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1 Introduction

1.1 Purpose of the document

This note is an attempt to present the design of the DAQ-Unit subsystem of the DataFlow in
DAQ/EF -1 system. The design is presented using the Unified Modelling Language (UML)
V1.3.

The design presented here should be viewed as a snapshot of an evolving process.

1.2 Overview of the document

Section 2 presents the DAQ/EF -1 context and the DataFlow context and its major subsystems.
In section 3, at the level of subsystems introduced in section 2, the interaction of the DataFlow
subsystem with other subsystems is presented. The design of the DAQ-Unit subsystems is pre-
sented in section 4. Detailed interaction diagrams, at the level of the man classes within the
DataFlow, are presented in section 5. Deployment diagrams are presented in section 6.

2 DAQ/EF -1 context

2.1 System context

The DAQ/EF -1 projects aim was to prototype the design and implementation of a fully func-
tional vertical slice of the ATLAS DAQ and Event Filter as outlined in the ATLAS technical
proposal. The project paid particular attention to the functional requirements.

The DAQ/EF -1 and its main subsystems are shown in the context diagram of Figure 1.

It can be seen that, based on functional requirements, the DAQ/EF prototype -1 has been
organised into three subsystems:

Figure 1: DAQ/EF -1 main subsystems and context diagram.
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• Back-End: provides all the functionality of a DAQ system not related to the movement of
event data, e.g. configuration, control and monitoring.

• Event Filter: provides for the final selection of events. It also provides the monitoring and
calibration of the ATLAS detector using complete events. It receives/returns events from/to
the DataFlow.

• DataFlow: is the hardware and software elements responsible for: receiving, buffering and
distributing event data; providing event data for monitoring; storing event data from the
detector. It also provides and receives event data from the EventFilter subsystem using an
interface implemented by the EventFilter.

Figure 1 also shows the dependencies between the DAQ/EF -1 and other Trigger/DAQ subsys-
tems and Atlas systems. The Level 1, Level 2, DCS and SubDectector subsystems have a
dependency on the Back End. The Event Filter, due to the requirement to use offline algo-
rithms, has an import relationship with the Off-line system. In addition, the Event Filter
accesses, via an interface, the Off-line package e.g. “offline databases”. The DataFlow subsys-
tem accesses an interface, implemented by the Mass Storage subsystem, for event storage. It is
also shown in this figure that the Level 1, Level 2 and Sub-Detector subsystems have a
dependency on the DataFlow subsystem. This is not a priori a software dependency but indi-
cates a physical dependency between these subsystems i.e. a physical link.

2.2 DataFlow subsystem context

The DataFlow, see Figure 2, is composed of three subsystems: the ROC (Read-Out Crate),
which provides the receiving, buffering and forwarding of data fragments from the detector;
the EventBuilder, which provides the merging of event fragments into full events; the SFC
(SubFarmCrate), which provides the sending to and retrieving of events from the Event Filter
and for the sending of events to mass storage.

The ROC contains two packages: the LDAQ and the DAQUnit. The latter is the subsystem
which provides the receiving, buffering and forwarding of data fragments from the detector.
The LDAQ provides the control and monitoring within a ROC and implements an interface
which is used by the BackEnd subsystem to control and monitor a ROC. The LDAQ is a global
package within the DataFlow subsystem, it is imported by the EventBuilder and SFC subsys-
tems

The flow of event data through the DataFlow subsystem is supported by the DAQUnit, Event-
Builder and the SFC.
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.

Figure 2 also shows the relationship between DataFlow subsystems and other subsystems
within and external to DAQ/EF -1:

• The SFC uses an interface for the sending and receiving of events from the EventFilter, the
latter implements the interface. Similarly, the SFC uses an interface implemented by the
MassStorage subsystem for the storing of events.

• The DAQUnit depends on: the SubDetector for the input of event fragments; the Level 1 for
the acceptance of calibration events; the Level 2 for the level 2 accept, reject and ROI
request.

• The EventBuilder subsystem depends on the Level 2 subsystem for the level 2 accept.

• As mentioned in the previous section, the dependency of the Level 1, Level 2 and SubDete-
cor subsystems on the DAQUnit and EventBuilder indicate physical dependencies not soft-
ware dependencies.

3 DAQ/EF -1 Interaction diagrams

3.1 General

This section presents the interaction diagrams for four specific patterns: Level 2 reject, Level
accept, ROI request and calibration event1. The interaction patterns are shown at the level of

Figure 2: DataFlow context and packages.

1.  The term calibration event is used to refer to any data taking activity which does not require the use of
the Level 2 subsystem.
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subsystems described in Figure 2. More detailed interaction patterns, i.e. at the level of the
main classes in each DataFlow subsystem, are presented in section 5.

3.2 Level 2 Reject interaction pattern

The Level 2 Reject interaction pattern is shown in the form of a collaboration diagram in Fig-
ure 3. The pattern is a single asynchronous communication between the Level 2 system and the
DataFlow system. One or more level 1 IDs are communicated to the ROC via this communica-
tion.

3.3 Level 2 Accept interaction pattern

The Level 2 Accept interaction pattern is shown in the form of a collaboration diagram in Fig-
ure 4. The pattern starts with the asynchronous communication of the L2Accept to all ROCs.

In this communication, the level 1 ID of events accepted by the Level 2 subsystem is commu-
nicated to the each ROC. Concurrent to this communication, sequence number 1b, the same
communication is made by the Level 2 subsystem with the EventBuilding subsystem. On
reception of these messages the ROC builds the ROC fragment object and the EventBuilder
assigns a Destination to the event. This Destination is subsequently, communicated to the
ROC, sequence number 2, and the ROC then communicates the ROC fragment to the SFC sub-
system. On reception of all ROC fragments from all ROCs, and the building of the ROC frga-
ments into an event and any event processing, the event is sent to MassStorage.

Figure 3: 

Figure 4: 
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3.4 ROI Request interaction pattern

The ROI Request interaction pattern is shown in the form of a collaboration diagram in Figure
5.

The pattern is initiated by an asynchronous communication between the Level 2 subsystem and
the ROC. The communication consists of the exchange of a list of ROIs. The Level 2 subsys-
tem, some time later, requests ROI data from the ROC with an asynchronous communication,
sequence number 2. The ROC replies, with an asynchronous communication, with ROIData to
the Level 2 subsystem.

3.5 Non-physics event interaction pattern

The interaction pattern for non-physics events, e.g. calibration events, is shown in the form of
a collaboration diagram in Figure 6. The pattern is very similar to that shown in Figure 4, the
main differences being that the Level 1 subsystem replaces the Level 2 subsystem.

4 DAQ-Unit

Figure 5: ROI Request interaction pattern.

Figure 6: Non-physics event interaction pattern.
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4.1 Introduction

The DAQUnit is the subsystem of the DataFlow which provides the receiving, buffering and
forwarding of data fragments from the SubDetector subsystems. This section introduces the
main components of the DAQUnit system.

A DAQ-Unit is associated to one or more external I/O channels, e.g. detector ROLs, and all the
functionality required to handle an external I/O channel is called a Task. The latter may be
placed on one or more processors and communicate amongst themselves, via internal I/O
channels, to ensure the DAQ-Unit functionality.

Tasks are combined to form I/O Modules (IOMs) and the latter provide the framework to
schedule, configure and control their Tasks. Examples of instances of IOMs are the Read-Out
Buffer (ROB), Event Builder Interface (EBIF) and the Trigger interface (TRG). Each of these
instances are associated to a single external I/O channel and one or more internal I/O channels.
Other examples of IOMs combine the Tasks designed and implemented foe the afore men-
tioned IOMs in different ways, an example being a single IOM having the full ROC DAQ-Unit
functionality.

The DAQUnit receives input, asynchronously, from three external I/O channels: one or more
ROLs, LVL2 and EB. For each input an action is performed:

• For each ROL, per event, a single ROD fragment must be received and buffered. In addition
fragment is formatted into a ROB fragment.

• From the LVL2 it must receive: one or more requests for ROI data, a single LVL2 Reject
message per event, a single LVL2 Accept message per event. The reception of a L2R mes-
sage leads to the removel of event fragments from the buffer. The LVL2 Accept messages
triggers the preparation of ROB fragments for transmission to the EventBuilder.

• From the EB per event, the destination of the event fragments is received.

4.2 IOM class diagram

The major component of the DAQUnit is the I/O Module (IOM). It provides the means to
input, buffer and output data and or data control messages. An IOM is also located at the
boundary between the DAQUnit and other functional elements. Therefore, it also implements
the interface between the DAQUnit and other subsystems (e.g. the Trigger system).

IOMs are data driven: they receive and process data and messages, which control the flow of
data, from one external I/O channel and one or more internal1 I/O channels. Data is buffered
and the data control messages indicate the actions to be performed on the buffered data e.g.
delete, forward and copy. All functionality associated to an I/O channel is called a Task. The
framework of the Tasks and the framework supporting the Tasks is common to all instances of
an IOM. This common framework and core functionality, e.g. message passing between IOMs,

1.  Internal to the DAQUnit.
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is provided by a package called the GIOM (Generic IOM). The IOM class diagram is shown in
Figure 7.

It can be seen that an IOM is a composition of three classes: GIOM, Instance and two or more
Tasks. The latter is an aggregation of three, abstract, classes: RunControl, Info and Scheduling.

The classes RunControl and Info implement the interfaces RunControl and Information. These
interfaces are used by the package LDAQ for the control and monitoring of Tasks and hence
instances of IOMs.

Tasks are scheduled by the Scheduler using a policy and the methods of the class Scheduler.
They communicate between themselves via the MessagePassing class.

4.3 TRG object diagram

The TRG receives and buffers data control messages from the trigger systems or alternatively,
is itself the source of these messages1. According to their type, the messages are sent to the
ROBs or EBIF. The TRG also provides a mechanism whereby messages may be stacked
according to their type before sending.

The TRG is structured around three tasks:

1.Task1: This is the task which inputs and buffers the data control messages from the Level 1
or Level 2 trigger systems. The boundary with the trigger system is an interface which is
managed by this task. The polling condition for this task indicates that one or more data

Figure 7: The IOM class diagram.

1.  Specifically when there is no external trigger system available i.e. during test procedures.
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messages have been or must be transferred to a buffer from the interface. In the latter case,
this task may have to control the transfer of the data control message. Which of these condi-
tions is implemented depends upon the design of the interface.

2.Task2: This task processes the data control messages placed in a buffer by the input task.
The data control messages are identified as those which must be sent to the ROBs or those
which must be sent to the EBIF. They may be temporarily stacked according to their type or
sent directly to the ROBs or EBIF. When stacking is used, the whole stack is sent as a single
message on a stack full condition. The maintenance of the data control message buffer and
stack is performed by this task.

3.Communications with the LDAQ: This is the task which integrates the TRG with the LDAQ
and is discussed elsewhere. At the level of the IOM, functions are required to execute run
control and monitoring request commands.

The TRG object diagram is shown in Figure 8.

4.4 EBIF object diagram

The EBIF, via the data collection component, builds the crate fragment into an internal buffer.
These fragments are subsequently sent to the event building sub-system. The building of a
crate fragment is started via the reception of a data control message, e.g. Level 2 accept, from
the TRG. Alternatively, the TRG input task may be implemented as a component of the EBIF.
In this case data collection occurs as a consequence of a message received directly from the
Level 1 or 2 trigger systems.

The EBIF is structured around four tasks:

1.Task1: This is the task which receives data control messages from the TRG or from the
Level 1 or 2 trigger systems. In the former case the messages are received using the message
passing functionality of the generic IOM. A message indicates that an event has been
accepted by the Level 2 trigger system (or the Level 1 system in the absence of a Level 2

Figure 8: TRG object diagram.
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system) and the identifier (common to the trigger systems and the DAQ) of the accepted
event is conveyed within the message. The event identifier is decoded from the message and
stored in a data structure shared with the Data collection task. This data structure is main-
tained by this task and must therefore be accessible via read or write operations.

2.Task2: This is the task which performs the collection of ROB fragments from all ROBs in a
ROC, for a specific event identifier, to form a crate fragment. The task appends that infor-
mation required by subsequent elements to directly access a specific ROB fragment. The
event identifier of the ROB fragments to be collected is accessed from a read only data
structure shared with the Input task. The task also adds EBIF specific data to the crate frag-
ment.

Data collection may proceed based on a shared memory model between the EBIF and the
ROBs or via message passing between the EBIF and the ROBs. The event identifier of the
crate fragments are stored in a data structure shared between this task and the source task.
The data structure is maintained by this task and must therefore be accessible via read or
write operations.

3.Task3: This task is responsible for the output from the ROC of crate fragments. Alterna-
tively, in the absence of a EBIF this task becomes a ROB task and is responsible for the out-
put of ROB fragments. The output could be to the event building sub-system or to a local
data storage system. This element is discussed elsewhere in the context of output to the
event building sub-system.

4.Communications with the LDAQ: This is the task which integrates the EBIF with the LDAQ
and is discussed elsewhere. At the level of the IOM functions are required to execute run
control and monitoring request commands.

The EBIF object diagram is shown in Figure 9.

Figure 9: EBIF object diagram.
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4.5 ROB object diagram

4.5.1 The Tasks of the ROB

The ROB receives and buffers a ROD fragment from a Read-Out Link (ROL) per event. A
ROB may have one or more ROLs. In addition, these fragments must be: copied to an external
Trigger system; accessed via the EBIF for Data Collection; and removed from the buffering
system. The ROB must also format the received event fragments to form a ROB fragment. The
ROB has three main logical Tasks:

1. Input: This task receives and buffers the ROD fragments coming from the ROL. In the
absence of a ROL i.e. for development and testing purposes, it is also the source of ROD
fragments. The polling condition for this task indicates that a ROD fragment must be trans-
ferred from the ROL to the buffer or that a fragment has been asynchronously transferred
from the ROL to the buffer. In the case that the fragment is pending on the ROL, this task
may have to set-up and perform the transfer and handle the ROL protocol.

2.Communications with the TRG: This task receives and processes data control messages
from the TRG. Two types of data control messages are received from the TRG: a ROI type
indicating that ROB fragments must be forwarded to the Level 2 Trigger system and a L2R
type indicating that ROB fragments must be removed from the buffer. This task polls on the
arrival of data control messages from the TRG.

3.Communications with the EBIF: This task collaborates with the EBIF to facilitate the Data
Collection process. It receives a request data control message from the EBIF and sends a
response data control message to the EBIF. The request message contains the Level 1 Iden-
tifier (L1ID) of the event fragment to be collected and the L1ID of a previously collected
event. The response data control message contains the location (or locations) within the
ROB buffers of the data associated to the requested L1ID. The event data associated to the
L1ID of a previously requested event is removed from the internal buffers of the ROB. On
receiving the response data control message the EBIF transfers the data from the ROBs to
its local buffer. The polling condition for this task indicates the arrival of data control mes-
sages from the EBIF.

The Tasks of the ROB access the buffer for the storing, retrieving and deleting of events. The
buffer management and the access mechanisms to the buffer contents are provided by the
Event Manager component. The interface implemented by this component supports one or
more buffers.
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The ROB object diagram is shown in Figure 10.

5 Interaction patterns

5.1 General

This section presents the main interaction patterns: the Level 2 reject, Level 2 accept and ROI
request. It also presents generalised patterns, those re-occurring in each of the four main pat-
terns. 

5.2 Scheduling pattern

The scheduling of Tasks is a recurrent theme through-out the main interactions. Its is presented
here to avoid reproduction in the presentation of the main interactions.

Each Task known to the scheduler implements the scheduling interface. The principle methods
of this interface are Poll and Action. The scheduler uses the Poll method to determine whether

Figure 10: ROB object diagram.
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or not the associated Action method needs to be invoked, i.e. whether the Task needs to be
scheduled.

5.3 Level 2 decision interaction pattern

This section presents the Level 2 decision interaction pattern, Figure 12. The interaction
involves the Level 2 system and the object TRG, an instance of the class IOM.

Figure 11: Scheduling pattern.

Figure 12: Level 2 decision interaction pattern.
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5.4 Level 2 Reject interaction pattern

Figure 13 shows the collaboration diagram for a Level 2 reject interaction pattern. The interac-
tion involves the composite object ROB and the pattern Level 2 decision interaction pattern.
The ROB object also uses the scheduling pattern.

The interaction pattern starts with an asynchronous communication involving the Level2 sys-
tem and an instance of the class buffer. The result being an ordered list of L2Decision objects
are stored in object buffer. Object Task1 checks that one or more new L2Decisions have been
received by the object buffer and subsequently processes them. L2Decisions of type L2Reject
are exchanged with the object Task2 via the object MessagePassing. The object Task2 uses the
methods MP_Query() and MP_receive() of MessagePassing to query and receive the
L2Decisions. Task2 extracts the L1ID from each of the decisions and maintains them in a list.
When the list contains group L1IDs, Task2 uses the method MP_Send(), sequence number 9,
to send the group of L2Rejects to the object ROB.

The instance TRG of the class Task queries and receives, via the methods MP_Query() and
MP_Receive() of an instance of the object MessagePassing, the list of L1IDs “sent” by the
object TRG. The object TRG subsequently, via the method EM_DeletebyId(), removes the
events from the object EventManager.

5.5 Level 2 Accept interaction pattern

Figure 14 shows the collaboration diagram for a Level 2 accept interaction pattern. The collab-
oration involves two instances of the class IOM, EBIF and ROB, each of which is shown as a

Figure 13: Level 2 Reject interaction pattern.
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composite object. Note: each has its own thread of execution. The ROB and EBIF objects also
uses the scheduling pattern and the Level 2 decision pattern is also present.

Figure 14: Level 2 Accept interaction pattern.
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5.6 Level 2 ROI Request

Figure 15 shows the collaboration diagram of the ROI request interaction pattern. The interac-
tion involves the composite objects ROB and L2IF, both of which use the scheduling pattern.

6 Deployment

6.1 General

The initial implementation of the IOMs is based on VMEbus Single Board Computers (SBCs),
specifically the CES RIO 8062 (RIO2) and the MOTOROLA MVME2xxx, running the
LynxOS operating system (versions 2.5.1 or 3.0.1). Communication between SBCs is via the
VMEbus and, optionally, a secondary bus supporting broadcast functionality. To date, only the
PCI Vertical InterConnect has been used as a secondary bus.

Figure 15: Level 2 ROI Request interaction pattern.
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The SBCs mentioned above have two PMC sites and the number of supported PMCs may be
increased with the addition of a PCI expansion board. Currently, only the PEB 640x has been
used in conjunction with the RIO2, thus increasing the number of PMCs supported by a SBC
to six.

Three deployments of the ROBIN have been made: the Local-ROBIN, the UK-ROBIN and the
MFCC-ROBIN.

6.1.1 The Local-ROBIN

In this implementation of the ROBIN the Input task and the Event Manager are implemented
on the processor of the SBC and ROD fragments are transferred from a ROL interface over
PCI bus into the SBCs system memory under the control of the Input task. In the case that the
SBC is a RIO2 or MVME2xxx the ROL interface used is the Simple SLINK to PCI (SSP)
PMC. All tasks of the ROB are part of the same application, therefore, access to events via the
Event Manager API are function calls.

Alternatively to the RIO2 or the MVME2xxx, this ROBIN could be deployed on an MFCC,
which is architectually similar to the RIO2. This deployment is of particular interest in the case
of the MFCC-ROBIN.

6.1.2 The UK- and MFCC-ROBIN

These ROBINs differ to that of the Local-ROBIN in that the ROBIN functionality is deployed
over the SBC and an intelligent I/O processor. Two intelligent I/O processor, based on the
PMC format, have been used for these studies, each consists of a processor (i960 or PowerPC
for the UK or MFCC-ROBIN respectively), an FPGA and some “glue” logic. The FPGA han-
dles the receiving and buffering of the data, the Intask, while the main functionality of the
processor is to provide Event Management. It should be noted that the full Event Management
functionality of the ROBIN is distributed over the processors of the SBC and the PMC.


