
A
T

L
-D

A
Q

-2
00

0-
00

9

Atlas Read Out Buffer
3/
20

00

An UML description of the ATLAS ROB viewed
from the Level-2 Trigger.
09
/

0

Authors : M Huet
Keywords : ROB, ROBin, ROB Complex, UML.
on the
ents:
is of
Abstract

This document presents a description of the ATLAS Read Out Buffer(ROB). It is focused
interaction with the Level-2 Trigger. However it tackles interactions with some other compon
detectors, Trigger/DAQ run control and monitoring. This document includes the analys
requirements and a high level design.

. . 3

. . 3
 . 3
 . 3
 . 4
 . 4
 . . 4
 . 5
. . 5
 . 5
 . . 6
 . 7
. . 7
 . 7

. . 8
. . 9
 . . 9
. . 9
 . 9
. . 9
 . . 10
. 10
 . 10
 . . 1
 . . 11
. .
 . . 12
. . 1
Table of Contents

1 Introduction . 3
2 Organization and Definitions .

2.1 Methodology .
2.2 ROB and ROB Complex definitions .
2.3 Components of the Level-2 Trigger .

3 Interaction of the ROB with external Actors. .
3.1 LVL2 Processing Unit. .

3.1.1 Data requests .
3.2 LVL2 Supervisor .

3.2.1 L2 reject / delete event .
3.2.2 L2 Accept .
3.2.3 result storage .

3.3 Detectors via RODs (Read Out Driver). .
3.4 Run Control .
3.5 Level-2 Monitoring. .
3.6 TTC . 8
3.7 To summarize.

4 High level ROB components .
4.1 Proposed objects in a ROB. .

4.1.1 Event Manager .
4.1.2 Event Buffer .
4.1.3 Input port .
4.1.4 Message manager .
4.1.5 Ports to/from LVL2 and DAQ .
4.1.6 ROB Controller .

4.2 Data Request .0
4.3 Event delete request .
4.4 L2 Accept . 12
4.5 store event fragment .
4.6 Global view . 4

5 Conclusions . 14
- 2 -

done
s of
is is
s of
e also
ni-

ed in
ce and/
rios.

been

ent is
made
l it is

ROB
ave to
access
roces-

everal

ev-

igger
1 Intr oduction

This document presents the results from analysis of the ATLAS Read Out Buffer (ROB)
in the context of the Level-2 Trigger activity. Starting from the interactions with the actor
the Atlas Trigger/DAQ, the main components of the ROB are described. This analys
focused on the interaction with the Level-2 Trigger. The connection with the electronic
detectors is shown because it brings severe constraints on the design of the ROB. W
tackle interaction with the run control of the DAQ/Trigger for ROB configuration and mo
toring for the statistics management.

2 Organisation and Definitions

2.1 Methodology

We have followed the UML formalism[1] and corresponding methodology.

First, the interactions with external actors, mainly based on the ROB URD[2], is present
“use cases”. Corresponding URs are introduced to the convenient place. Then, “sequen
or collaboration diagrams” introduce the main objects to satisfy the corresponding scena

It must be mentioned that between the creation of the ROB URD and now, the L3 has
changed into Event Filter (EF). The Event Builder (EB) collects data for the EF.

2.2 ROB and ROB Complex definitions

The ROB is an entity which stores temporarily a fragment of each event. The event fragm
provided by the front-end electronics of detectors. Part of or full event fragment must be
accessible to the Level-2 Trigger and to the Event Filter. When data is no more usefu
deleted to free place for further events.

At that level, it seems not to be an implementation issue to speak of the access to the
data. The foreseen ROB number is about 1500 and the number of processors which h
access to Event data in ROBs is probably of the order of several hundreds. The direct
from processors to ROBs is not possible therefore the connection between ROBs and p
sors is foreseen through switching networks.

The ROB functionality and the connections to the external actors can be ensured by s
diverse entities. The whole set of components is called theROB Complex.

During the rest of this document, the ROB designation will apply to the ROB Complex.

2.3 Components of the Level-2 Trigger

The Level-2 Trigger system is built with four main components:

• A RoI builder [3] that receives the RoI pattern of the Level-1 Trigger and drives it to s
eral supervisors of the Level-2 Trigger system.

• Supervisors [3] dispatch the events to different processing units. Due to the Level-1 Tr
rate, several supervisors are necessary.
- 3 -

cted

and

ction
f mes-

visor.
ctiv-
e stor-
d, the
ular
s

ends

.

r.

ay be
ing in
• Processing Units to process the algorithms of the Level-2 Trigger.
• A switchingnetwork to interconnect supervisors and processing units. ROBs are conne

to the processing units through a common network.

From here, the “Level-2” designation will be abbreviated to “LVL2” in component names
to “L2” in the signal names and URs.

3 Interaction of the ROB with external Actors.

In this chapter we describe how external actors interact with the ROB. Each kind of intera
is presented in a “Use Case” diagram. An additional sequence diagram shows the type o
sages that are exchanged and their sequence.

We start with the interactions specific to LVL2 actors, the processing unit and the super
In a second step we present interaction with the front-end. It is not specific to the LVL2 a
ity but it can affect the ROB performance because the event buffer is shared between th
age of incoming data and the furniture of data to downstream components. At the en
interaction with the Run Control and the Monitoring system is presented with partic
aspects of the LVL2 activity. All these interactions try to follow the ROB and LVL2 UR
which are included at the appropriate place in the document.

3.1 LVL2 Processing Unit.

To collect data necessary to process the LVL2 algorithms, the LVL2 processing Unit s
data requests to ROBs.

3.1.1 Data requests

UR L2-ROI RoI_request Handling [2]
The ROB must receive an RoI_request and use it
to select either RoI_data or the full fragment from
memory. This data is then sent to the Level-2
Trigger. The RoI_request may also contain
parameters which define further processing which
may be required on the fragment. These are
described in the following URs.

UR L2-REF RoI_data Reformatting [2]
The ROB may have to reformat the RoI_data before transmission to the Level-2 Trigger

UR L2-PRE RoI_data Pre-processing [2]
The ROB may have to pre-process the data before transmission to the Level-2 Trigger.

UR L2-COMP RoI_data Compression [2]
The ROB may have to apply compression to data before sending it to the Level-2 Trigge

UR DI-EXP Data Expansion [2]
Data sent from the front-ends may be compressed before transmission. Since the ROB m
required to reformat and pre-process the data, it may have to apply expansion to data com

Provide complete
raw event fragment

Processing Unit Provide
RoI data

Provide pre-processed
event fragment
- 4 -

y an

n data

the
ect all

sed to
nce.
from the ROD. This would only be performed on fragments which were selected b
RoI_request.

Up to now, no request types have been defined to include a specific preprocessing o
except for RoI extraction in an event fragment.

The sequence diagram corresponding to this scenario is the following:

3.2 LVL2 Supervisor

The LVL2 supervisor is the central actor of the LVL2 trigger architecture. It receives
results of the Level-1 trigger, dispatches the events in different processing units and coll
results. It delivers these results to all ROBs.

The two possible results are an accept or a reject decision. Several supervisors will be u
cope with the required rate of the global LVL2 system but for the ROB it makes no differe

3.2.1 L2 reject / delete event

UR L2-REJ L2_reject Handling [2]
The Level-2 Trigger generates an L2_reject signal
for unwanted fragments which should cause the
ROB to release the buffer space relating to that
fragment.

For efficiency, the delete message
includes a list of identifiers of
events to be deleted.

3.2.2 L2 Accept

UR L2-ACC L2_accept Handling [2]

: Processing Unit
: Rob

Request RoI

extract RoIRoI

Request event fragment
get event fragment

event fragment

get event fragment

or appropriate processing

and

Delete Events
L2 Supervisor

: L2 Supervisor
: Rob

 delete(list of event fragments)

remove event fragments
from buffer
- 5 -

red to
low
e to be
started

posed
s to

ction,
trans-
e and

hall
s and
le to

tocol.
For selected fragments, the ROB receives an
L2_accept which causes it to retain the fragment
in memory until the data has been transferred to
the Level-3 Trigger.

In the scenario proposed by the DAQ, the L2 Accept is used to prepare data to be delive
the EB/EF or according to UR L2-ACC only kept in memory. On the other side, the DataF
Manager of the EB sends to all ROBs the address of the processor where the data hav
sent. If required, data can be re-formatted, expanded and local event building can be
between the L2 Accept and the processor address delivery by EB.

The L2 Accept message can contain a list of event identifiers to be retained in memory.

The sequence diagram corresponding to this scenario is the following:

An other scenario based on an architecture similar to the LVL2 architecture has been pro
for event building. The L2 Accept is not directly sent to ROB but to EB. The later distribute
all ROBs the L2 Accept with the address of the farm which will process the event.

3.2.3 result storage

Two L2 URD exist about that point.

UR-OUT 2 LVL2 output storage [4]
The data generated by the LVL2 processing (RoI building, pre-processing, feature extra
global processing and internal error conditions encountered during processing) shall be
ferred to the Event Filter system via standard ROBs, depending on the operational mod
on the final LVL2 decision(accept or reject). The original RoI data received from LVL1 s
be included. The data shall be sufficient to permit checks on LVL2 algorithm correctnes
trigger efficiency to be performed at a subsequent stage or off-line. It shall be possib
include data to guide Event Filter processing.

UR-ROB 5 LVL2 decision record [4]
Level 2 shall send decision records to ROBs in a format which obeys the ROB-ROD pro

According to UR-OUT 2 , several LVL2 compo-
nents can provide information to be stored. To
group all informations for an event in the same
ROB data block, the best strategy consists to use

Accept Event
L2 Supervisor

: L2 Supervisor
: Rob

 list of accepted event fragments

retain event fragments
in buffer and

prepare for EB

store L2 results
LVL 2 system
- 6 -

each

y.

a flow)
ional
.

the event fragment format. The supervisor collects all these informations after the reply of
processing unit and seems the best entity to build the complete LVL2 result.

3.3 Detectors via RODs (Read Out Driver).

The input data flow drives the data storage. No
external signal is used to trigger it. Each event is
flanked by two control words, start and end of
event.

The sequence diagram corresponding to this scenario is the following:

3.4 Run Control

UR CTL-SC State Changes
The ROB must respond to commands from Run
Control. These will consist of commands to
change to one of a series of defined states.

UR CTL-CONF Configuration
The ROB will be configured on power-up by an
external controller. This controller could load programs and parameters.

3.5 Level-2 Monitoring.

UR ERR-MON Error Monitoring
The ROB must be able to monitor all kinds of error conditions and keep statistics.

UR GBL-HIST History Maintenance
The ROB must keep a history record of all signals and messages received.

UR GBL-PERF Performance Recording
The ROB must maintain statistics on performance parameters such as buffer occupanc

UR GBL-MON Monitor Data Handling
The ROB must respond to user request to send selected data to a parallel (to the dat
server for monitoring of data quality. User requests will take the form of random or occas
tagging of events which must then be packaged and sent along the monitoring data path

ROD / ROL

Store Event

: Rod
: Rob

Start event

Raw data

prepare new event location

End event close new event store

store eventLoop

End loop

Any time in the store cycle
Busy

wait end of busy

Configure

Run Control

Manage
run
- 7 -

It is
trans-

e, the

ns.
No monitoring on event fragment data is foreseen
by the Level-2 community. Only the behaviour of
the ROB in its Level-2 activity can be transmitted
as statistics to a Monitor

This is an example of possible exchange between monitor and ROB.

3.6 TTC

Contrary to the ROB URD no L1_inhibit is foreseen from the ROB to a central Trigger.
agreed that, only back pressure will be applied on corresponding ROD via the ROL data
mission protocol [5]

UR TTC-ID ID reception
Each time a trigger is issued, the ROB must receive, from the TTC or its interface modul
event_ID, the bunch_crossing_ID and the trigger type.

This is a DAQ requirement, in particular to drive it in partitioned mode during calibration ru

3.7 To summarize.

ROB is connected to:

• several supervisors
• several processing units
• 1 (or several) monitor
• 1 run control
• several links from detector (ROL)

provide
 local statistics

Monitor

: Monitor
: Rob

 get statistics

partial statisticsAny time in the run

End of the run

 get statistics

complete statistics

ROD/ROL ROB Complex

LVL2 Supervisor

11..*

1..*
0..*1..*

Event Builder

Run Control Monitor

LVL2

1

1..* 1..*

1..*
TTC

Processing Unit

1..*
- 8 -

r each
ble to

ality.

ps of
s. This
ust
m the

call it
event

plex
The exchanged messages are:

4 High level ROB components

In this chapter we try to show what are the main components necessary to the ROB. Fo
“use case” presented in previous chapter we define what are internal components a
answer to the required functionality.

In a first step we can intuitively propose some components to deal with the ROB function
After, their own functionality is refined for each previous Use Case.

4.1 Proposed objects in a ROB.

4.1.1 Event Manager

The main functionality of the ROB is the storage of event fragments during a certain la
time. We must define an object able to give access and manage the event fragment
object knows the location of event fragments according their identifier (event id [6]). It m
register and provide the location of the event fragment and remove the event fragment fro
ROB.

4.1.2 Event Buffer

We must define a repository for event fragments to be stored in the ROB. We propose to
Event Buffer. It must be able to provide information on free (and/or used) space, to store
fragment.

4.1.3 Input port

Data from the detector are transmitted from the Read Out Driver (ROD) to the ROB Com
via a Read Out Link (ROL)[7].

LVL2ROD/ROL ROB Complex

 delete/accept event

Event Builder

RoI request

 RoI

detector raw data

event fragment

Run Control Monitor

statistics
status

request

request

EB address

TTC

Trig

Processing Unit

LVL2 Supervisor
- 9 -

proc-
their
essage

ROB.
uired,

. The

aring

last
e and

st when
, event
ssage

ess the
to the
of the
data to
4.1.4 Message manager

The large number of ROBs and LVL-2 processors does not allow the direct access of the
essors to the data of the ROBs. Only the ROBs know the location of the event data in
event buffer. That leads to an interaction between the processors and the ROBs by a m
delivery.

The management of messages is common to all interactions between LVL-2 actors and
It deals with reception of messages, dispatching in several local mail boxes and, if req
with sending of the reply.

4.1.5 Ports to/from LVL2 and DAQ

Messages are transmitted to/from other nodes of the Trigger/DAQ through networks
ROB is connected to these networks via specific network ports.

4.1.6 ROB Controller

A central object can be used to schedule the activity of the ROB. Its role consists in sh
time and activity between the objects described above.

4.2 Data Request

For the Level-2 trigger, data are mainly RoIs. RoI can cover a part or the whole ROB. In
case it is an event fragment. The RoI request includes the event identifier, the particle typ
its location in the detector or the RoI limits for the particle.

The RoI request is received by the message manager. The Rob controller gets the reque
ready to process it. The event manager provides the corresponding event location. Then
data are processed according to the request of RoI. A reply is built to be returned. The me
manager returns RoI data to the requesting processing unit.

The presented scheme is not mandatory. Here, it is developed but it is possible to compr
path followed by data. In particular, in some cases, data location can be directly provided
message manager instead of a copy of the event. In the Rob Controller, only the frame
reply is built. In the same way, the data processor can access to the event buffer to get

: LVL2
Processing Unit :MessageManager :RobController :EventManager :DataProcessor:EventBuffer

DataRequest
get next

get event

DataRequest

event location

get event location

preprocess event

event

DataReply

DataRequest

event

DataReply
- 10 -

ts are

stMes-
cessing

r has
t man-

multi-

uccess-
be pre processed and location of the result transmitted to rob controller. All these varian
implementation issues.

The structure of the message can be the following

The actual request is the DataRequestBlock. To travel, it is dressed with the DataReque
sage. A MessageHeader is added at top. When sited in a node of the system (Rob or Pro
Unit) a DataRequest class gives access to the inside of the request.

The same mechanism is used for the DataReply.

4.3 Event delete request

Up to the Rob Controller, the path is identical to previous request. When the rob controlle
got in the corresponding mail box the delete of event to be deleted it requests the even
ager to remove the events from its event table.

The event delete request includes several event identifiers to reduce the overhead due to
message headers and multi message transmissions.

The event delete message is also sent by the EF when the event building has finished s
fully.

DataRequestMessage

header:MessageHeader
request:DataRequestBlock

DataReplyMessage

header:MessageHeader
reply:DataReplyBlock

DataReply

reply: DataReplyBlock*

replyBlock()
size()

DataRequest

request:DataRequestBlock*

event_id()
detector_type()

MessageHeader
type

status
source
destination

DataReplyBlock

event_id
roi_type
data

DataRequestBlock

event_id
detector_type
roi limits

message Id

: LVL2
Supervisor :MessageManager :RobController :EventManager

Delete event
get next

DeleteRequest
delete event

Delete Request
- 11 -

th no
er on

identifi-

data
rised

g a
The delete event message can have the following structure.

4.4 L2 Accept

According to the ATLAS TP, this scenario can be compared to a Data request but wi
return of the prepared data. They are kept, ready to be transmitted to the Event Filt
request.

Like for the delete event message, the accept event message can group several event
ers.

4.5 store event fragment

The input port receives data from the Read Out Link. When the ROB is unable to receive
it has to set a busy signal for the upstream partner (UR DI-FC). The input port is characte
by its rate (UR DI-IDR and UR DI-Rate) for the data flow and by control words creatin
frame around the data.

UR DI-RATE Fragment Arrival Rate

DeleteEventBlock

numberOfIds
vector<eventId>

DeleteEventMessage

header:MessageHeader
request:DeleteEventBlock

MessageHeader

: LVL2
Supervisor :MessageManager :RobController :EventManager :DataProcessor:EventBuffer

L2 Accept
get next

get event

L2Accept

event location

get event location

prepare event

locally built event

DataRequest

event

AcceptEventBlock

numberOfIds
vector<eventId>

AcceptEventMessage

header:MessageHeader
request:AcceptEventBlock

MessageHeader
- 12 -

time
ments
par-

ll be

quire-

that

ngths
pes of

d the
nt_ID
y the

d an
l they

event
The ROB shall be able to handle a fragment arrival rate of up to 100 KHz without dead
losses. Incoming fragments will not be de-randomised in time and so, at peak times, frag
can arrive immediately following each other. However, there are some limitations and, in
ticular, there can be no more than 16 fragments in any 16µs period.

UR DI-IDR Input Data Rate
The Read-out Link will transfer data to the ROB at a rate of 100 MByte/sec. The ROB sha
able to handle such an input data rate.

Note that this number has been increased to 160 MByte/sec following the Calorimeter re
ments.

UR DI-FC Flow Control
The ROB must be able to control the flow of input data on the Read-out Link in the event
its buffer becomes full.

Raw data is stored in the event buffer. It must be able to store fragments with variable le
and to be large enough to keep events up to the EB requests.(UR L2-BS). Several ty
event buffer can be considered. It will be described in the next chapter.

UR DI-ALLO Buffer Space Allocation
The ROB must allocate a buffer space for each incoming fragment. The ROB can rea
event_ID in the header of the event and also can cross-check this with TTC_IDs (eve
plus bunch_crossing_ID) generated by the TTC receiver board which is accessible b
ROB.

Note that the cross-check with the TTC information is not assumed in any design.

UR DI-EFS Event Fragment Size
The ROB shall be able to receive event fragments of various sizes

UR L2-BS Buffer Size
The ROB must be able to store incoming fragments until the Level-2 Trigger has issue
L2_accept or L2_reject. It must, thereafter, continue to store accepted fragments unti
have been sent to Level-3. A formula is given to calculate the buffer size.

Control words are used by the event manager. It memorises the location of events in the
buffer.

:Input port

data
:Event Buffer

: Rod

Event fragment

:Event managerBusy
control
- 13 -

de the
4.6 Global view

We have defined the following classes of objects to build a ROB.

It is possible to describe the ROB Complex as an assembly of sub-systems which inclu
classes described above.

Message_manager

receive()
send()

Rob_controller
Event_manager

store event location()
remove event()
get event location()
get event status()

Data-processor

extract RoI()
format for L2t()
format for EB()
expand data()

Event_buffer

size

Input_port

rate

getNewtMessage(queue)

ROB Complex

Event Store

Event
Manager

Detector Interface

TTC Interface

ROB Controller

Buffer
Manager

ROD Level-1

LVL2 Event Building On Line software

ROL

Input Port

Data Processor

LVL2 Interface

Message manager
EB Interface

Message manager
- 14 -

pre-
m. The
his
ed to

ented

h/

-

si-

ting.

.

5 Conclusions

The architecture of the ROB Complex as studied by the Level-2 Trigger community was
sented. This high level design has showed the main components used to build this syste
“reference software[8]” from the “Level-2 Pilot Project[9]” has implemented a part of t
design. The Event Store is emulated and the LVL2 Interface is completely implement
receive and return messages form/to the Level-2 system. The Input Port has been implem
in the DAQ prototype[10].

References:

[1] UML Documentation; http://www.omg.org/uml/

[2] ATLAS ROB User Requirement Document (ROB-URD-V1.3.0); http://www.cern.c
HSI/rob/URD/

[3] Specification of the LVL1 / LVL2 trigger interface, Version 1.0, M.Abolins et al., ATL
DAQ-99-015, 7 Oct. 1999.

[4] ATLAS Level-2 Trigger User Requirement Document (LVL2-URD-1.00); http://atla
nfo.cern.ch/Atlas/GROUPS/DAQTRIG/LEVEL2/DOCUMENTS/urdv1.ps

[5] Timing, Trigger and Control, and Dead-time handling. Ph.Farthouat. ROD mee
Geneva 1998

[6] C.Bee et al. The event format in the ATLAS DAQ/EF prototype -1. ATL-DAQ-98-129

[7] http://www.cern.ch/HSI/s-link/spec/

[8] Level-2 Reference Software; http://www.cern.ch/Atlas/project/LVL2testbed/www/

[9] Level-2 Pilot Project; http://atlasinfo.cern.ch/Atlas/GROUPS/DAQTRIG/L2PILOT/

[10] S.Veneziano. The Read-Out Crate in ATLAS DAQ/EF prototype -1; CHEP 2000
- 15 -

	An UML description of the ATLAS ROB viewed from the Level-2 Trigger.
	Authors : M Huet
	Keywords : ROB, ROBin, ROB Complex, UML.

	Abstract
	This document presents a description of the ATLAS Read Out Buffer(ROB). It is focused on the inte...
	1 Introduction
	2 Organisation and Definitions

	2.1 Methodology
	2.2 ROB and ROB Complex definitions
	2.3 Components of the Level-2 Trigger
	3 Interaction of the ROB with external Actors.

	3.1 LVL2 Processing Unit.
	3.1.1 Data requests

	3.2 LVL2 Supervisor
	3.2.1 L2 reject / delete event
	3.2.2 L2 Accept
	3.2.3 result storage

	3.3 Detectors via RODs (Read Out Driver).
	3.4 Run Control
	3.5 Level-2 Monitoring.
	3.6 TTC
	3.7 To summarize.
	4 High level ROB components

	4.1 Proposed objects in a ROB.
	4.1.1 Event Manager
	4.1.2 Event Buffer
	4.1.3 Input port
	4.1.4 Message manager
	4.1.5 Ports to/from LVL2 and DAQ
	4.1.6 ROB Controller

	4.2 Data Request
	4.3 Event delete request
	4.4 L2 Accept
	4.5 store event fragment
	4.6 Global view
	5 Conclusions
	References:

	[1] UML Documentation; http://www.omg.org/uml/
	[2] ATLAS ROB User Requirement Document (ROB-URD-V1.3.0); http://www.cern.ch/ HSI/rob/URD/
	[3] Specification of the LVL1 / LVL2 trigger interface, Version 1.0, M.Abolins et al., ATL- DAQ-9...
	[4] ATLAS Level-2 Trigger User Requirement Document (LVL2-URD-1.00); http://atlasinfo.cern.ch/Atl...
	[5] Timing, Trigger and Control, and Dead-time handling. Ph.Farthouat. ROD meeting. Geneva 1998
	[6] C.Bee et al. The event format in the ATLAS DAQ/EF prototype -1. ATL-DAQ-98-129.
	[7] http://www.cern.ch/HSI/s-link/spec/
	[8] Level-2 Reference Software; http://www.cern.ch/Atlas/project/LVL2testbed/www/
	[9] Level-2 Pilot Project; http://atlasinfo.cern.ch/Atlas/GROUPS/DAQTRIG/L2PILOT/
	[10] S.Veneziano. The Read-Out Crate in ATLAS DAQ/EF prototype -1; CHEP 2000

