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Low-cost SMP (Symmetric Multi-Processor) systems have become generally available since 
1998; they provide substantial CPU and I/O capacity along with a memory that is shared by 
all processors. We have investigated two areas of application in the Atlas level-2 trigger:

A. Consideration of an Active Readout Buffer (ROB) Complex, grouping multiple Readout 
Buffers,

B. Measurements on a ccNUMA (Cache Coherent Non-Uniform Memory Architecture) 
system for handling all Readout Buffers of a full (sub-) detector.

Other application of the same systems in the ATLAS data flow are conceivable, like as event 
flow supervisor or as powerful processing node. Some of our measurements can be mapped 
immediately on such applications.

A. Active Readout Buffer Complex

This work is based on the original idea to build detector-adapted computing stations with 
multiple processors, all having access to all ROBs of a detector, using commercial 
components from the HPCN market: several multi-processor boards with proprietary 
interconnect, all working under a shared-memory paradigm. 

The availability of truly commercial components, today limited to 4- or maximally 
8-processor systems, has reduced the goal to a multi-ROB station; we call it ’active’ because 
the processors actively contribute to alleviate the critical traffic over the general network.

Two activities were proposed in September 99 and partial results were presented at the Atlas 
TDAQ workshop in December 99:

• modelling the active ROBC to assess the effect on general level-2 traffic for different 
detectors; a report is available (R.K.Bock, D.Francis, J.Vermeulen, S.Wheeler, 
ATLAS-COM-DAQ/99-020); the encouraging conclusions of this report are summarized 
below.

• measuring the internal performance of a present-day commercial SMP; our results were 
obtained on an Elonex 4-processor PC with two independent PCI buses. Measurements 
concern the limits of traffic when run with multiple ROBs, and the limits of 
communication between processors, for programs communicating at high level.

A.1 Conclusions from modelling
 (reproduced from ATLAS-COM-DAQ/99-020)

• under the assumptions of the report (up to 16 ROBs accommodated per AROBC, no 
internal performance limits), the number of ports for the general network is reduced by 



 

an average factor of 11.4;

• the reduction factor for the total number of messages exchanged over the network is 4.3;

• all required performance numbers for communication of the AROBCs with the general 
network stay within technology limits, for frequencies and bandwidth needed for level-2 
(<15 kHz, < 20 MB/s), using the computing capacity in the AROBC for pre-processing 
and for compacting the data;

• a bandwidth problem arises for the Event Builder (EB) traffic over the network 
connection, if data compaction for the EB is excluded (although the problem is alleviated 
by the larger packets, allowing to reach higher performance);

• there is no problem in providing enough computing capacity in AROBCs to execute 
pre-processing, for all detectors;

• the possibility of using AROBCs for feature extraction is not obvious, but for some 
detectors this may be a good solution if the farm processors and the AROBC processors 
are software compatible.

A.2 Measuring external I/O limits in a commercial SMP system

A PC server based on a four-processor board  (Intel SC450NX) was purchased in October 
1999 (4 x 550 MHz Pentium Xeon III, 2 PCI buses of 32 bits/33 MHz, 7 free PCI slots, 512 MB 
shared memory, 19 GB disk). 

Standard commercial Micro-Enable boards were used as ROBs (Slinks are available but were 
not used). 

All programs were developed on standard PCs:

• the commercial Micro-Enable drivers were adapted to the multi-processor / multi-bus 
environment,

• a high-level interface was written to handle requests for ROB data (by event number), 
and to provide a polling mechanism,

• an application program was written in C++ to perform the basic measurements,

• multi-threaded applications allow the system to distribute the tasks to different 
processors.

A.2.1 Maximum access rate and bandwidth

The goal was to measure the aggregate bandwidth for multiple ROBs on multiple PCI buses. 
Results are summarized in the following figure.  

A.2.2 Limits set by the Memory Bus

The I/O rate does not only depend on PCI performance: we have measured that the total 
available PCI bandwidth drops by about 20%, when loading the memory bus with a 
read/write flow of 130+130MB, i.e. it goes from the (unidirectionally) measured 160 to 130 
MB/s, for 1kB Rob fragments. The memory bus of the four-processor Intel board is a known 
bottleneck, so this is not unexpected; we hope that future SMP boards will have a better 
behaviour in this respect.

A.2.3 CPU time available for algorithms

Four types of threads are used in the test program:



• One RequestThread generates the requests for the requestQueue. It controls the number of 
outstanding requests, and represents requests to the Rob Complex coming from outside 
(e.g. steering processors).

• One CollectionThread that reads the requestQueue and collects all event fragments (ROBs) 
needed for the event. Collected events are put on the eventQueue. This is the Fragment 
Collection task.

• One or more WorkerThreads read from the eventQueue and spends a certain amount of 
CPU time, “algorithm”,  on each event before the LVL2Result is put on the resultQueue. 
This represents the Preprocessing task.

• One ResponseThread reads the resultQueue. This represents answers from the Rob 
Complex to outside (e.g. steering processors).

Figure 1 The bandwidth as a function of the data size for 1 to 4 ROBs; two PCI buses are used in the 
case of three or four ROBs. The rate increase for the second PCI bus ( i.e., going from two to 
four ROBs) is 88% for large packets, 55% for our preferred packet size of 1 kB

PCI Performance on PC with 2 PCI buses

21

76

98

32

103
113

32

139

168

32

160

212

0

50

100

150

200

250

100 1000 100

Fragment size (bytes)

1_1 2_1

3_2 4_2



 

Table 1 shows the percentage of total CPU utilisation by the worker threads (running the 
"algorithms"), for different algorithm process time with four concurrent worker threads 
processing the events. . 

As the CollectionThread is actively polling the MicroEnable boards using ~one processor, the 
observed maximum of 75% CPU, achieved for a CPU time/event of 400µs is the expected maximum. 
The last column shows the difference between the effective time/event and the CPU time used per 
event. This time represents the I/O time spent in the Request-, Collection- and Response-Threads plus 
thread switching overhead, plus CPU idle time in the regime where the system is limited by I/O. It 
reaches a stable value of ~130µs in the regime where all CPUs are occupied, i.e. when the CPU 
time/event reaches a value of 180 or more µs/event. Below this value, the I/O rate is insufficient to 
keep all worker threads active.

Figure 2 Throughput dependence on CPU utilisation. The event rate is shown as a function of CPU 
time (in µs) used per event. All events are composed of 4 ROBs with 1kB/ROB, i.e., 4kB/event 
fragment. The measured points in figure 2 were at   0, 10, 20, 30, 40, 50, 60, 80, 100, 120, 140, 
160, 180, 200, 300, 400 µs/event.

Table 3 Four WorkerThreads consuming different CPU times per event

µs/event MB/s Kevents/s
useful_time/ 
total_time

µs_eff µs_io

100 55 13.8 35% 289 189

200 49 12.2 61% 327 127

300 37 9.2 69% 435 135

400 30 7.5 75% 532 132
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For zero CPU usage time the system is completely dominated by I/O time which varies 
between 33 and 50µs per event corresponding to an event rate of  20-30kHz. Since the input 
from the ROBs is handled by one CPU (the CollectionThread) the remaining CPUs are 
mainly idle. Adding more worker threads only increases the competition for scarce events 
resulting in additional overheads. Figure 2 clearly shows the detrimental effect of adding 
more worker threads for zero computation time as well as the cross-over points where 
additional CPUs start to become effective.

CPU times of 180 or more µs/event give consistent utilisation results. The behaviour for 
lower CPU/event values, the results seem somewhat erratic and we ascribe this to the thread 
switching  and locking mechanisms, not fully understood. We conclude that the problems of 
multi-threaded behaviour on SMP nodes (and on multi-node systems in general) need to be 
studied in the context of the ATLAS TDAQ in general.

A.3 Conclusions from the preliminary measurements 

• these preliminary measurements made on an off-the-shelf SMP system using as ROBs the 
commercial MicroEnable board (purchased from Silicon Software) show that an AROBC 
with significant pre-processing and concentration capabilities can be set up from 
commercial components alone (the exception being the adaptation of the driver for the 
MicroEnable board).  Today's commercial multi-processor systems are packaged in a way that 
makes their integration into a system of farm processors a trivial task;

• simulation results reported earlier (see ATLAS DAQ note 99-020) show that the impact of 
such systems in the ATLAS level-2 trigger is substantial: the overall traffic is alleviated in 
frequency and bandwidth, optimisation of drivers is localised, detector-specific tuning is 
facilitated;

• our measurements further show that the I/O capacity available in SMP systems can 
largely be put to use by the commercial interface cards we used for ROBs;

• measurements of internal communication at application level have also shown that the 
substantial CP capacity available in SMPs can largely be made available to user 
programs in situations approaching those of ATLAS level-2 traffic. Not all obtained data 
points are fully understood, however, and more work is required to show the effect of the 
operating system in managing high-level communication (thread switching);

• SMP systems of the type evaluated are available from several manufacturers; this fact 
and their competitive pricing make them a serious candidate for the active ROB complex  
application in Atlas: an active ROB complex must thus be considered an important 
element in the overall architecture discussion, independently of other options (e.g. 
technologies, one or two networks, VME-based readout crate or PCI cards directly in a 
PC).

B. Measurements on a ccNUMA architecture

In the beginning of 1999 we assessed the performance of an SCI ccNUMA architecture. The 
motivation for this was:

• a large machine with many I/O slots may considerably simplify the data collection and 
subsequent processing (“feature extraction”) for an entire sub-detector



 

• SCI based ccNUMA architectures built from COTS components scaling up to a 
reasonably large size are components were commercially available

• the software effort for testing this hypothesis is small

The AViiON25000 was generously made available by Data General for the test. 

B.1 Test Setup

A shared memory version of the ATLAS communications benchmark suite,  
http://www.cern.ch/RD11/combench.html , was adapted for this machine. Each node of 
the AViiON25000 consists of a quad Pentium Xeon board with two PCI buses giving 13 PCI 
slots per node. Apart from the usual two level of caches each node is equipped with a 16 
Mbytes third level SCI cache. Up to 16 nodes can be interconnected by a dual SCI ring of 500 
Mbytes/s each to form a 64-processor ccNUMA system. Cache coherency at the system level 
is maintained by the IEEE Coherent SCI protocols. Tests were run between a pair of CPUs on 
the same board (“near nodes”) which does not involve SCI and between CPUs on different 
nodes (“far nodes”) which provokes transfers over the SCI rings subject to the coherency 
protocols. In both cases latency and throughput were measured. The following tests were 
run:

• ping pong: one node sends data to another node and waits for the data to be returned.

• by-directional ping-pong: both nodes send and return data to each other

other test were available but not used, see conclusion s below.

As data coming in from detectors is normally not cached care was taken to eliminate possible 
cache effects by placing source and destination data in successive memory areas within a 16 
Mbyte block (far larger than the second level cache). 

Furthermore, SCI cache coherency protocols utilise invalidation. Consequently, data sent to 
another node does normally not leave the local SCI cache until used by the far node. It was 
therefore necessary to touch the data on the receiving end to provoke actual data transfers.

B.2 Results and Conclusion

The results for uni- and bi- directional ping-pong for different message sizes are shown in table 4 and table 

5 respectively.

• The results for communication between near nodes is without surprises: the bandwidth 
for large messages and two sided communication approaches the CPU to memory 
bandwidth of ~ 125 Mbytes/s, consistent with memory copy operations (the CPU to 
level-2 cache bandwidth is much larger, ~ 600 Mbytes/s). For one-way ping-pong, the 
bandwidth is halved as expected.

• The SCI bandwidth is surprisingly low, ~ 14 and 24 Mbytes/s for one and two way 
ping-pong respectively for one pair of far nodes. It is caused by the long latencies 
associated with the SCI cache coherence protocols: 2-3 SCI packets are required to 



invalidate the far SCI cache (when the message is produced on the near node) and 1-2 to 
transactions later when the data is touched on the far node. Clearly, the message-passing 
paradigm based on writing data in the memory of a far node does not work well with the 
SCI coherency protocol. 

• Large SMP systems of the type evaluated are not commonly available on the market, and 
they presently are expensive. We do not, at the present time, propose to pursue studies 
with the goal of using them in Atlas.

  

Table 4 Bandwidth and latency for uni-directional ping-pong for different message 
sizes on DG AVION 25000

Bandwidth (MB/s) Latency (µs)

Near-node Far-node Near-node Far-node

4 1.5 0.15 2.6 26

16 5.6 0.51 2.7 30

64 20 2.0 3.1 30

256 37 5.6 6.6 44

1024 57 9.8 17 100

4096 52 13 75 306

16384 62 14 250 1150

65536 69 14 901 4610

Table 5 Bandwidth and latency for bi-directional ping-pong for different message sizes 
on DG AVION 25000

Bandwidth (MB/s) Latency (µs)

Near-node Far-node Near-node Far-node

4 2.1 0.20 1.9 19

16 7.8 0.75 2.0 20

64 26 2.9 2.3 21

256 57 8.3 4.3 29

1024 89 16 11 59

4096 89 22 44 175

16384 125 24 125 651

65536 125 23 500 2700


