
ar
X

iv
:c

s/
03

06
08

9v
1

 [
cs

.S
E

]
 1

4
Ju

n
20

03
CHEP03, La Jolla,California, March 24-28 2003 Here 1

The StoreGate: a Data Model for the Atlas Software Architect ure
P. Calafiura, C.G. Leggett, D.R. Quarrie
Lawrence Berkeley National Lab, Berkeley, CA 94720, USA
H. Ma, S. Rajagopalan
Brookhaven National Lab, Upton, NY 11973-5000, USA

The Atlas collaboration at CERN[1] has adopted the Gaudi software architecture which belongs to the black-
board family: data objects produced by knowledge sources (e.g. reconstruction modules) are posted to a
common in-memory data base from where other modules can access them and produce new data objects. The
StoreGate has been designed, based on the Atlas requirements and the experience of other HENP systems such
as Babar, CDF, CLEO, D0 and LHCB, to identify in a simple and efficient fashion (collections of) data objects
based on their type and/or the modules which posted them to the Transient Data Store (the blackboard). The
developer also has the freedom to use her preferred key class to uniquely identify a data object according to any
other criterion. Besides this core functionality, the StoreGate provides the developers with a powerful interface
to handle in a coherent fashion persistable references, object lifetimes, memory management and access control
policy for the data objects in the Store. It also provides a Handle/Proxy mechanism to define and hide the
cache fault mechanism: upon request, a missing Data Object can be transparently created and added to the
Transient Store presumably retrieving it from a persistent data-base, or even reconstructing it on demand.

1. INTRODUCTION

Data Objects and Algorithms

The Gaudi software architecture[2] belongs to the
blackboard family[3]: data objects produced by
knowledge modules (called Algorithms in Gaudi) are
posted to a common “in-memory data base” from
where other modules can access them and produce
new data objects.

This model greatly reduces the coupling between
knowledge modules containing the algorithmic code
for analysis and reconstruction, since one knowledge
module does not need anymore to know which spe-
cific module can produce the information it needs nor
which protocol it must use to obtain it (the ”interface
explosion” problem described in component software
systems). Algorithmic code is known to be the least
stable component of software systems and the black-
board approach has been very effective at reducing the
impact of this instability, from the Zebra system of the
Fortran days to the InfoBus architecture for Java com-
ponents. The trade-off of the data/knowledge objects
separation is the need for knowledge objects to iden-
tify data objects to be posted on or retrieved from the
blackboard. It is crucial to develop a data model opti-
mized for the required access patterns and yet flexible
enough to accommodate the unexpected ones.

The Transient Data Store

The Transient Data Store (TDS) is the blackboard
of the Gaudi architecture: a module creates a data
object and post it to the TDS to allow other modules

to access it1.
Once an object is posted on to the store, the TDS

takes ownership of it and manages its lifetime accord-
ing to preset policies, removing, for example, a Track-
Collection when a new event is read. The TDS also
manages the conversion of a data object from/to its
persistent form and provides therefore an API to ac-
cess data stored on persistent media.

2. StoreGate Design and Functionality

StoreGate (SG), in common with most other exist-
ing data models, is basically a dictionary of data ob-
jects which manages their memory and oversees con-
version to/from persistency. The SG design process
has been informal and iterative. We released early
and often and used developers feedback to adjust our
initial design concept2. The result may lack the co-
herency of a formal top-down design but it follows a
few principles which have proved to be useful.

Work with User Types

The success of the STL and of other public domain
template libraries means that it has become vital to
design an open system that can work with generic
types that export an interface, in particular the STL
containers, rather than forcing data objects to import
a common interface. SG adapts its behavior to the

1to be precise the current TDS implements only a “passive”
blackboard, since modules do not react to TDS events (e.g.
executing after a data object is registered into the TDS)

2which was in any case largely based on ideas which have
worked in existing data models

MOJT008

http://arXiv.org/abs/cs/0306089v1

2 CHEP03, La Jolla,California, March 24-28 2003 Here

functionality each data object exports. The only SG-
imposed constraint on a data object3 is to be an STL
Assignable type[4].

Avoid User-defined Keys

The disadvantage of the data/knowledge objects
separation is the need for knowledge objects to iden-
tify data objects to be posted on or retrieved from the
blackboard. It is crucial to develop a data model opti-
mized for the required access patterns and yet flexible
enough to accommodate the unexpected ones.

SG addresses this problem with a two-step ap-
proach: it defines a natural identifier mechanism for
data objects and it transparently associates to each
data object a default value of this identifier allowing
developers to register and retrieve data objects with-
out having to identify them explicitly.

The first component of the identifier is the data ob-
ject type. Experience shows that HEP developers tend
to group the objects they work on into collections. As
a result the TDS will often contain a single instance of
a data object type (say a TrackCollection or several
closely related ones (e.g. a TrackCollection for each
component of the Inner Detector). The SG retrieve
interface covers these two use cases (see Fig. 1).

Type-based identification is not always sufficient.
For example the TDS may contain several equivalent
instances of a TrackCollection produced by alternative
tracking algorithms. Therefore we need to add a sec-
ond component to our identification mechanism: the
identifier of the Algorithm instance that produced the
data object we want4. In the spirit of working with
user types, the SG will allow developers to augment
this history identifier with a generic key type opti-
mized for their access patterns.

Control Object Access and Creation

The TDS is the main channel of communication
among modules. A data object is often the result of
a collaboration among several modules. SG allows a
module to use transparently a data object created by
an upstream module or read from disk.

A Virtual Proxy[5] defines and hides the cache-fault
mechanism: upon request5, a missing data object in-

3this does not mean that the data model, simulation and
reconstruction groups should not issue design guidelines to en-
sure that ATLAS data objects behave consistently in terms of
memory management and persistability

4notice that we need to identify the instance rather than
the class. In an often quoted use case, clients may want to
distinguish among tracks reconstructed by the same tracking
algorithm using different jet cone sizes.

5Currently the proxy uses lazy instantiation (i.e. the object
is created only when the handle is dereferenced).

stance can be transparently created and added to the
TDS, presumably retrieving it from a persistent data-
base or, in principle, even reconstructing it on de-
mand.

To ensure reproducibility of data processing, a data
object should not be modified after it has been pub-
lished to the store, we use the same proxy scheme
to enforce an “almost const” access policy: modules
downstream of the publisher are only allowed to re-
trieve a constant iterator to the published object.

Support Inter-object Relationships

SG supports uni-directional inter-objects relation-
ships, or links, and will support bi-directional links
in the future. A link is a persistable pointer. If the
linked object is a data object then the proxy scheme
described above is also used to implement the link.
But typically links will refer to objects that are not
data objects but are contained within a data object.
The SG knows how to get to the container and the
container knows how to return an element given its
index. The job of the link is to find out the value of
the index, persistify it and, later on, pass it on to the
container and get back the linked object. In the next
section we will discuss how links handle indices into
generic containers.

3. Implementation Techniques

A big advantage that SG has compared to earlier
data models implementations is that many compil-
ers are catching up with the ISO/ANSI C++ stan-
dard. Because of that, a new generation of template
libraries like boost[6] and loki[7] are bringing once-
esoteric techniques like template meta-programming
into the mainstream. Template meta-programming
uses the compiler template expansion to control and
generate running code based on static type informa-
tion. In SG we have used some of its simpler tech-
niques.

Type Traits and Traits Types

The TDS memory management back-end manages
the data objects as instances of a DataObject base
class. Each class derived from DataObject has a
unique ClassID. This allows, for example, to use an
Abstract Factory[5] to create data object instances
when reading from disk. SG wraps each stored data
object into a templated DataObject

template <typename DOBJ>
class DataBucket : public DataObject {...}

MOJT008

CHEP03, La Jolla,California, March 24-28 2003 Here 3

//record a TrackCollection

TrackCollection* pTrackColl = myTrackMaker.make();

StatusCode sc = record(pTrackColl, ‘‘MyTrackCollection’’);

//get the default TrackCollection

const TrackCollection* pTrackColl;

sc=sg->retrieve(pTrackColl);

//get my special TrackCollection

TrackCollection* pMyTrackColl; //non-const access may be restricted

sc=sg->retrieve(pMyTrackColl, ‘‘MyTrackCollection’’);

//access all track colls using a pair of STL forward iterators

DataHandle<TrackCollection> beginTrackColls, endTrackColls;

sc=sg->retrieve(beginTrackColls, endTrackColls); //get all TrackColls

Figure 1: The basic StoreGate Data Access API

If DOBJ does not inherit from DataObject we want
the developer to define a ClassID for DOBJ that we
will associate to the data object.

To determine, at compile time, if DOBJ inher-
its from DataObject we use the boost type trait
boost::is base and derived<DOBJ,DataObject>,
a template that evaluates to true when DOBJ can be
assigned as a DataObject[6, 7].

To associate the ClassID information to a data
object type, say vector<double>, we define a
ClassID traits structure that developers specialize
for that data object (the struct is actually generated
using a cpp macro)

template <>
struct ClassID_traits<vector<double> > {

typedef type_tools::true_tag has_clID_tag;
static const int ID = 1234;

....
};

to manage the ClassIDs Atlas has developed a sim-
ple text-based “database” that is used both to gen-
erate theClassIDs of new types and to verify at run-
time that there are no duplicated ClassIDs and no
conflicts.

Concept Checking

SG allows developers to use generic key types to
identify objects of a given type. A key must of course
define an ordering operation. For SG we also re-
quire keys to be persistable. In traditional OO pro-
gramming these requirements would be expressed as
an interface the key class imports. In generic pro-
gramming interfaces are rather exported and hence
verified by the clients. To this end, SG provides a
KeyConcept built using the boost concept check li-
brary (see Fig. 2).

Inserting in the StoreGate API a call to
boost::function requires<KeyConcept<KEY>>()
we allow the compiler to check whether the template
parameter KEY of a retrieve or register method is
valid.

Policy Classes

SG handle and link classes use policy classes to con-
figure their behavior at compile time. A policy[7] is a
statically configured Strategy[5]. It can also be seen as
a traits class that defines behavior rather than struc-
ture. Policies become powerful tools when they are
combined: the compiler picks the right combinations
and generates the code needed by the application. For
example the element link class template ElementLink
is implemented as a combination of two policies (see
Fig. 3).
DataProxyStorage wraps the TDS back-end API,

while IndexingPolicy defines the strategy the
ElementLink uses to find a container element given
its identifier, and viceversa. The type generator tem-
plate GenerateIndexingPolicy looks at the data ob-
ject type (STORABLE) and tries to provide a reasonable
default strategy for that type.

We have defined indexing policy classes that can be
used to index elements of all STL containers and to
index nodes of an HepMC graph[8]. Policies are flex-
ible: if a developer introduces a new container type,
all they have to do is to provide a matching index-
ing policy and the compiler will generate the new link
type as needed.

4. Status and Outlook

After three years of evolution, StoreGate has
achieved a certain maturity. A lot of broad de-

MOJT008

4 CHEP03, La Jolla,California, March 24-28 2003 Here

template <typename T, > struct KeyConcept {

void constraints() {

boost::function_requires< boost::LessThanComparableConcept<T> >();

....

}

};

Figure 2: Concept Cheching

template <typename STORABLE,

class StoragePolicy=DataProxyStorage<STORABLE>,

class IndexingPolicy=typename SG::GenerateIndexingPolicy<STORABLE>::type >

class ElementLink :

public StoragePolicy,

public IndexingPolicy

{ ... }

Figure 3: ElementLink as a combination of policies

sign principles have been established: work with user
types, avoid user-defined keys, define an access con-
trol policy. The core data access API has been stable
for several releases. The implementation has been re-
viewed and reengineered twice to improve robustness,
physical design and to meet the strict performance
requirement of Atlas trigger software[9].

In the spirit of the Gaudi open project we have
started discussing our work with the LCG commu-
nity and we hope the StoreGate ideas and code will
be useful to developers inside and outside ATLAS.

Acknowledgments

We would like to thank all ATLAS collaborators
who contributed to the design and prototyping of
SG. We are extremely grateful to many colleagues
from other experiments who shared their experiences
with us: M. Frank, V. Innocente, R. Kennedy, J.
Kowalkowski, P. Mato, M. Paterno, S. Patton, S. Sny-
der and L. Tuura.

This work was supported in part by the Office of
Science. High Energy Physics , U.S. Department of
Energy under Contract No. DE-AC03-76SF00098.

References

[1] W.W. Armstrong et al. , “ATLAS Technical Pro-
posal”, CERN/LHCC/94-43.

[2] M. Cattaneo et al. , “Status of the GAUDI event-
processing framework”, CHEP 2001: Proceed-
ings. Edited by H.S. Chen. Beijing, China, Science
Press, 2001. 757p.
http://proj-gaudi.web.cern.ch/proj-gaudi

[3] F. Buschmann et al., “Pattern-Oriented Software
Architecture”, Wiley, 1996

[4] http://www.sgi.com/tech/stl
[5] E. Gamma et al., “Design Patterns”, Addison-

Wesley, 1994.
[6] http://www.boost.org
[7] A. Alexandrescu, “Modern C++ Design”,

Addison-Wesley, 2001
http://www.moderncppdesign.com

[8] http://mdobbs.home.cern.ch/mdobbs/HepMC/
[9] M. Grote et al.. “Architecture of the ATLAS High

Level Trigger Event Selection Software”, this con-
ference.

MOJT008

http://proj-gaudi.web.cern.ch/proj-gaudi
http://www.sgi.com/tech/stl
http://www.boost.org
http://www.moderncppdesign.com
http://mdobbs.home.cern.ch/mdobbs/HepMC/

