
A
T

L
-D

A
Q

-2
00

0-
01

0
21

 M
ar

 2
00

0

draft 20 March 2000

The Use of Low-cost SMPs in the Atlas Level-2 Trigger
Mannheim, MSU and CERN

(R.Bock, A.Bogaerts, Y.Ermolin, A.Kugel, R.Lay, P.Werner)

Low-cost SMP (Symmetric Multi-Processor) systems have become generally available since
1998; they provide substantial CPU and I/O capacity along with a memory that is shared by
all processors. We have investigated two areas of application in the Atlas level-2 trigger:

A. Consideration of an Active Readout Buffer (ROB) Complex, grouping multiple Readout
Buffers,

B. Measurements on a ccNUMA (Cache Coherent Non-Uniform Memory Architecture)
system for handling all Readout Buffers of a full (sub-) detector.

Other application of the same systems in the ATLAS data flow are conceivable, like as event
flow supervisor or as powerful processing node. Some of our measurements can be mapped
immediately on such applications.

A. Active Readout Buffer Complex

This work is based on the original idea to build detector-adapted computing stations with
multiple processors, all having access to all ROBs of a detector, using commercial
components from the HPCN market: several multi-processor boards with proprietary
interconnect, all working under a shared-memory paradigm.

The availability of truly commercial components, today limited to 4- or maximally
8-processor systems, has reduced the goal to a multi-ROB station; we call it ’active’ because
the processors actively contribute to alleviate the critical traffic over the general network.

Two activities were proposed in September 99 and partial results were presented at the Atlas
TDAQ workshop in December 99:

• modelling the active ROBC to assess the effect on general level-2 traffic for different
detectors; a report is available (R.K.Bock, D.Francis, J.Vermeulen, S.Wheeler,
ATLAS-COM-DAQ/99-020); the encouraging conclusions of this report are summarized
below.

• measuring the internal performance of a present-day commercial SMP; our results were
obtained on an Elonex 4-processor PC with two independent PCI buses. Measurements
concern the limits of traffic when run with multiple ROBs, and the limits of
communication between processors, for programs communicating at high level.

A.1 Conclusions from modelling
 (reproduced from ATLAS-COM-DAQ/99-020)

• under the assumptions of the report (up to 16 ROBs accommodated per AROBC, no
internal performance limits), the number of ports for the general network is reduced by

an average factor of 11.4;

• the reduction factor for the total number of messages exchanged over the network is 4.3;

• all required performance numbers for communication of the AROBCs with the general
network stay within technology limits, for frequencies and bandwidth needed for level-2
(<15 kHz, < 20 MB/s), using the computing capacity in the AROBC for pre-processing
and for compacting the data;

• a bandwidth problem arises for the Event Builder (EB) traffic over the network
connection, if data compaction for the EB is excluded (although the problem is alleviated
by the larger packets, allowing to reach higher performance);

• there is no problem in providing enough computing capacity in AROBCs to execute
pre-processing, for all detectors;

• the possibility of using AROBCs for feature extraction is not obvious, but for some
detectors this may be a good solution if the farm processors and the AROBC processors
are software compatible.

A.2 Measuring external I/O limits in a commercial SMP system

A PC server based on a four-processor board (Intel SC450NX) was purchased in October
1999 (4 x 550 MHz Pentium Xeon III, 2 PCI buses of 32 bits/33 MHz, 7 free PCI slots, 512 MB
shared memory, 19 GB disk).

Standard commercial Micro-Enable boards were used as ROBs (Slinks are available but were
not used).

All programs were developed on standard PCs:

• the commercial Micro-Enable drivers were adapted to the multi-processor / multi-bus
environment,

• a high-level interface was written to handle requests for ROB data (by event number),
and to provide a polling mechanism,

• an application program was written in C++ to perform the basic measurements,

• multi-threaded applications allow the system to distribute the tasks to different
processors.

A.2.1 Maximum access rate and bandwidth

The goal was to measure the aggregate bandwidth for multiple ROBs on multiple PCI buses.
Results are summarized in the following figure.

A.2.2 Limits set by the Memory Bus

The I/O rate does not only depend on PCI performance: we have measured that the total
available PCI bandwidth drops by about 20%, when loading the memory bus with a
read/write flow of 130+130MB, i.e. it goes from the (unidirectionally) measured 160 to 130
MB/s, for 1kB Rob fragments. The memory bus of the four-processor Intel board is a known
bottleneck, so this is not unexpected; we hope that future SMP boards will have a better
behaviour in this respect.

A.2.3 CPU time available for algorithms

Four types of threads are used in the test program:

• One RequestThread generates the requests for the requestQueue. It controls the number of
outstanding requests, and represents requests to the Rob Complex coming from outside
(e.g. steering processors).

• One CollectionThread that reads the requestQueue and collects all event fragments (ROBs)
needed for the event. Collected events are put on the eventQueue. This is the Fragment
Collection task.

• One or more WorkerThreads read from the eventQueue and spends a certain amount of
CPU time, “algorithm”, on each event before the LVL2Result is put on the resultQueue.
This represents the Preprocessing task.

• One ResponseThread reads the resultQueue. This represents answers from the Rob
Complex to outside (e.g. steering processors).

Figure 1 The bandwidth as a function of the data size for 1 to 4 ROBs; two PCI buses are used in the
case of three or four ROBs. The rate increase for the second PCI bus (i.e., going from two to
four ROBs) is 88% for large packets, 55% for our preferred packet size of 1 kB

PCI Performance on PC with 2 PCI buses

21

76

98

32

103
113

32

139

168

32

160

212

0

50

100

150

200

250

100 1000 100

Fragment size (bytes)

1_1 2_1

3_2 4_2

Table 1 shows the percentage of total CPU utilisation by the worker threads (running the
"algorithms"), for different algorithm process time with four concurrent worker threads
processing the events. .

As the CollectionThread is actively polling the MicroEnable boards using ~one processor, the
observed maximum of 75% CPU, achieved for a CPU time/event of 400µs is the expected maximum.
The last column shows the difference between the effective time/event and the CPU time used per
event. This time represents the I/O time spent in the Request-, Collection- and Response-Threads plus
thread switching overhead, plus CPU idle time in the regime where the system is limited by I/O. It
reaches a stable value of ~130µs in the regime where all CPUs are occupied, i.e. when the CPU
time/event reaches a value of 180 or more µs/event. Below this value, the I/O rate is insufficient to
keep all worker threads active.

Figure 2 Throughput dependence on CPU utilisation. The event rate is shown as a function of CPU
time (in µs) used per event. All events are composed of 4 ROBs with 1kB/ROB, i.e., 4kB/event
fragment. The measured points in figure 2 were at 0, 10, 20, 30, 40, 50, 60, 80, 100, 120, 140,
160, 180, 200, 300, 400 µs/event.

Table 3 Four WorkerThreads consuming different CPU times per event

µs/event MB/s Kevents/s
useful_time/
total_time

µs_eff µs_io

100 55 13.8 35% 289 189

200 49 12.2 61% 327 127

300 37 9.2 69% 435 135

400 30 7.5 75% 532 132

0

5

10

15

20

25

30

35

0 50 100 150 200 250 300 350 400

K
-E

V
E

N
T

S
/S

E
C

uSEC OF CPU TIME/EVENT

4-PROCESSOR PC WITH 2 PCI BUSES

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--

130us

some threads starve <- -> all threads busy

1 WORKER_THREAD
2 WORKER_THREADS
4 WORKER_THREADS

For zero CPU usage time the system is completely dominated by I/O time which varies
between 33 and 50µs per event corresponding to an event rate of 20-30kHz. Since the input
from the ROBs is handled by one CPU (the CollectionThread) the remaining CPUs are
mainly idle. Adding more worker threads only increases the competition for scarce events
resulting in additional overheads. Figure 2 clearly shows the detrimental effect of adding
more worker threads for zero computation time as well as the cross-over points where
additional CPUs start to become effective.

CPU times of 180 or more µs/event give consistent utilisation results. The behaviour for
lower CPU/event values, the results seem somewhat erratic and we ascribe this to the thread
switching and locking mechanisms, not fully understood. We conclude that the problems of
multi-threaded behaviour on SMP nodes (and on multi-node systems in general) need to be
studied in the context of the ATLAS TDAQ in general.

A.3 Conclusions from the preliminary measurements

• these preliminary measurements made on an off-the-shelf SMP system using as ROBs the
commercial MicroEnable board (purchased from Silicon Software) show that an AROBC
with significant pre-processing and concentration capabilities can be set up from
commercial components alone (the exception being the adaptation of the driver for the
MicroEnable board). Today's commercial multi-processor systems are packaged in a way that
makes their integration into a system of farm processors a trivial task;

• simulation results reported earlier (see ATLAS DAQ note 99-020) show that the impact of
such systems in the ATLAS level-2 trigger is substantial: the overall traffic is alleviated in
frequency and bandwidth, optimisation of drivers is localised, detector-specific tuning is
facilitated;

• our measurements further show that the I/O capacity available in SMP systems can
largely be put to use by the commercial interface cards we used for ROBs;

• measurements of internal communication at application level have also shown that the
substantial CP capacity available in SMPs can largely be made available to user
programs in situations approaching those of ATLAS level-2 traffic. Not all obtained data
points are fully understood, however, and more work is required to show the effect of the
operating system in managing high-level communication (thread switching);

• SMP systems of the type evaluated are available from several manufacturers; this fact
and their competitive pricing make them a serious candidate for the active ROB complex
application in Atlas: an active ROB complex must thus be considered an important
element in the overall architecture discussion, independently of other options (e.g.
technologies, one or two networks, VME-based readout crate or PCI cards directly in a
PC).

B. Measurements on a ccNUMA architecture

In the beginning of 1999 we assessed the performance of an SCI ccNUMA architecture. The
motivation for this was:

• a large machine with many I/O slots may considerably simplify the data collection and
subsequent processing (“feature extraction”) for an entire sub-detector

• SCI based ccNUMA architectures built from COTS components scaling up to a
reasonably large size are components were commercially available

• the software effort for testing this hypothesis is small

The AViiON25000 was generously made available by Data General for the test.

B.1 Test Setup

A shared memory version of the ATLAS communications benchmark suite,
http://www.cern.ch/RD11/combench.html , was adapted for this machine. Each node of
the AViiON25000 consists of a quad Pentium Xeon board with two PCI buses giving 13 PCI
slots per node. Apart from the usual two level of caches each node is equipped with a 16
Mbytes third level SCI cache. Up to 16 nodes can be interconnected by a dual SCI ring of 500
Mbytes/s each to form a 64-processor ccNUMA system. Cache coherency at the system level
is maintained by the IEEE Coherent SCI protocols. Tests were run between a pair of CPUs on
the same board (“near nodes”) which does not involve SCI and between CPUs on different
nodes (“far nodes”) which provokes transfers over the SCI rings subject to the coherency
protocols. In both cases latency and throughput were measured. The following tests were
run:

• ping pong: one node sends data to another node and waits for the data to be returned.

• by-directional ping-pong: both nodes send and return data to each other

other test were available but not used, see conclusion s below.

As data coming in from detectors is normally not cached care was taken to eliminate possible
cache effects by placing source and destination data in successive memory areas within a 16
Mbyte block (far larger than the second level cache).

Furthermore, SCI cache coherency protocols utilise invalidation. Consequently, data sent to
another node does normally not leave the local SCI cache until used by the far node. It was
therefore necessary to touch the data on the receiving end to provoke actual data transfers.

B.2 Results and Conclusion

The results for uni- and bi- directional ping-pong for different message sizes are shown in table 4 and table

5 respectively.

• The results for communication between near nodes is without surprises: the bandwidth
for large messages and two sided communication approaches the CPU to memory
bandwidth of ~ 125 Mbytes/s, consistent with memory copy operations (the CPU to
level-2 cache bandwidth is much larger, ~ 600 Mbytes/s). For one-way ping-pong, the
bandwidth is halved as expected.

• The SCI bandwidth is surprisingly low, ~ 14 and 24 Mbytes/s for one and two way
ping-pong respectively for one pair of far nodes. It is caused by the long latencies
associated with the SCI cache coherence protocols: 2-3 SCI packets are required to

invalidate the far SCI cache (when the message is produced on the near node) and 1-2 to
transactions later when the data is touched on the far node. Clearly, the message-passing
paradigm based on writing data in the memory of a far node does not work well with the
SCI coherency protocol.

• Large SMP systems of the type evaluated are not commonly available on the market, and
they presently are expensive. We do not, at the present time, propose to pursue studies
with the goal of using them in Atlas.

Table 4 Bandwidth and latency for uni-directional ping-pong for different message
sizes on DG AVION 25000

Bandwidth (MB/s) Latency (µs)

Near-node Far-node Near-node Far-node

4 1.5 0.15 2.6 26

16 5.6 0.51 2.7 30

64 20 2.0 3.1 30

256 37 5.6 6.6 44

1024 57 9.8 17 100

4096 52 13 75 306

16384 62 14 250 1150

65536 69 14 901 4610

Table 5 Bandwidth and latency for bi-directional ping-pong for different message sizes
on DG AVION 25000

Bandwidth (MB/s) Latency (µs)

Near-node Far-node Near-node Far-node

4 2.1 0.20 1.9 19

16 7.8 0.75 2.0 20

64 26 2.9 2.3 21

256 57 8.3 4.3 29

1024 89 16 11 59

4096 89 22 44 175

16384 125 24 125 651

65536 125 23 500 2700

