at the wall (this quantity was also called
I[Eo(R)! before). The disturbing field quickly reduces with r.
The inverse of the drift velocity along ; now takes the form

6
% = M(E(:"’Es) B MERR—(11+641)6) - pEiR(l"GE(i{—))
y R

(3.20)
The time shift caused by the hexagonal shape is, analogously to (3.10),
7 4 8
aT = =% Y gy =- e 3
MEg | R HER 8R
0 (3.21)
The corresponding shift in space equals
Ay = |ul|AT| = —eR(y)
(3.22)
This shift also changes sign at the wire. The average and the variance are
<Ay> =0
: 1
o] = [Sur) &
15 (3.23)

The r.m.s. error is

(AY )rms = 0.2 R (3.24)
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It should be noted that this result is not very accurate, for two reasons. The large size
of the distortion makes the neglected second-order terms quite large — for example in (3.20)
the neglected terms are of order (6€)2 = 0.1, or 30% of the retained first order terms. But also
the very values of € and d (see (1.50)), computed for a geometrical hexagon, are in doubt for
a thin plastic foil, and are sensitive to the production process as well as to the gas pressure.

Applying (3.24) to the example of R = 1.5 cm, we obtain an error of approximately
+150 pum. There is a possibility of reducing the error by sacrificing some sensitive space near
the wall. Let N} = yeuwsr / R define a cut-off parameter. By restricting the calculation of (3.24)
tovaluesy < ycuwofr We find

( Ay resuicted) = 0.2eR 773 (3.25)

For example, a reduction by a factor of 3 is obtained by cutting at 1} = 0.86. It should be stres-
sed that the effective radius must still be stable and well known.

3.5 Uncertainty in the coordinate measurement caused by variations in the gas density

It is characteristic of drift tubes that the drift velocity u varies with the gas density p over a
good part of the radius. This is due to the fact that the dependence of u on p and on the elec-
tric field E is through the ratio E/p. At a fixed wire potential a variation Ap changes the ratio
E/p and with it, usually, the drift velocity. In the region near the tube wall where E is small
and the electron mobility 1 approximately independent of E we can calculate how u varies
with p. Looking at Fig. 3.7 we observe that u(p,E) is completely determined in the domain of

P 4 /
/
P2
s
/ // _
/ -
p ----/----)t‘-).( ...... ,..f.:.
0 / / //
1,7 -
Pcad >

Fig.3.7.  Plane of the two variables E and p
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p and E where u is a function only of E/p and where, at some fixed po, u = E pu(po). At an

arbitrary point (p, E), u obviously assumes that value along the line pg that belongs to the
same value of the ratio E/p:

u (p,E) = E1 Wpo); Ei/po =Elp, or

E
LB = —2 ()
p . (3.26)

We want to compute the shift Ar in the measured coordinate, caused by a change Ap of the
density. We do this under the simplifying condition (2.1, 2.2); this corresponds to the case
ro =0, a pessimistic one.

The relation between drift time T, position r and density p is

r
2

T(r,p) = rdr _ r P
bE,u(p) (PdP)  2bE,p(py Py
0 (3.27)
Therefore, at a fixed drift time,
aT oT
AT = Ar+ —Ap =0
a0
this yields
Ar _ 1Ap
—=-z—
' P (3.28)
The r.m.s. averaging over the radii from 0 to b results in an error of
(Ar)ms = b (Ap/p) (1//12). (3.29)

For example, if in a tube with radius b = 15 mm the r.m.s. coordinate shift is to stay below 25
um, the knowledge of the gas density must be better than (Ap/p) = 0.5%.
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3.6 Note on averaging the accuracy over the tube

The measurement accuracy of a track varies as a function of the distance x to the wire. When
computing 'the measurement accuracy of a tube' there has to be some averaging over x. There
are several possibilities, depending on how one wants to determine the track parameters.
The usual situation is such that n tubes are grouped together and a track coordinate x is
determined from the few coordinates x; (i = 1, 2, .. n) measured in the tubes of each group.
The first possibility is to take the simple average

X=%2Xi.

(3.30)

If no further information about the relative positions of the tubes or the orientation of the
track is given, we should assume that (A) all parts of the drift space are equally probable,
and that (B) the x; are uncorrelated. These assumptions are appropriate for the early planning
stage of an experiment: each tube is characterized by an average accuracy o;*, and a group of
n identical tubes yields the accuracy

Ggroup= i /ﬁ' (3.31)

In order to compute the o;" we evaluate the variance [xx] of (3.30) using the fact that
all the x; have the same expectation value < x; >.

[xx] = <x2> - <x>2 = (<(X;+X2+.. )2> - <x;+X2+. >2)/n?
[xx] = (<x;2> - <x;>2)/n , (3.32)

because, according to assumption (B), < xjx3 > = <x; > <x; > etc.. Identifying (3.32)
with the square of (3.31), we have

*2 2

2
O’i =<X;> — <X;> . (3.33)

The averaging, denoted by brackets < >, is over all the tubes and all the tracks in a given
sample of track measurements. Under the assumption (A) this is identical to the average over
the drift space, in particular
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R
.2 2 2 1 2
0, =<X>-<X> =5=] 0,(x)dx .
-R

R
(3.34)
A second possibility is, to improve on (1) by taking
X = 'l- Zwixi .
n (3.35)
with
l/e

Zl/cxi2

i

The use of (3.35) in place of (3.30) promises increased track accuracy if large variations of
oi(x) are present — the one tube of the group in which the track happens to pass through a
region of x where 6i(x) is particularly small, will determine the track coordinate of the group
almost alone. To evaluate the effect one must obviously know the correlations < Wix; Wjx;>
which depend on the track angle and the geometrical staggering of the tubes. The study of this
refined error propagation seems to be more appropriate for a later stage of the experiment.
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