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Abstract

The possibility to enhance the capability of ATLAS Tile Calorimeter to identify
low pT muons (2 < pT < 5 GeV/c) inside b-jets by the use of arti�cial neural
networks technique is investigated in a systematic way. More than 20 models of
neural net discriminators (NND) were applied to separation of gluon jets and b-jets
(with a single soft muon inside a b-jet) at jet pT = 20 and 40 GeV/c in the central
region 0 < � < 0:6. Characteristics of NND are compared to those of the linear
threshold discriminator (LTD) which performs jet classi�cation by applying a cut
to the summed energy deposition in the last depth of Tile Calorimeter. It is shown
that at b-jet identi�cation e�ciencies 0:80 < "b < 0:90 the gluon jet rejection factor
Rg is 4 - 10 times higher in NND case compared to LTD.

The results obtained are based on 2000 jets simulated with the use of ATLAS
simulation programs.



1 Introduction

It was shown in [1], [2] that overall e�ciency of b-jets tagging can be substantially increased if
soft muons with pT down to 2-3 GeV/c are e�ciently identi�ed inside jets. Such muons cannot be
reliably registered by ATLAS muon detector because of signi�cant probability to be absorbed in
the calorimeter.

A way to encrease b-tagging e�ciency consists in using response data of ATLAS hadron
calorimeter (HC) for identi�cation of soft muons. Due to high penetration ability of muons the
signal in the last depth (section or longitudinal sample) of the hadron calorimeter should be greater
for jets with muons compared with jets without muons (gluon jets, light quark jets).

The task of separation between gluon jets and b-jets (a single soft muon inside a b-jet) was
considered in [2] for jets with pT = 20 and 40 GeV/c in the central region 0 < � < 0:6. It was
shown that by imposing a cut on the deposited energy in the last HC section one can reach the
rejection factor for gluon jets Rg = 9 (at pT = 20 GeV/c) and Rg = 4 (at pT=40 GeV/c) with 95%
e�ciency of b-jets identi�cation. Anticipation was also expressed that at a loss of 10% of b-jets
the rejection factor for gluon jets could be pushed up into the region of 50 - 100 if information
from the middle section of HC is used in the form of summed energy value of 2 adjacent cells with
maximum deposit from a 3� 3 cell window centered on the position (�m, �m) of the cell with the
highest deposited energy in the last HC section.

Our aim was to investigate in a systematic way the posibility to enhance the capability of
ATLAS Tile Calorimeter to identify low pT muons inside b-jets by the use of arti�cial neural
networks (ANN) technique.

2 Investigation scheme

In what follows the b-jet events (calorimeter response to b-jets) will be refered to as signal events,
and the gluon jet events { as background events respectively.

We have included a rather wide set of jet classi�ers (discriminators) into our research program.
The classi�ers were naturally divided into groups, the study of each group constituted a separate
step in our investigation scheme. The steps imply investigation of the next groups of discriminators:

A. Linear threshold discriminator (LTD) operating on summed energy deposition E4 in the
last (4-th) section of HC.

B. Neural net discriminators (NND) operating on longitudinal pro�le of jet energy deposition
in HC.

C. A series of neural net discriminators that make use of information on the distribution of
cell energies inside 3�3 cell windows in the �rst and the middle HC sections (all windows centered
on the position (�m, �m) of the cell with the highest deposited energy in the last HC section).

D. A series of neural net discriminators that are extensions of discriminators from Group C.
These discriminators make use of additional features related to: 1) joint distribution of the 3� 3
cell window position and the jet axis in (�, �) plane, 2) jet radius as estimated using HC response.

E. Neural net discriminators that operate on full spectrum of feature types used by discrimi-
nators from Groups A,B,C,D.

Assignment of a discriminator to a certain group does not depend on the discriminator archi-
tecture or its complexity and is guided solely by the type of event features used as inputs to the
discriminator. For example, discriminators within Group C di�er in the number of their inputs
(see below).

In fact each discriminator in Groups C,D,E is a combined discriminator that performs jet
classi�cation in two consecuitive stages:

Stage 1. An event is classi�ed in LTD mode with the minimum cut threshold (MCT) applied
to the summed energy deposition E4 in the last HC section (MCT value is de�ned by noise level).
If E4 of an event is below MCT then the �nal decision is made at Stage 1: the event is classi�ed
as background event (i.e. gluon jet). Otherwise the �nal decision is made at Stage 2.
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Stage 2. An event is classi�ed in NND mode by applying a cut to the neural net output signal.
It follows from this two stage classi�cation scheme that the upper bound "max

b of b-jet identi�ca-
tion e�ciency attainable without losing gluon/b-jet separation ability is imposed by characteristics
of LTD discriminator. In our case "max

b = 0:94 for jets at pT = 20 GeV/c and "max
b = 0:96 at

pT = 40 GeV/c. The importance of minimizing additional loss of e�ciency "b at Stage 2 becomes
evident.

At Stage 2 only subsets of jet events that satisfy the condition E4 > MCT are used for training
and testing neural nets. In estimating discriminator characteristics we followed the procedures
descibed in details in [3], [4]. The obtained characteristics are later renormalized in regard to the
whole sets of events to �nally represent characteristics of the combined two stage discriminator.

In the present paper all results obtained with the use of neural nets are given in renormalized
form.

3 Simulation data

The same data �les were used in the present investigation and in [2]. We remind here some
simulation conditions.

1. Single jets were generated in DICE with pT = 20 and 40 GeV/c uniformly in � in the central
region 0 < � < 0:6 .

2. Gluon jets were chosen as background process.

3. For b-jets (signal events) some conditions were imposed at particle level at the moment of
generation:
a) only events containing one muon (accompanied by its own neutrino) were accepted;
b) transverse momentum of the muon must be in the soft region 2 < pT < 5 GeV/c.

4. For simulation, the Technical Proposal layout was used were Tile Barrel Calorimeter consisted
of 4 longitudinal depths (sections) { along r axis in cylindrical coordinate system.

5. At each pT value 500 b-jets and 500 gluon jets were generated.

Because of decision [5] to bring together two central depths of HC, the simulated cell energy
depositions in these two HC depths were properly merged.

Distributions of summed energies deposited in each section of ATLAS calorimeter are shown
in Fig.1, Fig.2. In comparison with the case of isolated muons and pions [3],[4] the present distri-
butions for the two types of events are much more overlapped in each HC section.

4 Discriminators and their performance

Three-layered perceptrons with n input neurons (nodes) in the �rst layer, nh neurons in a hidden
layer and one output neuron in the third layer were selected for constructing neural net discrimi-
nators. Adjacent layers of the perceptrons are fully interconnected. A formula (n, nh, 1) will be
used to depict the structure of such perceptrons. Actually throughout the present investigation
two structures were used: (n, 4, 1) for jets at pT = 20 GeV/c and (n, 6, 1) at pT = 40 GeV/c.
The package JETNET [8] was used for training the perceptrons.

Inputs to the �rst layer of NND may be thought as components of n-dimensional vector that
represents an event in n-dimensional feature space. Dimension n and ordering of input components
are �xed for a particular NND. For neurons in the hidden and output layers the nonlinear neuron
activation function g(a) = (1 + exp(�2a))�1 was chosen; hence the perceptrons perform nonlinear
mappings of n-dimensional space into (0, 1) interval. During training phase the target value of
the output neuron was put to 1 for b-jets and 0 for gluon jets. Training procedure iteratively
adjusts weigths of connections between neurons in order to minimize mean �t error MFE, i.e.
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mean squared deviation of actual net output values ONN (p) from the target values t(p) over the
whole training set of events:

MFE =
1

2Np

NpX

p=1

(t(p) � ONN (p))
2

where p denotes events.
One pass over training sample constitutes a step of the training procedure; the step is usually

called an "epoch". Using a trained perceptron one gets one-dimensional distributions of net output
values for b-jets and gluon jets. By applying variable thresholds to neural net output values one
gets estimates of important characteristics of discriminators such as:

� "b { e�ciency of signal events recognition, i.e. the probability that a b-jet event be correctly
classi�ed,

� �b { ine�ciency of signal events recognition, i.e. the probability that a b-jet event be mis-
classi�ed (�b = 1� "b),

� �g { survival probability for background events, i.e the probability that a gluon jet event be
misclassi�ed,

� Rg = 1=�g { rejection factor for gluon jets.

Components of input vector for a neural net are usually called event features. Features are
functions of raw data items (data items are cell energies of HC response in our case). Evaluation
of feature values is an operation called preprocessing of measurement data (or source data).

In the present investigation the performance of various discriminators is considered here in
the order de�ned by our investigation scheme. Since the total number of discriminators is great,
we restrict ourselves to presenting only one characteristics for each discriminator, namely the
dependence of Rg on "b. This functional dependence will be given in the form of plots (Rg, "b)
prepared with the use of simulated jets.

Group A. This group includes the single discriminator LTD that performs classi�cation by
thresholding the summed energy deposition E4 in the last HC section.

Distributions of E4 are presented in Fig.3 for both types of simulated jets at pT = 20 and 40
GeV/c. Characteristics of LTD are estimated in a simple way by applying a variable cut threshold
to these distributions. The corresponding (Rg, "b) plots for both pT values are given in Fig.4 .

One can see that at pT = 20 (40) GeV/c the maximume�ciency "max
b attainable without losing

jet separation ability is equal to 0.94 (0.96). At these e�ciencies the value of gluon jet rejection
factor is Rg("

max
b ) = 9(4). For LTD discrimiator, Rg appears to be slowly decreasing function of

the argument "b.

Group B. We have included 2 models of neural nets discriminators into this group.
The �rst one, labeled "var 0, inp 3", uses three values of summed energy depositions E1, (E2+

E3), E4 in HC sections. NND(var 0, inp 3) is similar to NNDl discriminator of the "longitudinal"
type applied to solving �/� separation task in [3],[4].

The second model, labeled "var 1, inp 3", di�ers from NND(var 0,inp 3) in that the third entry

E4 is substituted by e
(4)
max { the maximum energy deposit among cells in the last HC section.

Characteristics for both NNDs of Group B are presented in Fig.5 for jet pT = 20 and 40 Gev/c

Group C. For all NND models of this group the event features used as inputs are evaluated
as functoins of deposited energies in those cells of the �rst two HC sections that lie inside the 3x3

cell window centered on the position of e
(4)
max cell in (�, � ) plane. The series of NND models are

subdivided into 3 subgroups.

Subgroup C1. This subgroup includes one NND model, labeled "var 2, inp 3". The input
features for this model are as following.

NND(var 2,inp 3): E
(1)

c9 , E
(2+3)

c9 , e
(4)
max, where
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E
(1)

c9 { the summed energy deposition in all 9 cells of the 3�3 cell window in HC section 1, and

E
(2+3)
c9 { the corresponding value for the middle section of HC.

In Fig.6 characteristics are presented for the NND of Subgroup C1 at pT = 20 and 40 GeV/c.

Subgroup C2. This subgroup includes 6 NND models:
NND(var k,inp 3), k=3,...,7 and NND(var 8,inp 2).

Along with e
(4)
max, the input features used by models of this subgroup are eveluated as functions

of energy depositions in various subsets of cells inside the 3 � 3 cell window. The subsets of cells
and the input features are de�ned as following.

� NND(var 3,inp 3). Inputs: E
(1)

c5 , E
(2+3)

c5 , e
(4)
max

The value Ec5 is equal to the summed energy deposition in 5 cells whose locations form a
cross in the center of the 3� 3 cell window.

� NND(var 4,inp 3). Inputs: E
(1)
c2c, E

(2+3)
c2c , e

(4)
max

Ec2c is evaluated as the maximum summed energy deposition among pairs of adjacent cells,
one cell of a pair being the central cell of the 3� 3 cell window.

� NND(var 5,inp 3). Inputs: E
(1)

c1c, E
(2+3)

c1c , e
(4)
max

The value of Ec1c is equal to energy deposition in the central cell of the 3� 3 cell window.

� NND(var 6,inp 3). Inputs: E
(1)
c2 , E

(2+3)
c2 , e

(4)
max

The value of Ec2 is equal to the maximumsummed energy deposition among pairs of adjacent
cells in the 3� 3 cell window.

� NND(var 7,inp 3). Inputs: E
(1)

c4 , E
(2+3)

c4 , e
(4)
max

The value of Ec4 is equal to the maximum summed energy deposition in a 2� 2 cell square
among four such squares inside the 3x3 cell window.

� NND(var 8,inp 2). Inputs: E
(2+3)
c2 , e

(4)
max

This model does not use information from HC section 1. It may be considered as truncated
version of NND(var 6,inp 3) model.

Characteristics for NNDs of Subgroup C2 at pT = 20 and 40 GeV/c are presented in Fig.7.

Subgroup C3. This subgroup includes 6 NND models:
NND(var k,inp 5), k=3,...,7 and NND(var 8,inp 3).
Compared with Subgroup C2, the lengths of input vectors of these models are enlarged by adding
information on summed energies Ec9 in the 3 � 3 cell windows. The list of input features is as
following.

� NND(var 3,inp 5): E
(1)

c5 , E
(1)

c9 , E
(2+3)

c5 , E
(2+3)

c9 , e
(4)
max

� NND(var 4,inp 5): E
(1)

c2c, E
(1)

c9 , E
(2+3)

c2c , E
(2+3)

c9 , e
(4)
max

� NND(var 5,inp 5): E
(1)
c1c, E

(1)
c9 , E

(2+3)
c1c , E

(2+3)
c9 , e

(4)
max

� NND(var 6,inp 5): E
(1)
c2 , E

(1)
c9 , E

(2+3)
c2 , E

(2+3)
c9 , e

(4)
max

� NND(var 7,inp 5): E
(1)

c4 , E
(1)

c9 , E
(2+3)

c4 , E
(2+3)

c9 , e
(4)
max

� NND(var 8,inp 3): E
(2+3)

c2 , E
(2+3)

c9 , e
(4)
max
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Characteristics for NNDs of Subgroup C3 are presented in Fig.8.
In total there are 13 NND models in Group C. All the models were trained and tested at jet

pT = 40 GeV/c. Because of moderate size of event samples available for training NNDs at pT =
20 GeV/c, only models with short input vector (Subgroups C1, C2) were investigated at this pT
value.

GroupD. All discriminators of this group are extensions of NND discriminators of the previous
Group C. The total number of NND models in Group D is 13.

To get a NND model of the present group, the input vector of the corresponding model from
Group C is extended by adding 4 features that are related with distributions in (�, �) plane. The
additional inputs are �m, ��m, rm, R1;J ,
where

(�m, �m) { parameters of the cell e
(4)
max with the highest energy deposit in the last depth of HC;

(�1;J , �1;J ) { parameters of the jet axis estimated with the use of active cells in the �rst HC
section,

��m = (�m � �1;J ), ��m = (�m � �1;J), rm =
p
��2m + ��2m -are deviations of the cell e

(4)
max

from the jet axis in (�, �) plane,
R1;J { estimation of the jet radius in (�, �) plane with the use of energy depositions in cells of

the �rst HC section.
In estimating values of �1;J , �1;J , R1;J we follwed the procedures proposed in [6], [7] for

reconstruction of jet parameters using calorimetric data:

�1;J =
1

ET;J

�
X

i

eT;i�i

�1;J =
1

ET;J

�
X

i

eT;i�i

ET;J =
X

i

eT;i

R1;J =
1

ET;J

�
X

i

rieT;i ;

where eT;i { transverse energy deposited in i-th cell of HC section 1.
In Fig.9 distributions of �m, ��m, rm and R1;J at pT = 40 GeV/c are presented for subsets of

gluon and b-jets in which the condition 0:4 < e
(4)
max < 1:2 GeV is satis�ed.

In Fig.10 characteristics are presented for those discriminators of Group D at pT = 40 GeV/c
which are extensions of NN discriminators from Subgroup C3. It should be noted that in com-
parison with Subgroup C3 the value of Rg attained by NNDs of Group D is observed at lower
e�ciencies "b < 0:8.

Group E. All discriminators of this group are extensions of NND discriminators of Group
D. The corresponding input vectors used in Group D are extended by adding 2 features: E1 and
(E2 + E3), where Ek is the summed energy deposition in k-th HC section. The input vectors of
discriminators in Group E contain values of 11 features.

Though formally the Group E may include many NND models, we have tested only one NND
model with full length input vector at pT = 40 GeV/c, namely NND (var 6, inp 11). Its charac-
teristics are presented in Fig.11.

Subgroup E1. This subgroup is a truncated version of NNDs from Group E. The following

features are used as inputs to the perceptron (6, 4, 1) trained at pT = 20 GeV/c : Ec2, e
(4)
max, �m,

��m, rm, R1;J . Characteristics of NND(var 6, inp 6) are presented in Fig.12.
Neural nets were trained using up to 104 epochs in a training session. As an example we present

in Fig.13 the dynamics of mean �t errors MFE as functions of the current epoch number in training
sessions for several NNDs.
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Using (Rg, "b) plots a reader can compare performances of LTD and various NND models
in a straightforward way. Though the idea of another jet classi�er was formulated in [2], the
corresponding plots on its performance were not given. Nevertheless, using charcteristics of our
wide set of neural net discriminators we can estimate upper bounds for performance of the classi�er
[2]. The feasibility lies in the fact that a classi�er which performs classi�cation by applying n
consecuitive cuts to one-dimentional distributions of event features, in general case, is inferior
to a classi�er which uses m hyperplanes (m � n) for separation of event classes directly in n-
dimensional features space. Among the wide set of NNDs, the NND(var 8, inp 2) is the most close

one to the classi�er [2]. Though input variables are the same ( E
(2+3)

c2 and e
(4)
max ), the number of

free parpmeters in NND case is bigger (4 hyperplanes are used at pT = 20 GeV/c, 6 hyperplanes
at pT = 40 GeV/c).

For convenience we summarize the results in Table 1, 2 , where gluon jets rejection factors are
given at pT = 20 and 40 GeV/c for 3 values of b-jet identi�cation e�ciencies ("b = 0.90, 0.85, 0.80)
for a) the best of NND, b) LTD and c) NND(var 8, inp 2).

Table 1: Gluon jet rejection factors at pT = 20 GeV/c

"b Best of NND LTD NND (var 8, inp 2)

0.80 100 17 70

0.85 100 15 70

0.90 50 13 30

Table 2: Gluon jet rejection factors at pT = 40 GeV/c

"b Best of NND LTD NND (var 8, inp 2)

0.80 80 8 20

0.85 70 7 15

0.90 30 6 10
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5 Conclusion

1. The use of linear threshold discriminator (LTD) that performs classi�cation of jets by apply-
ing a cut on summed energy deposition in the last depth of Tile Calorimeter leads to poor
performance: at b-jet identi�cation e�ciencies 0:80 < "b < 0:95 the gluon jet rejection factor
Rg lies in the range 13 - 17 (for pT = 20 GeV/c) and in the range 6 - 8 (for pT = 40 GeV/c).

2. Results on more than 20 models of neural net discriminators (NND) show appreciably higher
performance of NND compared to LTD. At b-jet identi�cation e�ciencies 0:80 < "b < 0:90
the gluon jet rejection factor Rg is 4 - 6 times higher for NND at pT = 20 GeV/c and 5 - 10
times higher at pT = 40 GeV/c.

3. To reveal the full potential of ANN approach to solving jet separation tasks, greater samples of
events are needed to allow using neural nets of a size bigger than in the present investigation.

4. Accepting the present results as an estimate of lower bounds of NND performances, one
can state that the following inequalities should hold for the gluon jet rejection factor Rg("b)
attained by NND:

(a) at pT = 20 GeV/c : Rg(0:90) � 50, Rg(0:85) � 100

(b) at pT = 40 GeV/c : Rg(0:90) � 30, Rg(0:85) � 70
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Figure 1: Distributions of deposited energies in sections of preshower detector (ps1, ps2),

EM calorimeter (em1 � em3), Hadron calorimeter (ha1 � ha4) for b-jets and gluon jets at pT
= 20 GeV/c in the central region 0 < � < 0:6
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Figure 2: Distributions of deposited energies in sections of preshower detector (ps1, ps2),

EM calorimeter (em1 � em3), Hadron calorimeter (ha1 � ha4) for b-jets and gluon jets at pT
= 40 GeV/c in the central region 0 < � < 0:6
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E4 distribution

Figure 3: Distribution of summed energy deposition E4 in the last HC section for jets at pT = 20

and 40 GeV/c
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Jets separation by LTD

Figure 4: Linear threshold discriminator LTD: gluon jet rejection factor Rg versus b-jets identi�-

cation e�ciency "b at pT = 20 and 40 GeV/c
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Jets separation by NND

Figure 5: Group B: Gluon jets rejection factor Rg versus b-jets identi�cation e�ciency "b at pT
= 20 and 40 GeV/c

Jets separation by NND

Figure 6: Subgroup C1: Gluon jets rejection factor Rg versus b-jets identi�cation e�ciency "b
at pT = 20 and 40 GeV/c
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Jets separation by NND

Figure 7: Subgroup C2: Gluon jets rejection factor Rg versus b-jets identi�cation e�ciency "b
at pT = 20 and 40 GeV/c
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Jets separation by NND

Figure 8: Subgroup C3: Gluon jets rejection factor Rg versus b-jets identi�cation e�ciency "b
at pT = 40 GeV/c
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 Angular features  at 40 GeV/c

Figure 9: Distributions of angular features �m, ��m, rm and R1;J at pT = 40 GeV/c for subsets

of jets with 0:4 < e
(4)
max < 1:2 GeV/c
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Jets separation by NND

Figure 10: Group D: Gluon jets rejection factor Rg versus b-jets identi�cation e�ciency "b at pT
= 40 GeV/c
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 Jets separation by NND

Figure 11: Group E: Gluon jets rejection fac-

tor Rg versus b-jets identi�cation e�ciency "b
at pT = 40 GeV/c

 Jets separation by NND

Figure 12: SubgroupE1: Gluon jets rejection

factor Rg versus b-jets identi�cation e�ciency

"b at pT = 20 GeV/c
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Mean fit errors in training sesions  ( 40 GeV/c )

Figure 13: Dynamics of mean �t error MFE in training sessions for NNDs of Group D at pT =

40 GeV/c
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