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Abstract

The Event Building sub-system of the DAQ/EF -1 prototype is introduced from its design up
implementation. Performance measurements on a small-scale prototype using two differen
working technologies are compared with simulation results obtained via a computer model b
on Ptolemy. The results obtained from these studies are promising for reaching the Atlas re
ments but need to be confirmed on bigger prototype systems.
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1.1 Purpose of the document

This document summarises the work performed, within the context of the Event Builder o
DataFlow system in ATLAS DAQ/EF prototype -1 [1][2].

1.2 Overview of the document

The document consists of six sections. In section 2 the design of the DAQ/EF-1 Event Bu
is described. This is followed by a description of the baseline event builder configuration
of the measurements performed on the ATM setup and the Gigabit Ethernet setup. The
done in the area of modelling and simulation is described in section 4. Reliability and faul
erance are described in section 5. Conclusions are presented in section 6.

1.3 The Event Builder in DAQ/EF-1

The Event Building sub-system is an integral part of the DAQ/EF prototype -1. It providesthe
coordinated, concurrent transfer of different sets of event fragments to different destinatioIt
allows one or more sub-detectors (or partial sub-detector1) to operate in stand-alone mode2,
while all other sub-detectors participate to collective Event Building. In addition, it allo
events of a specific type, defined by a system wide attribute, to be built at a set of unique
nations. This is shown schematically in Figure 1:

1.3.1 General Requirements

The high level model for the DAQ prototype -1 Event Builder is formulated independentl
any given communication technology, therefore it should be capable to incorporate diff
communication technologies.

1.  A partial sub-detector is a sub-set of sub-detector ROCs.
2.  The events are built from a sub-detectors event fragments independently of other sub-detectors.

Figure 1: Schematic of Event Building in DAQ prototype -1.
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The problem of merging event fragments into a complete event is characterised by the fo
ing constraints:

• An event is defined by: a global event identifier (Gid), an event type (Etype) and the p
tion identifier (Pid).

• An event fragment is defined by: a global event identifier (Gid), an event type (Etype) a
source identifier (Sid).These parameters will be used to determine the set of destinatio
the event fragment.

• Each event fragment is transferred to one and only one destination.

• The number of sources that send event fragments from the same event to the same (
destinations does not change during the run. A (physical) partition is statically defined
run start time.

• The number of sources that send event fragments to the same set of destinations dep
only on the partition sources and destinations belong to.

• A destination assigned to a particular event shall be able to receive that event.

• Error conditions are detected, flagged and reported. The occurrence of an error cond
may lead to loss of event fragments.

2 The Design of the Event Builder

In this chapter the design of the Event Builder is described. After an overview of the high
design and protocol, the detailed design for its main elements will be outlined.

2.1 High Level Design of the Event Builder

The Event Builder (EB) is a sub-system of the DataFlow in the DAQ prototype -1 an
responsible for merging fragments coming from different parts of the detector to full, for
ted events. The EB subsystem and its interfaces to other components of the Trigger/D
depicted in Figure 2.

The EB introduces the concept of physical partitions in the data acquisition system allo
for concurrent disjunct data taking sessions for sub-detectors (or partial sub-detectors1). In

Figure 2: The dataflow system.

1.  A partial sub-detector is a sub-set of sub-detector ROCs.
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addition, it allows events of a specific type, defined by a system wide attribute, to be buil
set of unique destinations (the so called logical partitioning).

The Event Builder model [3] consists of logical objects and a high-level protocol. Five log
objects have been identified: the Source (Src), the Destination (Dst), the Data Flow Ma
(DFM), the Network Manager (NetMgr) and the Network. The high level protocol is a se
rules which defines how events are built. It consists of control mechanisms, to manag
flow of data, and of a transfer mechanism. Source and Destination use the high level pr
rules to build the event, while the DFM provides the control rules. The transfer of event
ments as well as of control messages occurs over a Network which is configured and co
led by the Network Manager. The relationships between the first three logical object
shown in Figure 3: whereas the time ordered sequence of the high level protocol is de
and Figure 4.

The set of mechanisms defining the high level protocol is:GetId, Busy/Busy, End-of-Transfer
(EOT), End-Of-Event (EOE) andTransfer.

When an event is scheduled for Event Building by the Trigger system (Lvl2 or Lvl1) the D
uses aGetId mechanism to inform the source on the Destination Id (Did) and the Gid1 of an
event fragment which has to be exchanged with the destination. The actual event fra
exchange is performed by a Transfer mechanism. The destination notifies the DFM, v
End-of-Transfer mechanism, when an event fragment has been received. The End-of
mechanism is used by the DFM to inform the destination that a complete event has
exchanged between the destination and sources. In the case where a destination b
“busy”, a Busy/Busy (B/B) mechanism is used, per event, between the destination and
DFM to halt the flow of event fragments to the destination. This mechanism is also us
resume the flow of event fragments.

The Source

The source is a component of an I/O module. It is technology invariant; the technology sp
layer is provided by the network interface. The source provides the following functiona
initialisation of the network interface, event fragment sending and the handling of e
related to either sending or to the network interface.

Figure 3: Event Builder high level protocol.
Object relationships.

Figure 4: Event Builder high level protocol. Time
ordered sequence.

1.  Gid = Global Id. This identifier may coincide with the bunch crossing Id or may be an extension of it in 
to be a unique identifier across a whole data taking session.
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The source exchanges an event fragment with a destination. The Gid of an event fragme
the Did of the destination are obtained from the DFM. The source uses the Gid to acce
event fragment buffer and, with the Did, activates the network interface. The latter su
quently performs the send of the event fragment. The source subsequently performs
actions necessary to complete the event fragment exchange, like, e.g., releasing the buff
taining the fragment.

The Destination

The destination is a component of an I/O module. It is technology invariant, the techno
specific layer is provided by the network interface. The destination provides the follow
functionality: initialisation of the network interface, event fragment “ordering”, event ass
bly and the handling of errors related to any of the former.

The destination receives event fragments via the interconnecting network, notifies the
each time a fragment transfer has been carried out and is informed by the DFM when a
event has been (successfully or not) completed. The Dst must be able to send a busy s
the DFM if there is not enough space in the buffer to accept all the fragments belonging
new (not yet assigned) event. Furthermore, the destination performs the event assemb
provides the event header and the sub-detector headers. The copy of the assembled d
complete event in contiguous memory space is not a task of the Dst.

The DFM

The DFM is the logical object which ensures the correct flow of event fragments betw
sources and destinations. It therefore defines the high level protocol control rules. It as
Dids to event fragments and traces the reception of event fragments at destinations.

The Did assignment policy is based on a set of attributes which define the statical partiti
of the system. The physical partition Id uniquely identifies a set of sources and destina
the Event type can force some events to be sent to particular destinations or to includ
some sources in the Event Building process.

The assignment policy selects a Did from a possible set of Did’s. While the association of a se
of Dids with a set of Sids is static and performed at initialisation the final selection of a pa
ular Did within the set to pair with a Gid is done dynamically on a per event basis.

For each Gid and Did pairing the DFM must record which sources have exchanged an
fragment with the destination. When all sources (statically set at initialisation) have excha
event fragments, the DFM informs the appropriate destination that the event is complete
DFM may also inform a destination that an event is incomplete when it deems that one or
sources, based on a pre-defined criteria, will not complete the exchange of an event fra

The Network Manager

The Network Manager (NetMgr) watches over the status of the EB data flow network and
vides information about the status of the other elements in the EB system. It has, in part
to ensure the correct initialisation of the EB data flow network before the data flow tasks
EB sources, EB destinations and DFM) can use it.
- 5 -
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The Network

The Network comprises all those elements which are needed for the movement of even
ments and control data within the Event Builder. It consists of Network Interface Card
switching network for data transfer and, possibly, a separate messaging system for c
messages. While all other logical elements can be designed and implemented indepen
from the communication technology, the network is by definition technology dependent.

2.2 The Data Flow Manager

The DFM is the logical object which ensures the correct flow of event fragments betw
sources and destinations. It assigns destination identifiers (Dids) to event fragments and
the reception of event fragments at destinations.

2.2.1 Interfaces

The DFM interacts with the Source and Destination elements of the EB. The interface is
by the Network interface. Furthermore, it interacts with the LDAQ component of the D
Flow which provides the interface to the Back-End subsystem for configuration, run co
and error reporting. The Event Builder foresees the introduction of a ‘SUPER-LDAQ’ wh
will create an instance of the DFM for each physical partition in the system. The DFM
then control the partition it was assigned to and exchange control commands w
DFM-LDAQ. Finally the DFM interacts with the Trigger System in order to be informed
which events are scheduled for event building and to possibly activate a back-pressure m
nism in case that the EB cannot handle new events.

2.2.2 Functional Decomposition

The DFM is responsible for the correct operation of the EB. On the basis of its high l
design and of its context diagram a set of logical components can be identified, which pe
the required functions and their interactions. This decomposition involves as well a
detailed specification of the functions in terms of their (input/output) parameters and the
structures they share. A possible design, in which the physical partitioning is handled b
‘SUPER’-LDAQ, is shown schematically in Figure 6.

The global control (‘SUPER’-LDAQ)

The global Control of the event building system is the task of the so-called ‘SUPER-LDAQ
is responsible for running and controlling all the possible physical partitions in the syste

Figure 5: DFM context Diagram.
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and by keeping track of their current status. Commands which activate and control the
partitions (e.g. pre-configure, configure, start, stop, etc.) are conveyed to the DFMs vi
DFM-LDAQs.

The partition control (DFM)

It controls all the other components of the DFM by transmitting the commands and data
information from the DFM-LDAQ. Commands, the same set to which any DAQ/EF -1
Module will respond, accepted by the partition control module are the following:

boot: initial operations to set up the partition;

pre-configure: it initializes the data structures used by the DFM components and performs
setup operations for high level protocol functions;

configure: it accomplishes the necessary initialization phase in order to be able to perform
high level protocol functions;

start: it activates the partition;

stop: it halts the execution of the partition;

pause/resume: it suspends/resumes the partition;

unconfigure: it deactivates the partition;

Figure 6: Schematic of the functional components of the DFM and their interaction.
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exit: it aborts the partition and quits.

The destination assignment

This DFM component has the task to associate a certain Did for a given set of event fragm
It receives data input pairs (Gid, Etype) from a trigger system and assigns a destination i
fier to it. The pairs of event identifier and destination identifier are then multicast to the
vant sources of the partition.

The assignment policy has basically two steps:

• Identify the set of Dids associated to the partition and event type.

• Assign a Did from the set.

This assignment policy allows partial, full or stand alone event building functionality to
implemented. Any physical or logical partitioning of the EB is taken into account during
one. The second step of the policy implements the real destination assignment algorithm
round robin or random assignment). Exceptional conditions (such as the “busy” state for
tination) are treated at the second step of the assignment procedure where a suitable Did
chosen within the available set.

The set of destinations can possibly vary during execution, due to the occurrence of e
such as the failure of destinations. The DFM should therefore be able to keep track of
happens during a run and be able to dynamically ‘adapt’ its behaviour in response to the
rence of unpredictable events.

The Event Completion server

It implements the EoT and EoE mechanisms between DFM and destinations.

The EoT mechanism is used to count the number of fragments received by a given destin
while the EoE mechanism asserts the completion of the event at the destination. The pa
ters involved in this high level functions are the event Gid, Sid and Did.

The DFM deals with Gids, Sids and Dids in order to accomplish the EoT mechanism. As
as it detects the partial or total completion of an event (EoE), the Gid-Did parameters
with the status of the completion are conveyed to the destination.

The Busy/Busy

The DFM must be aware of the fact that a (set of) destination(s) could temporarily be una
receive further data. In reaction to that the DFM should halt the transfer of event fragm
towards that particular (set of) destination(s), by temporarily changing the assignment p
Analogously, the DFM must be informed about the recovery of the destination(s). The D
uses this mechanism to decide, before assigning any Did, whether that particular desti
will be able to receive and process the event (Gid) to be transmitted. The purpose is to g
tee the availability of the resources at the destinations at any time during the data transm
This mechanism can be accomplished by through a credit based Did assignment policy
additional exchange of information between DFM and Destinations. The flow of new even
a Dst will be halted both in case that its credit is exhausted and in case that it actively req
- 8 -
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to be excluded from new assignments (e.g. in case of the Event Filter SubFarm being un
process other events).

The partition data structures

There are two kinds of data structures which are used by the DFM components. The firs
is mainly handled by the partition control task and represents the status of the process
tion (initialised, running, paused, stopped, aborted, etc.); the second kind of data struc
shared among all other DFM components (the destination assignment task, the event c
tion server and the Busy/Busy) in order to regulate the high level protocol functions.

The partition description contains the following information:

• physical partition:

•  set of sources by Sid and (physical/network) address;

•  set of destinations by Did and (physical/network) address;

• logical partition:

•  Did vs Etype association

The data structures used to control the correct execution of the high level protocol mecha
have the following information:

• Status at the destinations

•  active/inactive

•  Busy/Busy

• Event association (Gid, Did and the number of outstanding EOTs) for each event a
destination.
A matrix keeps track of the status of the assignment at any time: for each destinatio
there is a set of Gids assigned to it. The possible maximum number of Gids depend
the number of concurrent events that can be simultaneously assembled by the desti
and defines what it is calledresource index for a given destination. This matrix is update
either by assigning a destination to a new event or after the completion of an event (E
The event association follows a credit based scheme. The latter is based on the estim
of the maximum number of events that can be simultaneously received and assemb
the destination and might take into account features of the host architecture (I/O an
memory) at the destination.

2.2.3 DFM Implementation

The DFM is an application driven by stimuli which may be generated either externally
interacting with the external components of the system (e.g. trigger, sources and destina
or internally, by software (e.g. a timeout expiration). It has been structured as a set of lo
components, whose software implementation is called thread or task. These tasks are ex
on the occurrence of stimuli and provide the required functionality associated with that s
lus. They are controlled by a scheduler whose scheme is the same as the one of the IO
- 9 -
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Based on the analysis of the DFM functionality presented above the following tasks or
tions can be identified:

• The DFM-Trigger communication task.
It provides the functionality to notify the DFM about the availability of a new event to
built

• The DFM-Source communication task.
It is used to distribute the paring (Gid, Did) to the sources.

• The DFM-Destination communication task.
It provides the mechanism for controlling the event completion and the availability o
resources at the destination.

• The LDAQ interface
This component fulfils all the functions related to the interaction between LDAQ and
DFM such as control, monitoring and error reporting.

• The DFM core.
This component covers all the functions related to the fulfilment of the high level pro
col: destination assignment, event completion and availability of resources at the de
tion.

The skeleton of the DFM reveals therefore five active elements (threads) as schematical
resented in Figure 7.

The core of the DFM functionality has been prototyped and implemented by defining a s
C++ classes which behave as Finite State Machine (FSM) objects.

Figure 7: The DFM skeleton.
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The DFM/FSM base class provides a method (getCmd) to provoke a state transition which, in
turn, induces the execution of an action performing the required DFM function associated
that transition. Two matrices are used to define and keep track of state transitions and a
ated actions. At instantiation time the FSM C++ class creator requires pointers to both the
sition state matrix and the action matrix. These matrixes are initialised and assigned at
instantiation. The two matrices define the core of functionality provided by the object.

In addition, the DFM/FSM class provides a method (sendCmd) to induce the state transition o
a targeted DFM/FSM object so as to allow different DFM/FSM objects to interact with e
other.

To cover the functionality required by the logical model described above, it is necessa
define the following DFM/FSM objects: the partition control object, the destination ass
ment object, the destination object and the event object. A detailed description of their
tionality and interaction is given in the section below.

The Partition Control Object

The ‘Partition Control’ DFM/FSM object executes a set of commands which operate on
status of the DFM and transmits them directly to the object which performs the destin
assignment task. It is instantiated when the whole DFM application starts. At the pre-conf
phase the destination assignment object is created. It is then initialized at a second s
response to the configure command, by which the objects handling the event completion
destination are also created. Once initialized, all the objects belonging to the DFM cor
able to receive commands from the ‘Partition Control’ object (start, stop, pause, res
abort). The FSM diagram which defines the partition control object is depicted in Figure

The Destination Assignment Object

It is instantiated by the ‘Partition Control’ object and it is responsible for assigning a des
tion to each set of event fragments (identified by a Gid) notified by the Trigger system. It
interacts with the set of ‘Destination’ objects which control the event completion and the s
at the destination. After a destination (Did) has been assigned to a given Gid, the pair o
and Gid is broadcast to all sources in the partition. The ‘Destination Assignment’ DFM/F
receives commands from the ‘Partition Control’ object for handling the execution of the p
tion in addition to a specific command, the PARTITION_GETID. This command is recei
from the DFM-Trigger communication thread whenever a new set of event fragments is
fied by the trigger system. The partition specific commands are the follow

Figure 8: Partition Control FSM diagram.
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PARTITION_INIT, PARTITION_START, PARTITION_STOP, PARTITION_PAUSE
PARTITION_RESUME.

At initialization a set of ‘Destination’ DFM/FSM objects are instantiated, as many as
number of destinations in the partition. As already mentioned, these components perfo
the functions related to the control of the availability of resources at the destination an
event transfer completion. Whenever a new Did has been assigned, the related ‘Destin
DFM/FSM object is notified by the ‘Destination Assignment’ object via th
DESTINATION_GETID command. The FSM diagram of the ‘Destination Assignment’ co
ponent is shown in Figure 9.

Destination Object

The DFM/FSM object covers the event completion functions (EoT and EoE) and detec
exhaustion of the available resources at the destination (Busy/Busy). It is therefore identified
by the logical destination identifier (Did). As any other DFM/FSM, object it receives partit
commands. Moreover, specific commands related to the event builder high level protoc
treated by the ‘Destination’ objects. The latter are the DESTINATION_GETID comma
used to keep track of the number of events being simultaneously treated at the destinatio
the DESTINATION_BUSY /DESTINATION_NBUSY command that, when activated, no
fies the temporary unavailability/availability of resources at the destination. The EoT and
mechanisms are controlled through another set of FSM objects which are associated
‘Destination’ object. Each ‘Destination’ object creates, at initialization, a set (=numbe
events that can be simultaneously processed by the destination) of ‘Event Server’ object
set is dynamically activated by the EVT_GETID command which is issued by the ‘Des
tion’ object, whenever assigned. The partition specific commands accepted by the ‘De
tion’ object are the following: DESTINATION_INIT, DESTINATION_STOP
DESTINATION_PAUSE, DESTINATION_RESUME, DESTINATION_ABORT. Figure 10
shows the FSM diagram of the Destination DFM component.

Event Object

This functional component covers the complete functionality required by the EoT and
mechanisms. As mentioned in the previous section, the destination object creates at init
tion a set of n (=maximum number of concurrent event transmitted to the destination) ‘E
Server’ objects. When a destination is assigned to a new event the related ‘Event Server

Figure 9: Destination Assignment FSM diagram.
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ponent is activated by the EVT_GETID command which is sent by the correspondent ‘D
nation’ object. The ‘Event Server’ object is thus dynamically identified by the pairing (D
Gid). The ‘Getid’ action starts the counting of the transfers of fragments belonging to tha
which is achieved by the EVT_EOT command. When the number of transfers is equal t
number of active sources (for the given Gid) the EVT_EOE command is invoked by the o
itself and the destination node notified about the completion of the event. At this poin
‘Event Server’ object is freed and ready to treat another event. Figure 11 depicts the FSM
gram of the DFM ‘Event Server’ component.

2.3 Sources and Destinations of the Event Builder

2.3.1 Design philosophy

Sources and destinations are tasks of an IOM, the EBIF and SFI respectively: they use
generic IOM services (scheduler, event management, communication with LDAQ) [4] and
low their design philosophy.

Figure 10: FSM diagram of the destination object.

Figure 11: FSM diagram of the Event Server object.
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2.3.2 Interfaces

Sources and destinations have common interfaces with a buffer (the input buffer and the
buffer respectively), with the DFM for ensuring the correct flow of event fragments,
LDAQ (via the generic IOM) for run control, monitoring and error reporting purposes,
with the Network I/F which performs the fragment transfer. Furthermore, each of them i
faces via a FIFO mechanism with another task of the same IOM on which they are run
The source is notified by the data collection task of the EBIF when crate fragments are re
be treated. The destination notifies the output task of the SFI when there are complete
ready to be treated.

Interface with the LDAQ

The communication of the LDAQ with sources and destinations will make use of the ser
developed for the communication with any IOM. Since for some technologies the net
connections have to be opened in two separate steps (first all the receivers and then all s
the finite state machine developed within the LDAQ to describe the state of a crate allows
two step configuration phase (preconfigure, configure).

The communication with the LDAQ is necessary for the configuration of sources and des
tions, monitoring and error reporting. In particular, besides the parameters which have
retrieved for the whole EBIF and SFI, the sources and destinations must have acces
parameter list where the translation between logical addresses (Nid = node id) and ne
specific addresses is made. Each source/destination will establish connections only w
destinations/sources of their partition: the addresses will be achieved via the LDAQ durin
preconfiguration phase. The destinations will also need to retrieve the parameters necess
the B/B mechanism and the list of subdetector id’s within their partition.

Interface with the DFM

Sources and destinations will have to exchange messages with the DFM. The source p
the availability of a message containing the Gid of a fragment and the Did it has to be se
The destination has to send an EoT message each time it has received a fragment, it
notify the DFM whether it is busy or not, and it receives an EoE when a complete even
been (successfully or not) transferred. The details of the API providing these functionalitie
described in [5].

Figure 12: Src/Dst context diagram.

Network I/F

DFM LDAQX

X = Src, Dst

Buffer
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The Network Interface

There is a technology independent API providing the calls necessary to setup connectio
transfer data through each specific network. This API is described in detail in [6].

2.3.3 Functional decomposition

Source

The source receives a Gid/Did from the DFM. As soon as the corresponding fragment is
able, it is sent. With this design, it is necessary to take care of possible desynchronis
between the arrival of fragments and the arrival of Gid/Did pairs. It must be assured that,
in case of an error implying the loss for one event of one of those two elements, the sourc
be able to go on sending the other fragments. In order to ease the synchronisation betw
information coming from the DFM and the availability of fragments in the input buffer, i
possible to develop the source in two independent and time uncorrelated tasks.

When the DFM sends a message with a new Gid and the associated Did, the corresp
fragment is searched in the input buffer. If the fragment is found it is sent, else the Gid/Did
is added to a list of available Gid/Did pairs.

DFM_get_active()  // Poll on DFM messages

DFM_getid(out Gid, out Did) // Implement GetId mechanism

EM_GetById(in Gid, out ptr to data) // Find event in memory buffer

if(EM_GetById(in Gid, out ptr to data) == EM_OK) {

ebio_send(in Did, in data, in size) // Send event if available

EM_DeleteByGid(Gid) // and remove from memory buffer

}

else {

add_to_list(in Gid, in Did) // queue event for later treatment

}

Figure 13: Src module. Logical flow.

get_Did (DFM)

find fragment

send fragment

delete fragment
add to list of
Gid/Did pairs

?
yes no
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The data collection task of the EBIF notifies the source, as soon as a new crate fragme
been built. The source then looks for the destination ID in the locally available list of Gid
pairs. If the Gid/Did pair is found, the source reads the event fragment from the input b
and sends the fragment to the destination via the interconnecting network. Once a fragme
been sent the input buffer is released.

is_new_Gid(out Gid) // Poll for a new event

if(find_in_list(in Gid, out Did)== OK) {  // ahead for Did

EM_GetById(in Gid, out ptr to data) // find event

ebio_send(in Did, in data, in size) // send it

EM_DeleteByGid(Gid) // and remove from buffer

}

exit

Destination

The destination can be described in terms of three logically separate tasks as shown in
15: It receives fragments, assembles events providing all the necessary headers, and
cally checks how many memory resources are left to the event manager in order to infor
DFM of its B/B state.

Task 1 = receiving fragments:)

Figure 16: shows the behaviour of the task when fired by the arrival of a new fragment. W
a fragment is ready to be received, the event manager allocates big enough space to s
The fragment is received directly into the allocated buffer. It is checked whether for that
an EndOfEvent has already been received, indicating that the fragment cannot be accep
more and has to be discarded. Afterwards it is passed to the event assembler (see Sectio
which will provide the necessary headers and links the fragment to its subdetector head
successful completion of these operations the End Of Transfer is sent to the DFM.

Figure 14: Destination module. Logical flow.

is_new_Gid

find Gid/Did pair

send fragment

delete fragment
exit

?
yes no
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ebio_recv_poll(out yes_no, out Sid) // poll receiver end

EM_GetPage(out PtrFrag)  // allocate space in memory

ebio_recv_read(in Sid, out PtrFrag->data, out size) // read fragment

if(Find_in _list_of_corrupted_events(in Gid) == OK) {

EM_ReturnPage(in PtrFrag) // discard corrupted event

return

}

BK_AddHeader(in Gid, in PtrFrag->data) // add event header

DFM_EndOfTransfer(in Gid, in Sid) // send EOT if needed

Figure 15: The three different logical tasks of the destination

Figure 16: Logical behaviour of the task of the destination triggered by the arrival of a fragment

Check memory resources

Receive fragments;
pass them to the event assembler

Assemble fragments to complete

Fragments
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Output task
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Event Manager
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Operate event assembler
on fragment Discard fragment
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Task 2 = receiving an EoE message:

Figure 17: describes the behaviour of the task when fired by the arrival of an EoE messa
function polls on an “End of Event” message from the DFM. The event is assembled and
istered in the event manager. If the event is corrupted it is added to the list of corrupted e
Furthermore, the Gid is added to a list containing the ready events (this list will be used b
output task of the SFI).

DFM_evctrl_EoE_ready(out yes_no) // poll on arrival of EOE message

DFM_EndOfEvent(out Gid, out status) // read EOE message

BK_Assemble(in Gid, in status) // now assemble the full event

if (status != OK) {

Add_to_list_of_corrupted_events(in Gid) // if corrupted, take
notice

}

add_to_ready_events_list(in Gid) // ready to be shipped

Task 3 = checking the availability of memory resources:

The availability of resources has to be tested on the basis of the estimation of the num
complete events that can be stored in the event manager. Since several events are bei
concurrently and the memory resources are allocated at arrival of each fragment, the ava
ity of many EM pages alone is not sufficient to guarantee the possibility of receiving
building new events. The destination must notify the DFM if it is not capable of being assig
new events using the B/B mechanism.

Figure 17: Logical view of the task of the destination waiting on the End of Event message

DFM DST Event assembler Output Task

End Of event
Assemble event

Provide Gid of
completed event

Delete event from
event assembler
- 18 -



them.

taining
anager
need
to be

y event
ill be
e event
the Gid

arrival
of the
arrays
ism

nd to

for the
tion is
o its
ossible
der has
to the

the
jects

Open,
reate,
BK_GetNevents(out Num_of_Events) // how many events in buffer?

if ((Num_of_Events>= BUSYLIMIT) &&(Dst_is_busy==NO)) {

set_destination_busy(in YES) // if beyond limit, declare itself busy

DFM_BusyNotBusy(in Did, in BUSY)

}

elseif((Num_of_EvHeaders<NOBUSYLIMIT)&&(Dst_is_busy==YES)) {

set_destination_busy(in NO) // if busy and below threshold

DFM_BusyNotBusy(in Did, NOTBUSY) // tell world no longer busy

}

2.3.4 Data handling and formatting

The Event Manager

The event manager is responsible for storing data and providing a means of dealing with
Its API is specified in [7].1

The Event Assembler

One of the tasks of the destination is the assembly of fragments to complete events con
event and sub-detector headers. In order to perform this activity the usage of the event m
must be integrated with a library which keeps track of the arrived fragments. There is no
to store fragments belonging to the same subdetector in a specific order, but they have
grouped and preceeded by the corresponding sub-detector header. Furthermore, ever
has to start with an event header and, within an event, the different sub-detectors w
ordered. For this purpose an “event assembler” has been developed: it makes use of th
manager for the data and header handling and storage and it registers into a structure
and location of every event and subdetector header.

The event assembler consists mainly of a linked list of arrays and the event manager. At
of a new event an array is reserved, for the storage of the location in the event manager
event header and the subdetector headers, and is linked (with a single linked list) to the
containing the same type of information for other events. The linked list mechan
(Figure 18) allows to look for the needed information using the Gid as searching key a
easily remove arrays of completed events.

When the first fragment of an event arrives, the event header and the subdetector header
subdetector id of that fragment are created, put into event manager pages and their loca
stored in an array. Furthermore the fragment is linked, via the EM_LinkPage function t
subdetector header. When the next fragment for the same event arrives, there are two p
scenarios: either it belongs to a different subdetector, in which case the subdetector hea
to be created, put in the EM and its location has to be stored in the array, or it belongs
same subdetector, in which case it is just linked to the subdetector header via
EM_LinkPage function. While fragments for the same event keep arriving, the ob

1. Sources and destinations make an extensive use of the EM making calls to the following functions: EM_
EM_GetById, EM_DeleteById, EM_IsFreePage, EM_GetPage, EM_ReturnPage, EM_LinkPage, EM_C
EM_Reset, EM_Close.
- 19 -
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depicted in Figure 19: are created in the EM. When the event is completed, it is assemb
linking each subdetector chain to the event header as shown in Figure 20: Using the
manager it is possible at this point to handle the event as an unique object.

2.4 Err or handling

In this section the possible asynchronous error types that could appear in the EB at runtim
listed. All errors are reported via the same scheme used in all other IOM applications. No
handling policy has been defined yet.

• Communication errors: since sources, destinations and the DFM communicate via a 
work, there is a whole class of possible errors due to the malfunctioning of the techno
specific drivers, the PCI/technology interfaces or the network itself. These errors ca
furthermore classified in different severity classes. An isolated send or receive erro
potentially cause a fragment or a control message to be lost, but does not affect the

Figure 18: Linked list of arrays, where the location of the event and subdetector headers is stored

Figure 19: The fragments belonging to a subdetector are all linked with each other in the EM

Figure 20: The completely assembled event consists of a chain of linked event manager pages
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tioning of the EB itself. Such errors can be classified as WARNINGS. The loss of con
tion to one ore more destinations as well may cause some fragment losses, but allow
EB itself to continue running. These errors can be defined as RECOVERABLE. On
other hand the loss of connection with a Source requires the EB to be reconfigured
the loss of connection with the DFM blocks the EB high level protocol: these errors h
therefore to be considered FATAL for the application.

• Event manager errors: all functions related to the activity of event management are s
ject to errors. Though the lack of memory resources is a severe error and might lead
loss of event fragments, the back-pressure mechanism implemented within the dat
acquisition should allow to RECOVER from this error state without crashing the app
tions.

• Synchronisation errors: this error class describes those cases in which one of the EB
nodes reacts slower than the rest of the system to the occurrence of an event. As lo
the system can recover from it without external intervention in a short time these er
can be considered as WARNINGS and can be handled with internal timeouts or wit
Busy/Busy mechanism.

3 Prototype Implementation

The initial implementation of the EB prototype was guided by the decision to use the sam
working technology for the exchange of control messages as well as for data transfe
DAQ-1 approach of making use of conventional drivers to interface with the network impl
non negligible CPU consumption for every I/O operation. It was judged necessary to min
the number of messages between processors. The functionality of the DFM is, therefore
tially distributed on the DST processors, resulting in a protocol where the EoT messa
implemented as a local function call and the EoE mechanism is implemented as a local
tion call plus a message going to the centralized part of the DFM. The Gid is directly not
by the LVL2 trigger to the DFM and the destination assignment information is broadcast
the sources within the same partition. For the technologies supporting multicasting an
symmetric configuration (# of sources = # of destinations), this implementation assures th
none of the event builder nodes has to process event data or control messages at a rate
ent on the number of nodes in the system and grants scalability at least at the level of m
exchange.

In order to exercise different networking protocols, all technology specific aspects of th
have been hidden by an API; sources and destinations were made independent from th
and high level protocol implementation via another API.

Three technologies with very different approaches to networking where chosen in a
instance to study the Event Builder: ATM, Fast Ethernet and Fiber Channel. ATM is a tec
ogy widely used in telecommunications and as backbone for the Internet. It’s main adva
is the standardised offer of Quality of Service techniques which can help in solving conte
which arises in the typical EB traffic where all Sources try concurrently to send their fragm
to the same Destination. Furthermore it offers a complete end-to-end lightweight pro
(with a software overhead of 20-30µs per message), AAL5. Ethernet is the most widely d
tributed networking technology and the capability of effectively using it for event build
would strongly reduce the hardware costs of this sub-system. Ethernet has been studied
- 21 -
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nection with the TCP/IP protocol which assures data delivery but has the disadvanta
being fairly heavy weighted (with a software overhead larger than 100µs per message). Fibe
Channel was, up to a few years ago, the only technology offering Gbit/s link speed and
therefore considered promising for event building. Its evolution towards becoming the
technology for disk connections instead of a general purpose networking technology as w
the appearance of Gigabit Ethernet has reduced the interest in further purchasing it.
Channel studies have been documented in (NIM PAPER) and have been interrupted in 

The EB prototype has been implemented in a way which allows its functioning both within
DAQ-1 prototype and in standalone mode. In particular, Src and Dst have been implem
as C-libraries which can be linked into real EBIF and SFI applications or, respectively,
IOMs which generate event fragments when triggered and delete events instead of s
them to the Event Filter farm. In this chapter results concerning the standalone EB will be
sented.

3.1 The Trigger Emulation

Different Trigger emulation and event generation schemes have been developed for th
depending on the availability of an external trigger element and of a bus (PVIC or V
which could distribute trigger signals both to the DFM and the Sources:

1. No external Trigger

The DFM itself generates Gids and assigns them to Destinations as fast as possible.
the Sources receive the GetId message they generate a fragment and send it.

2. External Trigger only to DFM

The DFM receives Gids at a predefined rate and assigns them to Destinations. Wh
Sources receive the GetId message they generate a fragment and send it.

3. External Trigger to DFM and Sources

The DFM and the Sources receive Gids at a predefined rate. While the DFM assign
Gid to a Destination the Sources generate the event fragment. This implementati
from a timing point of view, the one which resembles more the operation of the EB w
the whole DataFlow prototype in which Readout Crates and DFM operate concurr
and are resynchronized vie the GetId mechanism.

3.2 The ATM Pr ototype

The ATM Event Builder has been implemented on VME bus based Single Board Comp
(SBC), the CES RIO II 8062 (200 MHz), running LynxOS 2.5.1 as operating system.
ATM interface cards as well as the driver are from the company CES, while the switch is
ports switch, the ForeRunner LE 155 from the company Fore.

The Trigger emulation was performed making use of the PVIC or, equivalently, the VME
to broadcast event identifiers to Sources and to the DFM. The event rate sustained by t
was calculated every 10 seconds at the DFM and, independently, at the Destinations
redundant information was used to monitor the balance of the event assignments betwee
- 22 -
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Figure 21 shows the event rate sustained by the
1 x 1 ATM EB as a function of the number of
concurrent events assignable by the DFM to a
single Destination. This number corresponds to
the number of credits which are given to a Des-
tination within the DFM. When the credits are
exhausted, the Dst is considered to be Busy and
no new Gids are assigned to it before at least
one of the events being built is completed. It is
sufficient to have more than four events being
concurrently built in the ATM EB to saturate
the rate and be in conditions of ideal parallel-
ism for what concerns the operation of the EB
applications. This number is very small and
points towards the fact that the latency of ATM
NICs and switches is low compared to the time which is required to process the events
applications. The following measurements have been made with four events being as
concurrently per Dst. This assures to achieve the maximum possible rate, while keeping a
control of the flow of events in the system. If one of the Destinations falls out or sends a
message to the DFM, at maximum 4 events, which might have been already assigned,
lost. Then, no more events will be assigned to that Destination, until aBusy message is issued

Figure 22 shows the time requested to build an
event from the moment of the Destination
assignment to the notification to the DFM node
of its completion as a function of the number of
Sources involved, for fragments of 256 Byte.
This measurement is the most crucial indicator
for the scalability of the performance of the
Event Builder prototype to the ATLAS EB. A
linear behaviour of the latency implies perfect
scaling, which means that an N x N Event
Builder will have the same performance as a
small 2 x 2 prototype. The measurement is
very encouraging, although the limited number
of nodes available is not sufficient to unequiv-
ocally exclude the presence of a week quad-
ratic dependency of the EB time on the number
of Source nodes1. A quadratic behaviour of the
EB time arises if there are one or more functions whose processing time depends linea
the number of nodes in the system, such as theatmSelectfunction in the DFM or Destinations.
Simulation studies on the EB have shown (see Chapter 9) that even a weak quadratic d
ency may have dramatic effects on the performance of the ATLAS EB.

1.  Data could be fitted with either a linear function f(x) = 697+111x with aχ2 of 3.9 for 6 degrees of freedom or
with a quadratic function f(x)=723+93x+2.2x2with aχ2 of 3.6 for 5 degrees of freedom.

Figure 21: Event rate of the EB as a function of the
number of events which can be concurrently
assigned to a Destination. Each fragment has a size
of 128 Byte.
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Figure 22: Time requested to build an event from
the moment it is assigned to when the EoE message
reaches the centralised part of the DFM as a
function of the number of Sources involved in the
EB. The dashed curve corresponds to a quadratic
fit of the data while the continuous line
corresponds to a straight line fit1.
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Figure 23 shows the comparison of the event
rate achieved by a 2 x 2 Event Builder with and
without Data Flow Management. In absence of
a DFM the Sources assign the events to the
Destinations with a very simple static algo-
rithm based on the event Id, and the Destina-
tions perform the fragment counting and event
completion on their own. This comparison is
not meant to evaluate the possibility of running
the EB without a DFM, which is absolutely
necessary for robustness and system’s fault tol-
erance reasons, but only shows how much
could be gained in performance in the case that
a very fast reflective memory system would be
introduced for the exchange of control messages between the DFM and the other EB
The difference is particularly appreciable when small data fragments are exchanged, si
that region the performance is dominated by the software overhead rather than by the ne
link speed.

Finally, Figure 24 shows the performance of
symmetric EB configurations of up to a 4 x 4
system as a function of the fragment size. The
1 x 1 prototype achieves a lower event rate due
to the fact that the Destination has to perform
the event assembly for every fragment
received, while for the other configurations the
rate is limited by the performance of the
Sources. The fact that for the three bigger EBs
the event rate is the same for big fragments is
an indication that the switch behaves as an
ideal switch without any problem in serving
the ATM full link speed to all the nodes: this is
anyhow expected for a small 12 ports switch which is designed to offer an aggregate
width of 2.5 Gbit/s. For small message sizes the EB performance is limited by the soft
overhead imposed by the EB protocol as well as the CPU consumption due to the frag
ordering and the event formatting operations in the Dsts. As the size of the fragments
therefore the time to transfer them, increases, the event rate is more and more dominated
link speed of 155 Mbit/s (~ 135 Mbit/s payload) offered by ATM. For fragments bigger t
8 kByte the EB is completely exploiting the network capability.

More detailed information on the prototype setup as well as several other measuremen
documented in [8].

3.3 The Gigabit Ethernet Prototype

Gigabit Ethernet promises a high transfer speed for the event builder and it is fully comp
with existing Ethernet installations. An extensive program of studies for an Event Bu
based on Gigabit Ethernet has been performed, the results are detailed in reference [9].

Figure 23: Comparison of the rate achieved by a
2 x 2 EB with and without Data Flow
Management
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Figure 24: Event rate of the EB as a function of the
data fragment’s size.
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The setup (Figure 25) consists of 16 PCs running Linux and 2 Gigabit Ethernet switches.
the switch and the Network Interface Cards (NIC) are from Alteon. The NIC Linux dev
driver is the one developed at CERN and distributed by Alteon. TCP/IP has been used o
of Gigabit Ethernet to provide end-to-end functionality.

The study has addressed the following issues, when Gigabit Ethernet is used for the
building application: the applicability of the technology, the usefulness of Jumbo frame
provided by the Alteon hardware), the performance problems due to TCP/IP and the scal
of the setup.To this end the event builder prototype software has been ported to run
Linux on a PC.

Figure 25: Setup of 16 PCs and 2 switches

In Table 1: we have summarised the values and ranges of the parameters relevant to t
formance study.
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Table 1: DFM parameters used for this measurement

The performance studies are detailed in [9]. Here we summarise the results related to the
urements with the event builder software. First for 1 (source) to N (destination) configurat
then for the N (sources) to 1 (destination) setup and finally for the general NxM case.

3.4 Measurement with 1xN Configuration

In this case, the number of sources was fixed to 1 while that of destinations was varied f
to 7.

Figure 26: depicts the EB rate as a function of
how many events can be concurrently built at a
destination. The rate is linear and independent
of the number of destinations up to a “concur-
rency” value of about 40. Beyond 40 the rate
becomes proportional to the number of destina-
tions independently of the value for “concur-
rency”.

Event Builder
Parameters

# of Sources 1 - 7

# of Destinations 1 - 7

Event Builder Scheme distributed

# of DFM resources 1 - 50

Busy (# of DFM resources) x 1.2

Busy (# of DFM resources) x 0.2

ebio Parameters

Nagle algorithm on

Small message handling
4 Byte control message

and message body (up to
249 Byte) sent separately

TCP buffer size  64kB

Gigabit Ethernet
Parameters

MTU 1500
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Figure 26: Event builder rate vs. concurrency of
event building in 1xN configurations
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The event building rate as a function of the
fragment size has been measured with a a value
for “concurrency” of 50, so as to be in the pla-
teau region for all the sizes with the exception
of the 100 Byte fragment (Figure 27). We indi-
viduate two areas: one in which the rate is inde-
pendent of the fragment size (for a given
number of destinations) and limited by soft-
ware overhead (typically TCP/IP) and a second
one where performance is limited by the net-
work throughput.

The bandwidth graph (Figure 28:) is also char-
acterised by two regions: in the first one the
performance is dominated by the software
overhead of the event builder application
and/or TCP/IP (simply called “software overhead”) while in the second region the perfo
ance is limited by the Gigabit Ethernet throughput.

For small fragment sizes (less than 20000, 10000, 2000 and 1000 Byte for 1x1, 1x2, 1x
1x7 configurations respectively), the event builder rate is independent of the size and it i
portional to the number of destinations. The proportionality coefficient is about 2kHz, whic
determined by the software overhead. This effect has not been understood and was prob
artifact of the system software being used. Indeed more recent measurements have be
formed [8] with the standard device driver do not show this 2KHz proportionality factor.

For large fragment sizes, the rate is limited by
the maximum throughput per Gigabit Ethernet
link on the source side. This is confirmed by
the behaviour of the bandwidth with respect to
fragment size (Figure 28). The bandwidth
reaches a plateau in a region larger than
20 kByte and the total bandwidth does not
depend on the number of destinations except
for the case of 1x1 configuration. This is due to
the limitation of bandwidth of Gigabit Ethernet
on source, i.e., the maximum bandwidth of
about 50 MByte/s corresponding to 400 Mbps
per link at MTU 1500. Which is what is
expected, based on the results of the raw meas-
urements (see [9]).

In the plateau region, the bandwidth of 1x1 configuration is limited to about 35 MByte/s, e
if the throughput per link does not reach the limit of 400 Mbps. This suggests that the m
mum performance of data transfer of the destination process may be limited to 35 MB
i.e., this is another limitation due to the software overhead.
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Figure 27: Event builder rate vs. fragment size in
1xN configurations
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3.5 Measurement with Nx1 System

For this set of measurements, the number of destinations was fixed to one and that of s
was varied from 1 to 7. Concurrency of event building, TCP buffer size and MTU size wer
to 50, 64 kByte and 1500, respectively.

Figure 29: and Figure 30: show the event
builder rate and bandwidth per destination ver-
sus fragment size for Nx1 configurations.

As for the 1xN case we individuate two
regions: the one dominated by the software
overhead and that limited by the Gigabit Ether-
net link speed.

The rate is about 2kHz and independent of the
number of sources in the region of smaller
fragment size (16000, 8000 and 3500 Byte1 for
1x1, 2x1, 5x1 configurations, respectively).
The bottleneck being the destination which
processes events at roughly 2kHz in the plateau
region, as seen in the 1xN case. Hence the
bandwidth is roughly proportional to the number of sources times the 2kHz rate.

For larger fragment sizes, the rate decreases as
fragment size increases. The slope depends on
the number of sources. The process is limited
by the throughput at the destination, as seen in
Figure 30:. A plateau of about 35 MByte/s is
reached for sizes larger than the transition
points.

3.6 Measurement with NxN Configuration

For this set of measurements the number of
sources and destinations is equal and varied
from 1 to 7. Concurrency of event building,
TCP buffer size and MTU size were fixed to
50, 64 kByte and 1500, respectively.

1. It is difficult to identify where the transition point for 5x1 configuration is, because these results are almo
same as that of 1x1 and 2x1 for the small fragment sizes.
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Figure 29: Event builder rate vs. fragment size in
Nx1 configurations
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Figure 31: and Figure 32: show the event
builder rate and the bandwidth per destination
as a function of the fragment size for different
event builder sizes.

The behaviour of the rate is similar to the 1xN
case while the bandwidth per destination is
similar to the Nx1 cases. However, the event
builder performance is dictated only by the
software overhead.

The rate of 2 kHz x (number of destinations) in
the region of small fragment sizes indicates that
the rate is dictated by the software overhead as
seen in the 1xN configuration. For the 7x7 con-
figuration, the situation seems to be more com-
plicated. The rate of 7x7 configuration reaches only 5 kHz instead of 2 kHz x 7 = 14 kHz.
cannot be explained by the limitation of the software overhead, i.e., 2 kHz and 35 MBy
This also means that the event builder system loses scalability for configurations of 3x
larger number of sources and destinations.

The event builder rate decreases as fragment size increases in a larger fragment size
since the bandwidth per destination is limited to ~35 MByte/s by the maximum proces
power of the destination as seen in Nx1 configurations.

The limitation on maximum bandwidth per
destination of ~35 MByte/s allows total band-
width of the 1x1, 2x2 and 7x7 configurations to
be about 35, 70 and 230 MByte/s, respectively.

In this measurement, the Gigabit Ethernet
throughput per link of 400Mbps did not limit
the performance of the event builder for the
NxN configurations.

4 Scalability Studies

With scalability studies all those investigations are meant, which are supposed to shed li
the behaviour of the EB as a function of the number of nodes involved in the system.
studies can already be carried out on small scale prototypes, but, in absence of a larg
prototype, reliance has to be put on simulation programs which model the EB. The resu
the prototypes have been shown in the previous sections. Here we will concentrate on the
elling and on its results.
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Figure 31: Event builder rate vs. fragment size in
NxN configurations.
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4.1 Characterization of the EB Elements

The logical model of the EB is naturally subdivided in three elementary components
DFM, the SRC and the DST interconnected through a network. On the other hand the pe
ance of the overall EB is dictated by the load of the processor CPUs, by their I/O capab
and by the links and switch(es) bandwidth. It is, therefore, convenient to factorise the sy
into network nodes running the applications and a network. It is then possible to further
these elements in terms of queues and resources.

4.1.1 The Network

The network consists of one or more routing elements (resources) and zero or more
queues.

4.1.2 The Network Node

The network nodes can be described in a two layer approach. While the applications dep
the type of EB element (SRC, DFM, DST), the structure of the processor with its netw
interface card (NIC) is invariant The processor is itself a composite of smaller entities: it
sists of a resource (the CPU) and three queues (the user space memory, allocated at ru
the kernel receive and send buffer queues). A schematic view of a network node is giv
Figure 33. The NIC is again nothing more than a resource for which the input and outpu
compete.

4.2 The EB model

The model consists of several network nodes running the EB applications interacting with
other over the network as in the prototype. Furthermore, there is a trigger element whic
tributes L1 ids at a predefined rate. This element is very similar to the trigger element o
prototype and handles back-pressure signals in case that the rate is higher than the one
be sustained by the event builder. A schematic view of the whole EB model is give
Figure 34.

Figure 33: The structure of a network node.
The network interface card is split in two parts in order to allow sender and receiver to make use of differe
technologies. This takes into account the case in which data and control messages use separated paths.
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The number of source and destination nodes can be configured from run to run, as well
mean fragment size.

4.3 The Simulation Program

4.3.1 The Simulation Tool: Ptolemy

Ptolemy [10] is a system-level design framework that allows mixing models of computa
The development began in January 1990, under the joint direction of Professors Lee and
erschmidt at the University of Berkeley.

The ambitious objectives of the Ptolemy project include most aspects of designing s
processing and communication systems, ranging from designing and simulating algorith
synthesizing hardware and software, parallelizing algorithms, and prototyping real-time
tems. In designing digital signal processing and communications systems, often the best
able design tools are domain specific. The tools must be able to interact. Ptolemy allow
interaction of diverse models of computation by using the object oriented principles of p
morphism and information hiding. For example, using Ptolemy, a high level dataflow mod
a signal processing system can be connected to a hardware simulator that in turn may b
nected to a discrete event model of a communication network.

In Ptolemy the different computational models are subdivided in domains. For the purpo
event building simulation the only relevant computational model is the discrete event
model. With discrete event simulation (DES) the description of a system in terms of state
changes of state at discrete moments in time is meant. More precisely, DES is a simula
which the system is modelled in terms of elements which have states. Thestateis a set of vari-
ables which fully describe the element at any given time. State changes can only occur

Figure 34: Scheme of the EB model.
- 31 -



te
sing of
lation

s of
ompu-

of the
e time
stamps
ent and

kernel
gener-
IFOs,
ides the

tolemy
taken
cor-
te by
e state
imen-
s-

s to

lled
hich

figura-
an be

uch as
ending
crete moments in time, at the occurrence of anevent, and an element cannot change sta
between two consecutive events. The state of the whole system is given by the superpo
the states of all entities in the system and simulation is carried out by advancing simu
time from one event to the next.

The DE domain in Ptolemy provides a general environment for time oriented simulation
systems such as queuing networks, communication networks and high level models of c
ter architectures. In this domain an event, the so called particle, corresponds to a change
system state. The DE scheduler processes events in chronological order. Since th
between events is generally not fixed, each event has an associated time stamp. Time
are generated by the block producing the event based on the time stamps of the input ev
the latency of the block.

The big advantage of the Ptolemy tool is that it provides, besides the scheduler and the
containing the computational model, a series of elements, the so called stars, which are
ally useful to any simulation. As an example, the DE domain includes stars describing F
queues, servers, routers, event generators, logic boxes and delays. Furthermore it prov
hooks for getting graphical information about the behaviour of the applications.

4.3.2 Implementation of the EB model with PTOLEMY

The event builder model has been implemented using the discrete event domain of the P
simulation tool according to the model described in section 2.1. Several DES elements
from the palette of stars provided by the tool itself were modified, in order to reproduce
rectly the behaviour of the different components of the EB. These elements communica
exchanging particles. The arrival of a particle carrying a message is the event causing th
transition. The message structure has been defined for the whole simulation to be a six d
sional array of integers (int message[6] = { Gid, size, source id, destination id, status flag, me
sage type }).

For what concerns the switching network, the modularity of the simulation program allow
introduce different levels of detail, depending on the networking technology simulated:

• For ATM, where the traffic congestion avoidance can be handled at the individual nodes via
QoS techniques, the switching network can be modelled as an ideal routing element which
only introduces a constant delay between input and output.

• For Gigabit Ethernet the switching network with its internal resources should be mode
more carefully except if one introduces some traffic shaping at the application level w
avoids that the simultaneous fragments’ transfer congests a single destination link.

In order to be able to easily change timing and bandwidth parameters as well as the con
tion of the event builder a C program was written which generates a setup script that c
interpreted by Ptolemy.

4.4 Modelling of the ATM pr ototype

4.4.1 Simulation Tuning

In order to tune the simulation a set of parameters was extracted from the prototype, s
processing times of the different applications, memory copy speed and overheads for s
- 32 -
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and receiving operations. Complementary measurements to infer bare technology perfor
parameters such as the switch latency, the link speed and the network interface latenc
also performed.

4.4.2 Validation

The model has been validated against the ATM prototype, comparing the event rate for d
ent configurations of the event builder. As shown in Figure 35 the model reproduces the e

imental results within a 5% accuracy. For symmetric configurations the model is event
accurate than that (1-2%).

4.4.3 Extrapolation to a large scale EB

The model was used to infer the event rate which could be achieved in a large scale
based event builder. The switching network has been modelled as an ideal element whic
ply introduces a latency between input and output, without the possibility of data
although it should be noted that data loss can occur at the nodes if the kernel buffers ov

The latest estimated event size for the ATLAS experiment corresponds to ~2.2 MBytes
The required event building rate is in the order of 1-2 kHz, resulting in an aggregate band
of 4.5 GByte/s. The minimal network configuration, if one imposes that single links shall
be utilized to more than 70% of their capability, has to foresee 400 EBIFs and 400 SF
ATM 155 Mbit/s, or, alternatively, 100 EBIFs and 100 SFIs for ATM 622 Mbit/s.

Figure 36 shows the simulation results for a) ATM155 and b) ATM622 using the AAL5 pro
col. The extrapolated rate is strongly dependent on the assumptions made on the evolu
processing times as a function of the number of nodes. The rate upper limit is the case in
the processing time per fragment stays constant as the EB system grows1 while the lower limit
is the case which assumes a linear dependency of the processing time per fragment
number of EBIFs, thus a quadratic increase of the event building time.2 In the worst case sce-
nario the estimated event rate is not sufficient to cover the required ATLAS performance

Figure 35: Comparison of the simulation results with the ATM prototype.

1.  There is a perfect scaling behaviour and the time to build an event increases linearly with the number 
ments it is composed of. The time (inµs) to build an event as a function of the number of sources was me
ured (with up to 8 Srcs) and fitted with a linear function leading to f(x) = 697+111x with aχ2 of 3.9
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the results are completely dominated by the processing power of the EB nodes. The time
urements are based on 200 MHz processors; as an example, a 400 by 400 event build
three times faster processors has been simulated. The results are shown in Figure 37.

4.5 Ideas on the Scalability of the Gigabit Ethernet Event Builder

As already stated, Gigabit Ethernet does not provide QoS techniques which allow to re
traffic congestion already at the input nodes. On the other hand it is a widely used techn
and promises to be the one which will offer the bandwidth required by ATLAS at the low
price. Within DAQ “-1” no special communication protocols nor optimized drivers have b
developed: TCP/IP was used. At the state of the art this implementation presents two c
points:

• the switching network must be capable of handling the burstiness of the EB traffic, pr
ing big enough internal buffers,

• the DFM must send out Gid/Did pairs at a rate equal toR = event_rate x NSrcs.

Both these problems could be solved with appropriate hardware:

2. The time (inµs) to build an event as a function of the number of sources was measured (with up to 8 Srcs
fitted with a quadratic polynom leading to f(x)=723+93x+2.2x2with aχ2 of 3.6

Figure 36: EB Simulation results.
a) 400 EBIFs x 400 SFIs EB with ATM155 and
b)100 EBIFs x 100 SFIs EB with ATM622.
The shaded area shows the expected event rate as a function of the fragment size. The dashed area sho
region interesting for ATLAS assuming that the event data are uniformly distributed over the EBIF nodes.

Figure 37: Simulation results of a 400x400 EB with a processor with ~600MHz CPU clock.
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• the network could be oversized in such a way that a burst due to an event could be h
without congestion,

• several DFMs could be introduced in a similar way as it is done within the LVL2 trigge
where it is foreseen to have several supervisors. Each DFM would have to send Gid/D
pairs at a rate equal toR = event_rate x NSrcs / NDFMs.

Another way of optimizing the EB implementation in Gigabit Ethernet is to introduce tra
shaping at the applications level. In order to compensate for the absence of broadcasting
ties, several Gid/Did pairs could be grouped. The sending rate for the DFM would becomR =
event_rate x NSrcs / Grouping. At arrival of this list of events and their associated destinatio
the sources could scan and process events starting at a random point of the list. If the gr
factor is chosen to be similar to the number of destinations in the system, in average
source will be sending data to a different destination, hence eliminating the problem of b
ness.

This solution has been introduced in the EB prototype and has shown to be very effe
Results can be found in [8].

5 Fault Tolerance and Robustness

5.1 Fault Tolerance

The EB has been designed to be tolerant against the loss of data fragments. The high lev
tocol foresees that the DFM can issue an EndOfEvent with a particular status flag, if an
is not completed within a defined amount of time. This mechanism has been implemen
the prototype associating a time stamp to each event, when the first fragment arrives to
tination, and a timeout mechanism which checks the present time against the event’s
stamp and, if needed, sends a timeout signal (POSIX real time timers were used for thi
pose).

In principle, the EB design does not foresee the possibility of losing control messages.
ever, depending on which networking technology is used to transfer them, data loss may
In the present prototype implementation these kind of errors are not handled: the los
Gid/L1id/Did message to a Source causes the event fragment to stay in the Source buffe
the end of the run. Similarly, the loss of an End of Event message to the centralized DFM
causes the permanent stay of the event in the DFM structures affecting in this way the De
tion assignment policy. Nevertheless some possible mechanism have been introduced
simulation and have proven to be effective. The loss of control messages can be handle
timeout mechanism, similar to the one previously described, and additional checks tha
firm that the occurrence of the timeout is due to an isolated error and not to the crash of a
application. As an example, it can be checked that there are messages of the same kind
have arrived for more recent events.

Despite the fact that the Event Builder can be implemented in a way which assures its fau
erance, frequent errors will, of course, degrade the overall performance. Moreover it has
verified that the data loss rate in the network is kept at a level which is compatible with
degree of data integrity requested by ATLAS.
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5.2 Robustness

The Event Builder has been designed to be robust against the crash of one or more D
tions. The high level protocol includes all the mechanisms for treating this case via the
based destination assignment scheme and the Busy mechanism. Figure 38 shows the p
ance degradation as a function of the number of faulty Destinations. The simulation has p

that the EB performance degrades gradually with the number of faulty Destinations.

The EB cannot, by definition, run without flow management. The DFM is therefore a si
point of failure in the EB protocol: its crash causes the whole EB to stop working.

As well for what concerns the Sources, the EB cannot be considered robust. The failur
Source needs the reconfiguration of the Event Builder in order to change the expected n
of fragments to be received per event.

6 Conclusions

The EB elements and protocol have been designed and prototyped. The layered approac
in the software structuring allows for running the same applications on different technolo

Two networking technologies, Asynchronous Transfer Mode and Gigabit Ethernet, have
evaluated for event building and prototype implementations have been built for both of t
Both networking technologies have proven to offer the required performance in small
prototypes.

The Event Builder has been modelled, in order to extrapolate the measurements obtaine
the prototypes to the size of the network needed by the ATLAS experiment: the simulatio
shown that the actual performance is strongly dependent on the implementation of the
Builder and in particular on the software which controls the networking operations, but tha
event building protocol itself is scalable and that the Event Builder design offers the mea
develop this data acquisition subsystem in a robust and fault tolerant way. The evaluat
the performance of bigger prototypes will ease the study of the scalability of this subsy
and favour further investigations towards the optimization of the application software.

Figure 38: Performance degradation as a function of the number of faulty Destinations.
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The DAQ/EF-1 event builder developments have met the objectives defined at the begi
of the project: an event builder subsystem supporting multiple network technologies has
designed, developed and integrated into the DAQ/EF-1 system. The performance match
required full event builder ATLAS performance, albeit on a small scale system. The enco
ing results from the simulations and the need to address the issues related to system ma
and operations call for the continuation of the effort on a larger scale, at least a 32x32
system. This studies should also be complemented by the evaluation of low latency/low
head protocols, in particular in the case of gigabit ethernet.
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