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Abstract

Advantages of arti�cial neural networks techniques in handling data from highly

granulated ATLAS hadron calorimeter are shown in application to isolated �=� se-

paration task in the range 3 < pT < 5 GeV at pseudorapidity � = 0:3. Such low pT

muons have a signi�cant probability to be absorbed in the calorimeter and therefore

they cannot be reliably registered by the muon detector. JETNET program was

used to investigate the performance of neural network classi�ers in solving low pT

�=� separation task. Data sets for training and analysis were obtained with ATLAS

simulation programs.
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1 Introduction

Arti�cial Neural Networks (ANN) have already found many applications in High Energy Physics [1].

Due to their inherent parallelism, robustness and good statistical properties the ANN are used both

in o�-line and on-line analysis.

The main goal of the present article is to show advantages of ANN approach in handling

data from highly granulated hadron calorimeter (HC) in comparison with other techniques. To

demonstrate the potential of ANN approach the task of isolated low pT �=� separation was

chosen. In solving the task we can get an insight into what are the most relevant inputs to an

e�ective neural network classi�er (discriminator) and what are its performance limits.

Having its own value, the e�ective solution of isolated low pT �=� separation task may be

considered as an auxiliary step towards tackling a more di�cult problem { tagging b-jets with

low pT muons using HC information. Muons in the range 3 < pT < 5 GeV have a signi�cant

probability to be absorbed in the calorimeter and therefore they cannot be reliably registered by

the muon detector. In [2] it was shown that identi�cation of b-jets with muon's pT � 3 GeV can

increase the statistics of the observed events by a factor of 2.5 in searching for and measurement

of CP violation in B0

d ! J= K0

s channel with J= ! �+�� decay { the problem mentioned in

the ATLAS Technical Proposal [3].

In our investigation we restricted ourselves to testing discrimination power of two types of

discriminators: linear threshold discriminators (LTD) as used in [2] and neural net discriminators

(NND) built using the package JETNET [4]. The present work is based on simulated data; two HC

designs were considered { with 4 and 3 longitudinal samples. Distributions of deposited energies

in each section of ATLAS calorimeter are shown in Fig.1.

2 Neural networks application scheme and simulation data

In what follows the muon events (calorimeter response to muons) will be refered to as signal events,

and the pion events { as background events respectively.

Neural net discriminators being nonlinear nonparametric extensions of conventional classi�ers

exploit knowledge of joint probability distribution of di�erent features of registered events. Approx-

imation of joint probability distribution is attained through a procedure called neural net training

on the basis of a training set of events (simulated or real). Under certain conditions neural net

classi�ers realize asymptotically optimal, Bayasian decision [5], [6].

To formulate the problem under study closer to identi�cation of low pT muons in the b-jet

context we do not consider information from electromagnetic calorimeter (EMC) nor from any

track detectors, thus entirely relying on hadron calorimeter response data.

We adopted the following investigation scheme which consisted of seven distinct steps:

1. De�ne an interval of interest for pT value (pT working interval).

In our case it is 3:0 < pT < 5:0 GeV.

2. Form training set of events. It comprises both signal and background events generated at pT
values within the pT working interval (see below the details).

3. Train the neural net discriminator.

4. Test the neural net discriminator. Testing is performed using another set of events (test

events) with pT within the working interval. Quality of the trained discriminator (its charac-

teristics as a classi�er) is evaluated as a function of the threshold level applied to discriminator

output signal.

5. Estimate discriminator quality dependence on pT (for events both within pT working interval

and outside it).

6. Execute steps 2 - 4 for di�erent levels of photostatistics (in the range 10 - 80 photoelectrons

per GeV).

7. Execute steps 2 - 4 for two HC designs: a) with four longitudinal samples and b) with three

longitudinal samples (samples 2 and 3 grouped togethger).
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Figure 1: Distributions of deposited energies in sections of preshower detector (ps1, ps2),
EM calorimeter (em1� em3), Hadron calorimeter (ha1�ha4) for muons and pions at � = 0:3 and
pT values uniformly distributed within (3 - 5) GeV interval

The standard ATLAS programs (DICE and ATRECON) were used to simulate calorimeter

response to isolated � and � at � = 0:3 for pT values uniformly distributed within pT working

interval (3.0, 5.0) GeV. In total 6000 muon events and 6000 pion events were simulated. Actually

the pT working interval was subdivided into four nonoverlapping subintervals of 0.5 GeV width,

with 3000 events in each. To evaluate the discriminator quality outside the pT working interval, we

have prepared additional data �les for muon and pion events generated at pT = 2:0 and 10.0 GeV

(4000 events in total). Noise e�ects were taken into consideration in a simpli�ed way using a cut

of 0.1 GeV for thresholding the simulated energy depositions in HC cells.

The resultant trained neural net discriminator depends on pT distribution in the training set

within both classes of events (signal and background). General case of nonuniform pT distributions

is easily simulated by proper adjustments in a procedure that performs access to event patterns

during neural net training phase.
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3 Discriminators and their performance in low pT �=� sep-

aration

In this paper results for four models of �=� discriminators are presented in the order of their

increasing discrimination power.

� LTD { linear threshold discriminator that checks the deposited energy E4 in the last HC

sample against the threshold value.

� NNDl1 { neural net discriminator operating on the energies Ei, i = 1; 4 , deposited in four

HC sections (i.e. on longitudinal samples).

� NNDl2 { neural net discriminator operating on values of event features estimated as functions

of arguments Ei.

� NND3d { neural net discriminator operating on 3-dimensional pattern of energy deposition

in HC (i.e. on energy deposition in cells).

Three-layered perceptrons with n input neurons (nodes) in the �rst layer, nh neurons in a

hidden layer and one output neuron in the third layer were selected for constructing neural net

discriminators. Adjacent layers of the perceptrons are fully interconnected. A formula (n, nh, 1)

will be used to depict the structure of such perceptrons.

Inputs to the �rst layer of NND may be thought as components of n-dimensional vector that

represents an event in n-dimensional feature space. Dimension n and ordering of input components

are �xed for a particular NND. For neurons in the hidden and output layers the nonlinear neuron

activation function g(a) = (1 + exp(�2a))�1 was chosen; hence the perceptrons perform nonlinear

mappings of n-dimensional space into (0, 1) interval. During training phase the target value of

the output neuron was put to 1 for muons and 0 for pions. Training procedure iteratively adjusts

weigths of connections between neurons in order to minimizemean �t error MFE, i.e. mean squared

deviation of actual net output values ONN (p) from the target values t(p) over the whole training

set of events:

MFE =
1

2Np

NpX

p=1

(t(p) � ONN (p))
2 (1)

where p denotes events.

Using a trained perceptron one gets one-dimensional distributions of net output values for

muons and pions, and the subsequent part of �=� separation task becomes similar to that of LTD

discriminator which deals with one-dimensional distributions of E4 values (0 � E4 <1) .

In Fig.2(a) distributions of E4 for signal (�) and background (�) events are presented, and in

Fig.2(b) { distributions of neural net output values for the same events (the neural net is that of

NNDl2).

A �xed point on x-axis (decision point or threshold) dichotomizes these distributions. Counting

events on both sides of the threshold and normalizing the results one gets accumulated probabilities

for an event to be correctly classi�ed or misclassi�ed. Applying variable thresholds we get estimates

of important characteristics of discriminators:

� "� { e�ciency of signal events recognition, i.e. the probability that a muon event be correctly

classi�ed,

� �� { ine�ciency of signal events recognition, i.e. the probability that a muon event be

misclassi�ed (�� = 1� "�),

� �� { survival probability for background events, i.e the probability that a pion event be

misclassi�ed.

These characteristics for LTD and NNDl2 discriminators are presented in Fig.3 as functions of

discriminator's internal parameter (threshold value for energy E4 in case of LTD; threshold value

for neural net output signal in case of NND).

Two other characteristics are de�ned as follows:
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Figure 2: (a) Distributions of E4 for � and � events at � = 0:3 and pT values uniformly distributed
within (3 - 5) GeV interval, (b) Distributions of NNDl2 neural net output values for the same
events

� R� = 1=�� { rejection factor for background events,

� Q = "� �R� { enrichment factor.

Enrichment factor Q indicates the change in the ratio

(number of signal events)

(number of background events)

after applying the discriminator to a mixture of signal and background events. Two lower plots in

Fig.3 present Q-factors for LTD and NNDl2 as functions of variable threshold values.

Di�erent types of discriminators may di�er in sense and range of their internal parameters

which control performance of a discriminator. That is why we prefer to use parameter independent

function Q("�) for comparing functional behaviour of di�erent discriminators [7], [8], [9]. In Fig.4

Q("�) function is presented for LTD and NNDl2 discriminators (values of these functions are

derived from plots in Fig.3).

Before presenting and commenting functional behavior of the four discriminators we shall look

at what is the di�erence between neural nets of three NND discriminators. All three nets being

perceptrons of the formula (n, 40, 1) di�er in two respects:

1) dimension n of input vectors �Xn,

2) sense of components of �Xn.

Components of �Xn vector are usually called event features. Features are functions of raw data

items (cell energies of HC response in our case). It is worth noting that Ei samples are also

features: each Ei is a weighted sum of all energies deposited in separate cells of i-th section of

HC, all weights being set to 1). Evaluation of feature values is an operation called preprocessing

of measurement data (or source data). Note that operation of reordering features in input vector
�Xn is another example of preprocessing if this operation is event dependent.
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Figure 3: Characteristics for LTD and NNDl2 as functions of discriminator's internal parameter
(threshold value for energy E4 in case of LTD; threshold value for neural net output signal in case
of NND)

It is well known that de�nition of a feature space is the most critical stage in pattern classi-

�cation process. Various features of the events were evaluated and many sessions of neural net

training and testing were carried out in search for the most e�ective subsets of features used as

inputs to neural nets.

The neural net of NNDl1 discriminator is a (4, 40, 1) - perceptron which uses four longitudinal

samples Ei, i = 1; 4 , as components of input vector �X4. The order of samples Ei in the vector �X4

is �xed: i-th component of �Xn is assigned Ei value. In Fig.5 the line labeled by Q1 presents Q("�)

curve for NNDl1 discriminator. It follows from the �gure that for muon registration e�ciencies

"� = 0:80�0:97 the enrichment factor Q1 is in the range 100 { 105. Q1("�) is a decreasing funcnion

for larger "� values, and at "� = 0:99 it drops to � 95.
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Figure 4: Q vs "� for LTD and NNDl2

Figure 5: Q vs "� for discriminators: Q0 { LTD, Q1 { NNDl1, Q2 { NNDl2, Q3 { NND3d
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NNDl2 discriminator is also based on the (4, 40, 1) - perceptron and also uses four longitudinal

samples Ei, i = 1; 4. In contrast to NNDl1, assignment of a particular Ek to a component of �X4 is

dependent on the event itself. Here components of �X4 are an ordered set of longitudinal samples

ordered by their values in descending way. Q("�) curve for NNDl2 discriminator is presented in

Fig.5 by the line labeled Q2. For muon registration e�ciencies "� = 0:80� 0:97 the enrichment

factor Q2 is in the range 120 { 125. At e�ciency "� = 0:99 Q2 drops to � 95.

For conveniency of comparison we present in Fig.6 ratios qij of the functions Q("�) for di�erent

pairs of discriminators at e�ciencies "� = 0:88� 0:99:

qij("�) =
Qi("�)

Qj("�)
=
Ri("�)

Rj("�)
; i > j ; j = 0; 1; 2 ;

where Ri("�), Rj("�) denote corresponding values of pions rejection factor R�.

One can see that in comparison with LTD all neural net discriminators have twice as high

enrichment factor value Q at the highest e�ciency "� = 0:99. At lower e�ciencies ("� < 0:96)

di�erent models of neural net discriminators hold Q factors 40 - 80 % higher compared to LTD

discriminator.

In search for e�ective NND3d discriminator we tried a number a ways to extract additional

important features by preprocessing clusters of cells in each HC section. A cluster is de�ned as the

3� 3 cells window where the maximum summed energy is deposited. The central cell (�c ; 'c) of

a cluster is that with maximum cell energy.

Some of the tested features are:

1. energy of the leading cell in a cluster,

2. summed energy in increasing square bands around the centre of a cluster,

3. summed energy of the cells outside a cluster,

4. ordered sample of cell energies in a cluster,

5. ordered sample of cell energies normalized by the total energy in a cluster,

6. m { number of cells with energy deposition above preset thresholds i.e. multiplicity of active

cells in a cluster,

7. m� { number of active cells in a cluster with �cell 6= �c, (m� - multiplicity),

8. m' { number of active cells with 'cell 6= 'c, (m' - multiplicity),

Additional features of "longitudinal" type were tested in order to take into account nonunifor-

mity VE of energy depositions in consequitive HC sections. VE is de�ned as following:

VE =

3X

i=1

(vi �Ei � vi+1 _Ei+1)
2=E2

tot ; Etot =

4X

1

Ei (2)

Three sets of vi constants were used to prepare three versions of VE feature:

a) vi = 1,

b) vi = 1=di, where di { thickness of i-th HC section in nuclear interaction length units,

c) vi = 1=M�(Ei), where M�(Ei) is mean value of i-th longitudinal sample in HC for muon

events (see Fig.1)

During training and testing sessions we retained only those models of NND3d which had higher

characteristics and lower dimension of feature vector �Xn. The �nal version of NND3d is based on

the (8, 40, 1) - perceptron. The input features are:

| ordered sample of Ei (four features),

| m
(jk)
� , m

(jk)
' , k = 1; 2 (four features),

j1 ; j2 { are indeces of those two HC longitudinal sections where the greatest

summed energies were deposited for an event.
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Figure 6: Ratios qij=Qi=Qj vs "� for di�erent pairs of discriminators Di, Dj:
D0 { LTD, D1 { NNDl1, D2 { NNDl2, D3 { NND3d
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Functional behavior of NND3d is presented by Q3("�) curve in Fig.5. One can see that an

increase in Q - factor value is sensible enough (about 25 units) compared to NNDl1, but is relatively

small (less then 10 units) compared to NNDl2. In comparison with all other three discriminators

the relative increase in Q for NND3d is presented in Fig.6 by q3j("�) curves, j = 0, 1, 2.

In our opinion, the moderate increase in Q for NND3d in comparison with NNDl2 may be

justi�ed as follows.

Muons loose their energy mainly by ionization, and the number of active cells in an HC section

does not exceed 2. Distributions of their deposited summed energies in each of four sections are

of gaussian type, centered at M�(Ei), i = 1; 4 with standard deviations 0:102 < �i < 0:125 (ref.

Fig.1). Big deviations frommean valuesM�(Ei) in one or more HC sections are used by well trained

NNDl1, NNDl2 discriminators as signatures of a pion. Number of pions misclassi�ed by NNDl1,

NNDl2 is not greate and equals to m� = N � �� = N=R�. To substantially increase classi�cation

power the NND3d discriminator should correctly classify a part of m� pions using information on

cell distribution of the deposited energy in HC sections. The rise in multiplicity above 2 active

cells is with high probability accompanied by the increase in summed energy deposition by an

ammount that is abnormal to a muon event; the observed multiplicity of active cells in these m�

pions events is similar to that in muon events. The little di�erence in characteristics between

NND3d and NNDl2 shows that using information on active cell multiplicity permits NND3d to

lower m� number only by 5%. This result gives rise to an assumption that some of m� pions { all

exhibiting deep penetration ability with nonzero energy deposition in the last HC section { most

likely did not take part in nuclear interactions at all. Obvious contradiction between the actually

observed fraction of misclassi�ed pions (� 0:01) and the fraction of pions (< 0:0001) that could

escape nuclear interactions in ATLAS calorimeter at � = 0:3 leads us to a conclusion that at least a

part of the observed m� cases of HC response is most probably not produced by particles entering

HC as pions.

Indeed, pion decay process �� ! �� + ��� tends to make HC response to a background event

(�) look like that to a signal event (�). The probability of the decay is not negligible in our �=�

separation task: for pT uniformly distributed in 3 { 5 GeV interval at � = 0:3 about 0.83% of pions

decay prior to the �rst nuclear interaction and should in average produce muon-like HC responses.

At high muon registration e�ciencies and 3000 pion events in a test sample we arrive at a limit

value R� = 120�30

20
. It follows from this estimate that longitudinal samples in HC contain enough

information for NNDl1 and NNDl2 to approach the limit values of R� and Q. Hence the subsequent

improvements in R� and Q attained by NND3d could not be high.

Simulated events (12000 in total) have been split into two equal parts: one part used for train-

ing neural net and another part - for testing its generalization ability. With 3000 + 3000 events

in the test sample and high values of background rejection factors R� attained by discriminators

(R� � 100) the statistical errors in estimation of Q can not be low: �(Q) � 15� 20. Nevertheless,

the di�erence in characteristics of any two discriminators may be estimated with higher preci-

sion because the common test sample of events is used for evaluating these characteristics which

consequently become correlated.

Let Di, Dj be two discriminators tuned to operate at the given �xed e�ciency "� = "0, and

Ri, Qi, Rj, Qj { their background rejection factors and enrichment factors at "� = "0. Assume

without loss of generality that Ri � Rj. It can be shown that maximum likelihood estimation of

variance of the ratio qij = Qi=Qj = Ri=Rj may be reduced to the following expression:

^var(qij) = qij �
Ri

N
�
�
qij + 1� 2

Ri

Rij

�
(3)

or

^var(qij) = qij �
Qi

"0N
�
�
qij + 1� 2

Qi

Qij

�
"ij

"0

�
(4)

where

N { the number of background events (pions) in the test sample,
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Rij, Qij, "ij { background rejection factor, enrichment factor and muon registration e�ciency

of the compound discriminatorDij based on Di, Dj that are operating in parallel (each at "� = "0)

and whose output logical signals 0/1 (classi�cation signals) are processed by "AND" logical function

to form output signal of the compound discriminator.

Note that in general case the next inequalities hold:

Rij � Ri � Rj ; "ij � "0

Error bars in Fig.6 correspond to estimates according to (3), (4).

Neural nets were thoroughly trained using up to 7 - 10 thousands epochs in a training session.

To reach the minimum of event classi�cation error we tested neural net versions with di�erent

forms of neuron activation function, used �xed and variable learning rates in a training session,

used back-propagation and Rprop training procedures [4].

Output of a short summary after each epoch proved very useful for supervising the process of

neural network training. The summary contains: epoch number, mean �t error MFE (1) in the

current epoch, muon and pion recognition e�ciency in training and test sets of events, four values

of enrichment factor Q at e�ciencies "� = 0:99; 0:95; 0:90;0:85.

As an example of a training session we present in Fig.7 the dynamics of enrichment factor Q

(at "� = 0:99) and mean �t error MFE as functions of the current epoch number in the session.

Figure 7: Dynamics of enrichment factor Q (at "� = 0:99) and mean �t error MFE in a training
session for NNDl1
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As the next step in our investigation scheme we estimated the dependence of discriminator

characteristics on pT values of events being tested. We evaluated characteristics of di�erent dis-

criminators at four pT values inside the working interval (3.0 , 5.0) GeV and at pT = 2 and 10 GeV

outside it. It should be noted that results for pT outside the working interval are highly sensitive to

singularities of NND versions and to the threshold values applied to the neural net output signal.

E�ciency "� and pion rejection factor R� inside the working interval are constant within statistical

errors for all discriminators. At pT = 10 GeV "� remains as high whereas at pT = 2 GeV "�
drops to the values 0.2 { 0.8 depending on the version of a discriminator.

Due to poor statistics at pT = 2 and 10 GeV (1000 pion events at each pT value) only qualitative

conclusions can be drawn from the set of estimates ofR� for di�erent discriminators at these two pT
values. The least degradation in R� and "� outside the working interval is shown by discriminators

of NND3d family, the biggest degradation { by LTD. To reach good performance at pT = 2 GeV

one should include events simulated at 2 � pT � 3 GeV into the training set of events.

To investigate the in
uence of photostatistics on discriminator's performance we repeated steps

2 - 3 of our investigation scheme (see page 2) for seven di�erent photostatistics levels in the range

10 - 80 photoelectrons per GeV. For the �xed muon recognition e�ciency "� = 0.99 the dependence

of Q - factor upon photostatistics level is presented in Fig.8 for NNDl2 and LTD discriminators.

It is clearly seen that the neural net discriminator is a more robust classi�er which retains its

selectivity within the whole range of photostatistics level and whose discrimination power gradually

decreases when photostatistics level goes down. In contrast to NNDl2, the LTD discriminator

cannot retain its selectivity at e�ciency "� = 0.99 within the whole range of photostatistics level

(25 photoelectrons/GeV is the critical point { ref. Fig.8).

Figure 8: Enrichment factor Q as function of photostatistics level for NNDl2 and LTD discrimi-
nators at �xed e�ciency "� = 0.99
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According to the ATLAS Technical Proposal [3] the central two sections of hadron calorimeter

will be grouped together. We designate the two HC designs of 4 and 3 longitudinal samples

as HC(1,2,3,4) and HC(1,2+3,4). A neural net discriminator of NNDl1 family was trained and

tested for HC(1,2+3,4). In Fig.9 its characteristics are presented by the line labeled NNDl1(3s).

The line labeled NNDl1(4s) presents characteristics of the NNDl1 discriminator given in details

earlier for HC(1,2,3,4). One can see that at e�ciencies "� < 0:90 the NNDl1(3s) is not inferior to

NNDl1(4s). At e�ciencies 0:95 < "� < 0:99 the enrichment factor Q of NNDl1(3s) is only 10%

lower in comparison with NNDl1(4s).

Figure 9: Characteristics of neural net discriminators for two di�erent HC designs { with 3 and 4
longitudinal samples

4 Conclusions

1. Neural net discriminators operating on longitudinal or 3-dimensional deposited energy sam-

ples and the linear threshold discriminator operating on total deposited energy in the HC

last section were applied to low pT �=� separation. Compared to the linear threshold dis-

criminator an increase of 80 � 100% in pion rejection factor at muon recognition e�ciency

0:95� 0:99 was obtained in case of neural network discriminators.

2. Neural net discriminators trained inside the working interval 3 � pT � 5 GeV do not show

a sharp deterioration of their performance outside the working interval at pt = 10 GeV. To

keep good performance of neural net discriminators at pT = 2 GeV one should include events

with 2 � pT � 3 GeV into the training set of events.

3. Neural net discriminators proved to be robust classi�ers that at high muon registration

e�ciency "� = 0:99 retain their selectivity in a wide range of photostatistics level (10 - 80

photoelectrons / GeV) and whose discrimination power { in contrast to the linear threshold

discriminator { gradually decreases when photostatistics level goes down.

4. There is little di�erence in characteristics of neural net discriminators for two HC designs -

with 4 and 3 longitudinal samples. No di�erence is observed for e�ciencies "� < 0:90. At
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e�ciencies 0:95 < "� < 0:99 the pions regection factor in case of 3 longitudinal samples is

only 10% lower compared to the case of 4 longitudinal samples.
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