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Abstract
The paper describes the new periodic boundary condition model of ATLAS

detector and changes in the Mermaid 3D code algorithms necessary to calculate it.
The parallel processing modification of the Mermaid code to perform the complete
Atlas model calculation is presented in comparison with this 1:10 model of the fine
TileCal structure.

Introduction
A number of models of complex Atlas geometry were developed for Mermaid

3D code. The last one is a periodic boundary condition model with the 1:10 modeling
of the TileCal structure in Z direction.

As small as a few centimeters details should be resolved on the scale of total
25 meters of general Atlas dimensions. So even the huge number of mesh nodes
provided by Mermaid code (about 5 millions for available computers) is not enough
for input of complete Atlas geometry with high resolution. Hence, the reducing of the
problem domain is necessary. As it had been shown [Bergsma, 1995], the minimal
1/16 part of total Atlas geometry is required to reproduce the complete Atlas field
map (Figure 1).

Figure 1 Atlas problem domain in XY plane.

The mesh in Mermaid code is built as a sequence of XY planes covered with
nonuniform triangle mesh (Figures 2,3).
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Figure 2 Complete Atlas problem domain mesh in XY plane. The cross-section was covered by
125x125 nonuniform triangle mesh topologically equivalent to unit square mesh (each square is

divided into two triangles by a diagonal). The mesh is symmetric about 22.5 deg line.

Figure 3 Atlas problem domain mesh in XY in the region of TileCal. Radius step is about 6 cm,
angle direction step is about 3 cm.

This two-dimensional XY mesh is repeating in the third Z direction. The steps
between XY planes in Z directions can be arbitrary as well as material filling in the
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right triangle prisms, which are the finite elements used by Mermaid (Figures 4,5).
The Atlas model with 1:10 scale in Z direction of the fine TileCal iron structure was
calculated so far because of limitations of the available computers.

Figure 4 Atlas problem domain mesh in Z direction, 1:10 scale of the fine TileCal structure. 288
of XY planes were expanded in Z direction for total 4.5 millions of mesh nodes.

Figure 5 Atlas problem domain mesh in Z direction near the TileCal, 1:10 model of the fine
TileCal structure.
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New periodic boundary condition solver
Several changes in Mermaid code are required to take into account the

complex periodicity of the Atlas detector. The solution of Maxwell’s equation in
Mermaid is a sum of two terms: ϕ−∇= 'HH , where jH ='rot and, consequently,

'divgraddiv Hµϕµ = .

We can construct 'H as a sum of two solutions: for the solenoid coil turn on
only and for toroids coils turn on only. Traditional Mermaid solver with local boundary
condition can find both the solutions:

The field is perpendicular to y=0, x=y planes and parallel to z=0 plane in
toroids on only case;

The field is perpendicular to z=0 plane and parallel to y=0 and x=y planes in
solenoid on only case.

We use very large constant permeability of iron parts to ensure that 'H is
zero in them. Special mesh reflection around Phi=22.5 deg line procedure was
developed to ensure that the resulting 'H is precisely periodic.

We can call the problem periodic if it translates into itself after rotation around
some axis on n/2π angle. We can call the problem antiperiodic if it translates into
itself after rotation around some axis on n/2π angle with the change of the sign of
currents. Atlas is periodic relating to 8/2π rotation around Z-axis and antiperiodic
relating to 2/2π rotation around Phi=22.5 deg axis.

We will show now that the the requirement )4/()0( πϕϕ = must be fulfilled

for corresponding points in periodic problems and )4/()( απϕαϕ −−= for
antiperiodic problems to expand the magnetostatics field continuously to all the
space:
1. The resulting field will satisfy to Maxwell’s equations inside the problem domain.
2. The resulting field is continuous on the boundaries.

We use variation formulation of Maxwell’s equations for 3D magnetostatics to
introduce the magnetic potential.

Variation integral we choose in the following form:

( )( )dVÿI ÿ +∇= ϕϕµ 2/2 ,

where 'div Hµρ = .
During the first variation over potential, we suppose that µ is not varyied,

then

( )( )( ) 0=+∇∇= ÿ dVÿI δϕδϕϕµδ ,

Using the relation ( ) ( )δϕϕµϕδϕµδϕϕµ ∇∇−∇∇=∇∇ , we will have

( ) ( ) 0grad'divgraddiv =+−= ÿÿ SH ddVI δϕϕµδϕµϕµδ .

If we choose the variation δϕ as an arbitrary one inside the problem domain,
we obtain from the volume integral:

'divgraddiv Hµϕµ = ,
so the resulting field will satisfy Maxwell’s equations inside the problem domain.

If we choose
ii ~ϕϕ = in any two corresponding nodes i and i

~
for periodic

problem then ii ~δϕδϕ = so SS dd
ii ~gradgrad ϕµϕµ −= which corresponds to the

continuity of the normal component of B .
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If we choose
ii ~ϕϕ −= in any two corresponding nodes i and i

~
for

antiperiodic problem then ii ~δϕδϕ −= so SS dd
ii ~gradgrad ϕµϕµ = which again

corresponds to the continuity of the normal component of B .
Because of the fact that the requirements

ii ~ϕϕ = and
ii ~ϕϕ −= correspond

to the continuity of the tangential component of H for periodic and antiperiodic
problems we proved the continuity of the field on the boundaries.

The simplest way to make
ii ~ϕϕ = (or

ii ~ϕϕ −= ) on the boundaries is to

add ( ) 2/2
~
ii ϕϕλ − (or ( ) 2/2

~
ii ϕϕλ + ) term with sufficiently large λ parameter to

the discrete approximation of the variation integral. This corresponds to the addition
of some positive definite Λ matrix to the precondition matrix B of iteration scheme
of finding the solution of nonlinear magnetostatics equations:

fyyy =+−+ kkk AB τ/)( 1 ,

where A is the matrix of the equations system, f is the right hand, y is the
node potential function, B and τ are some solution strategic matrix and parameter,
correspondingly.

Because the Λ matrix is positive definite the convergence of nonlinear
iterations will be the same (or better) as for local boundary conditions [Samarsky,
Nikolaev, 1978].

Let us consider the correction of the cyclic conjugate gradients (CCG) method
used by Mermaid for the solution of the linear equations necessary because of the
introduction of additional links (coefficients) into the sparse precondition matrix B .

According to the red-black ordering scheme [Young, Hageman, 1981]
necessary for the CCG method, we have to distribute the nodes into two sets so that
the links inside every set (red or black) should be resolved directly.

In the case of local boundary conditions such a distribution can be achieved
by taking nodes on odd lines in Y direction in the first Z plane, even on the second
plane and so on as the red set and reminding nodes as the black one. The links
inside every set comprise the three-diagonal matrix, which can be simply resolved by
the direct method.

In the case of periodic boundary conditions the required ordering can be
achieved by using of L shaped lines instead of straight Y lines (Fig 2.). The inversion
of the L shaped lines that have not the nodes belonging to the periodical boundary
condition set is a simple three-diagonal matrix inversion. Let us consider now the L
shaped line, which has nodes belonging to the periodical boundary conditions set. If
we reorder the nodes taking them from X and Y planes alternatively we will have
five-diagonal matrix, which can be inverted easily (Fig. 2).

R B R B R B R B R B 2

R B R B B B R B R R 4

R B R R R B R B B B 6

R B B B B B R R R R 8

R R R R R B B B B B 9 7 5 3 1

Odd XY planes Even XY planes

Figure 6 Red-black ordering of unknowns and the ordering of unknowns inside L-line.
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Results of calculations
The calculation time for the model described above is 22 hours on Pentium

II/300 MHZ/0.5 GB of RAM, which is ten times more than an average calculation
time for ordinary problems of similar dimension (the number of linear iterations is
about 10,000). This can be explained by the fact of fine lamination of the TileCal
iron, similar behavior was observed in Babar detector calculations.

The number of nonlinear iterations is equal to 25, which are typical for the
problems with moderate level of iron saturation. The accuracy of the results can be
estimated as several percents in the TileCal and 10-3 in the rest major parts of the
detector. Several field map pictures are presented below to illustrate the general
level of granularity of the solution [Dubrovin, Vorojtsov, 1999].

Figure 7 R-ϕϕϕϕ plane, Z=0,ϕϕϕϕ=0°°°°÷÷÷÷90°°°°
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Figure 8 R-Z plane, ϕϕϕϕ=0°°°°, Bmax=4 Tesla

Figure 9 R-Z plane, ϕϕϕϕ=22.5°°°°, Bmax=4 Tesla
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Figure 10 R-ϕϕϕϕ plane, Z=300 cm,ϕϕϕϕ=0°°°°÷÷÷÷90°°°°

Parallel processing calculation scheme
Because of highly regular topological structure of the mesh used by Mermaid

and cyclic nature of the CCG method the parallel processing scheme of linear
iterations is rather simple [Young, Hageman, 1981].

Let us divide the complete set of Z meshes planes into N consecutive subsets
where N is the number of processors. Let every processor has the information (the
problem matrix and initial values of the potential) only about the part of the problem
domain covered by its own subset of Z mesh planes and about two additional Z
mesh planes before and after the its subset.

Then all the processors can simultaneously calculate new red node potentials
on the base of previous red node potentials and the black ones. After exchange of
the information about those newly calculated red node potentials on the boundaries,
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all the processors can calculate new black potentials. After the exchange of newly
calculated black node potentials on the boundaries and of integrated information
about subsets, new iteration parameters can be estimated and all the information is
available to all the processors to make the next iteration and so on until the end of
the current nonlinear iteration.

It can be seen that the efficiency of this calculation scheme is near 100
percents if the number of processors is smaller at least in 3-5 times than the total
number of Z mesh planes and if the speed of the information exchange between the
processors is not very poor in comparison with the speed of calculations.

This calculation scheme was checked out on the 1D model with the help of 4-
processor computer and showed 4 times increase of the calculation speed.

Realistic Atlas calculations
In the previous section we have described the parallel processing procedure

only for the linear part of problem solution. The reason is that the recalculation of the
nonlinear iteration matrix is not time-critical for the Atlas case. Indeed the number of
nonlinear iterations is in several hundred times less than the number of the linear
ones.

The full scale Atlas model calculation requires 10 times increase of the
number of mesh nodes for the total of 40 –50 millions and increase in 10-20 times of
the speed of calculation to limit the calculation time with 20-40 hours.

Because we need about 50 bytes of information per one mesh node so about
2.5 GB of total RAM is required.

Hence, the minimal computer configuration of 10 processors with 256 MB of
RAM available for each processor is required to calculate the full Atlas model.

Conclusion
The new Mermaid 3D periodic boundary condition solver is appeared to be

adequate to resolve the fine Atlas TileCal iron structure problems. However, the
computation time is large enough to raise a question about the use of more powerful
computers with parallel processing and larger memory.
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