
The Design of the ATLAS Level-1 Central Trigger Processor (CTP)

- Introduction
- Functionality and Requirements
- Design of the Modules and Backplanes

On behalf of N. Ellis, P. Farthouat, P. Gallno, H. Pessoa Lima, T. Schörner-Sadenius, G. Schuler, R. Spiwoks, R. Torga Teixeira

Level-1 Trigger - Overview

CTP - Trigger Formation (1)

- Input:
 - Calorimeter and muon trigger processors provide trigger information:
 - **multiplicities** for electrons/photons, taus/hadrons, jets, and muons
 - **flags** for ΣE_T , E_T^{miss} , ΣE_T^{jet}
 - Sub-detectors provide calibration triggers.
 - CTP provides **internal triggers**:
 - random, bunch crossing, pre-scaled clock.
 - All trigger thresholds are programmable. Several thresholds are used concurrently for each type of trigger information.
 - ⇒ CTP can accept a total number of **160 input bits** to be taken into account at a given time. The total number of input bits can be higher because of selection on CTP input.

CTP - Trigger Formation (2)

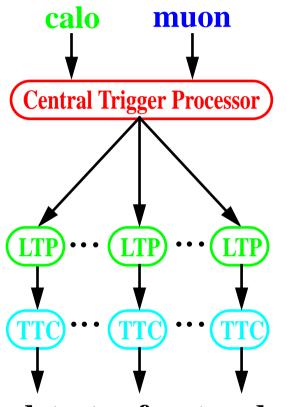
- Output:
 - Level-1 Accept (L1A), derived from trigger inputs according to Level-1 trigger menu:
 - **160 trigger items** are made from combinations of conditions on the trigger inputs, e.g.

1EM10 = at least one electron/photon with $E_T \ge 10$ GeV.

- Generate dead-time in order to prevent front-end buffers becoming full ⇒ select between two priorities for each trigger item.
- Each trigger item has a mask, a priority and a prescaling factor.
- L1A is the OR of all trigger items.
- An example of a trigger menu might contain

1MU6	mask = ON, priority = LOW, pre-scaling = 1000
2MU6	mask = ON, priority = HIGH, pre-scaling = 1
1EM20 AND XE20	mask = ON, priority = LOW, pre-scaling = 1

Additionally, generate 8-bit trigger type word with every L1A
 ⇒ type of trigger (can be used for processing in detector front-end).


CTP - Trigger Formation (3)

- Additional functionality:
 - Generate **pre-pulse** signal for calibration of sub-detectors.
 - Generate Event Counter Reset (ECR).

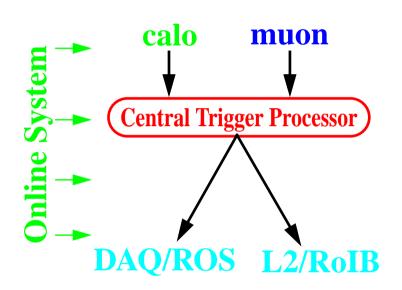
- Constraints:
 - Trigger latency, i.e. from trigger input to L1A: 4 BC \equiv 100 ns
 - Trigger menu changes with physics/beam/detector conditions.

CTP - Trigger Broadcasting

 \rightarrow Interaction with TTC Partitions:

detector front-end

CTP sends timing and trigger signals to (~ 40) TTC Partitions.

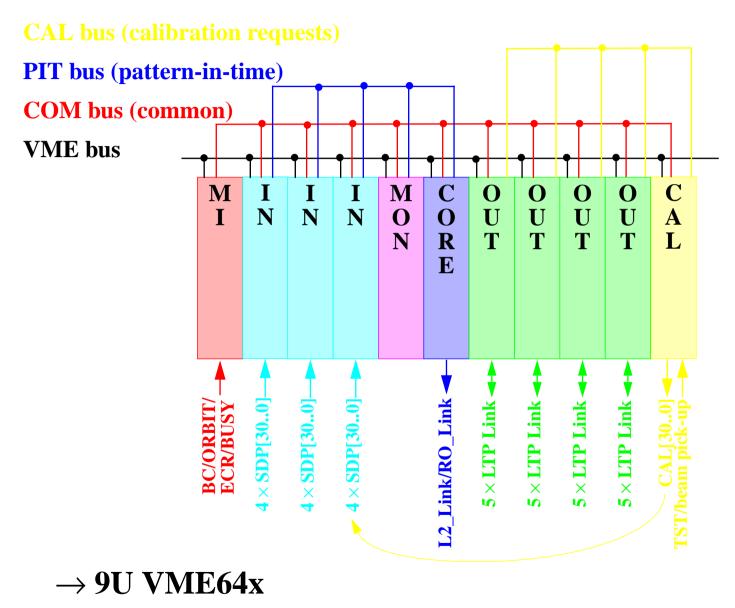

A TTC Partition consists of

- one Local Trigger Processor (LTP),
- a TTC system proper, i.e. one TTCvi, one or more TTCex/TTCtx/ TTCvx, TTCoc, TTCrx, etc.
- Fast feed-back **BUSY tree**, based on ROD_BUSY module.

 \rightarrow LTP is a new concept in ATLAS Level-1 trigger.

CTP and Trigger/DAQ

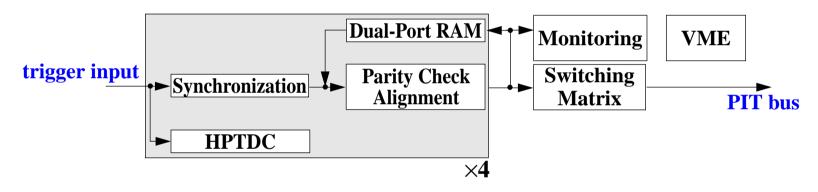
 \rightarrow Interaction with Trigger/DAQ:



- CTP sends **Region-of-Interest (RoI)** information to the **RoI Builder (RoIB)** which combines it with information from other sources in the Level-1 Trigger and sends it to the Level-2 Trigger.

CTP sends event data to the Read-out System (ROS).
 → see talk by D. Francis

- CTP, all LTPs and parts of the TTC system are configured, controlled and monitored via the **Online System.**


CTP - Design

CTP - Input Module (CTP_IN)

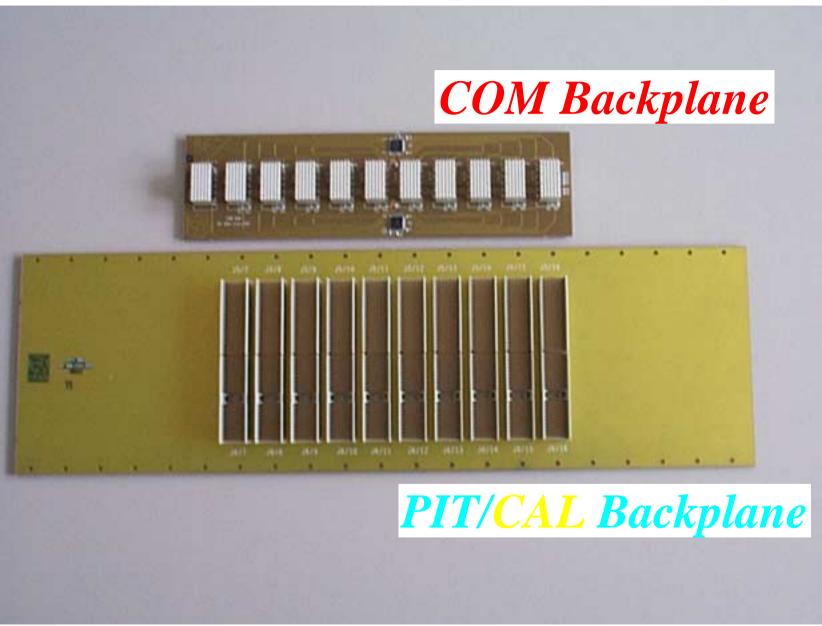
• Functionality:

- Receive trigger inputs from trigger processors (calo, muon, others).
- Synchronize w.r.t. clock, check parity and align w.r.t. BCID.
- Select/route trigger inputs to be sent to PIT bus.
- Store trigger inputs into test memory; provide trigger inputs from test memory.
- Monitor trigger inputs integrated over all bunches.

• Implementation:

- Based on FPGAs, dual-port RAM for test memory, switching matrix for selection/routing of trigger information to PIT bus and CERN High-performance TDC (HPTDC) for phase measurement.
- Status:

CTP_IN is currently under design.


R.Spiwoks

CTP - PIT/CAL Backplane

- PIT bus:
 - \rightarrow pattern-in-time = synchronized/aligned/selected trigger inputs
 - trigger inputs from **up to three CTP_INs** to CTP_CORE and CTP_MON
 - 160 signals, 80 mm (\equiv 5 VMEbus slots), 3 drivers + 2 receivers:
 - \rightarrow SSTL-2-like technology.
- CAL bus:
 - \rightarrow requests for calibration triggers from sub-detectors
 - calibration requests from **up to four CTP_OUTs** to CTP_CAL (see later)
 - 128 signals (4 CTP_OUTs, 16 signals, differential), 4 drivers + 1 receiver:
 → LVDS technology.

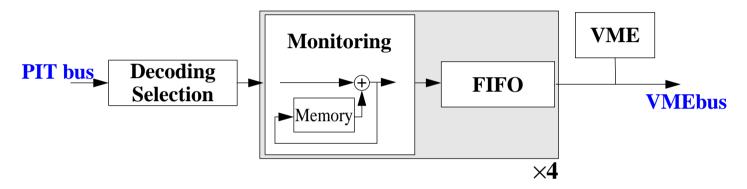
 \rightarrow PIT/CAL backplane will be mounted in J5/J6 position.

CTP - Backplanes

CTP - Core Module (CTP_CORE)

- Functionality:
 - Receive and synchronize trigger inputs from PIT bus.
 - Combine trigger input to trigger items according to trigger menu and form L1A.
 - Add preventive dead-time.
 - Send trigger result to COM bus.
 - Form RoI and ROS information and send them to RoIB and ROS.

• Implementation:


- Basic idea: use content-addressable memory (CAM): input pattern \Rightarrow CAM \Rightarrow trigger items.
- Use large FPGAs for pre-scaling and for monitoring.
- Status:

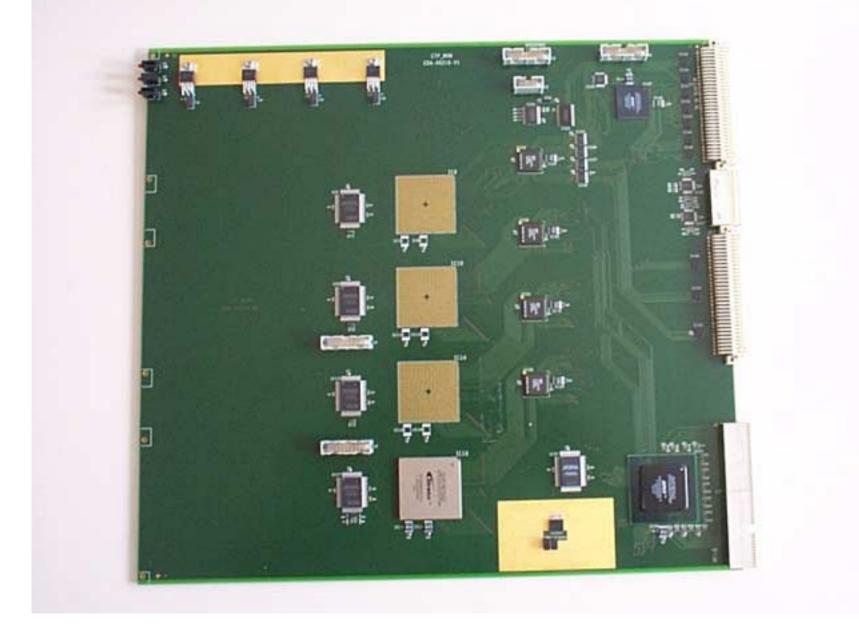
Detailed design of CTP_CORE needs to be done.

CTP - Monitoring Module (CTP_MON) (1)

• Functionality:

- Receive and synchronize trigger inputs from PIT bus.
- Decode and select trigger inputs to be monitored.
- Monitor trigger information on a bunch-by-bunch basis.

• Implementation:


- Use numerous segmented memories in 4 Altera Stratix FPGAs for counters:
 - \rightarrow 160 (trigger inputs) \times 3564 (BCs) \times 32 bit = 2.2 MByte

• Status:

CTP_MON is currently under test.

\rightarrow see poster by H. Pessoa Lima

CTP - Monitoring Module (CTP_MON) (2)

CTP - Output Module (CTP_OUT)

• Functionality:

- Receive timing and trigger signals from COM bus.
- Fan out timing and trigger signals to the sub-detectors (LTPs).
- Receive busy signals and calibration requests from sub-detectors (LTPs).

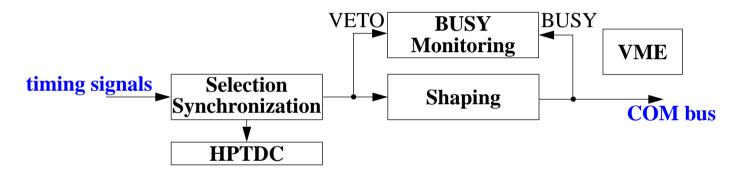
$CTP \rightarrow LTP$		$CTP \leftarrow LTP$	
BC	1 bit	calibration request	3 bit
ORBIT	1 bit	BUSY	1 bit
L1A	1 bit		
ECR	1 bit		
trigger type	8 bit		
pre-pulse	1 bit		

• Implementation:

- Basic ideas: fan-out module \rightarrow drive links to LTPs.
- Status:

Detailed design of CTP_OUT needs to be done.

Local Trigger Processor (LTP)


• Functionality:

- Original idea by G. Perrot (LAPP Annecy, ATLAS LAr Calorimeter)
- Input: CTP/daisy-chain, local input, pattern generator
- Output: daisy-chain, TTCvi, local output
- \Rightarrow "Programmable input/output switch for timing&control signals"
- Run Modes:
 - **Common mode**: CTP drives the TTC partitions.
 - **Stand-alone mode**: LTP drives the TTC partition (local input or pattern generator).
 - Combine two or more TTC partitions: one LTP is the master (replacing CTP), others are slaves.
- Status:
 - Design has been discussed with all sub-detectors.
 - LTP is currently under design,
 - \rightarrow manufacturing of prototype until end of this year.

CTP - Machine Interface Module (CTP_MI)

• Functionality:

- \rightarrow timing module, i.e. machine interface (to LHC)
- Receive timing signals from LHC (via TTCmi), or generate locally.
- Control and monitor busy signals (internal and external).
- Send signals to COM bus.

- Implementation:
 - Based on FPGAs and CERN High-performance TDC (HPTDC) for phase measurement.
- Status:

CTP_MI is currently under design.

CTP - COM Backplane

• COM bus:

- \rightarrow timing signals common to all modules
 - for timing: BC, ORBIT;
 - for trigger: L1A^{*}, trigger type^{*}, BUSY;
 - for control: ECR, pre-pulse^{**}.

* only from CTP_CORE to CTP_OUTs and CTP_CAL.

- \rightarrow LVPECL and Mutlipoint-LVDS (for BUSY) technologies.
- \rightarrow COM backplane will be mounted on backside of J0 connector.

 \rightarrow see photo of backplanes earlier

CTP - Calibration Module (CTP_CAL)

• Functionality:

- Time-multiplex sub-detector calibration requests (per ORBIT).
- Send calibration requests to CAL bus.
- Receive external beam pick-up and test signals.

• Implementation:

- Basic idea: collect calibration requests from CTP_OUT (from LTPs) via CAL bus, multiplex signals per LHC orbit and feed to CTP_IN.

• Status:

Detailed design of CTP_CAL needs to be done.

Conclusion

• CTP:

- Six different types of modules, three different buses (on two backplanes).
- Design/Manufacturing is in progress.
- Prototype modules will be available this year, the full system will be available next year \rightarrow testbeam.

• LTP:

- Newly defined interface between CTP and sub-detectors: allows one to run in common mode and stand-alone (calibration, etc.).
- Design is in progress.
- Prototype modules will be available by the end of this year.

• TTC and ROD_BUSY:

- System and modules are defined and manufactured. Cabling and installation is being planned now.