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Abstract

This report presents a review of the studies made in the
working group on “γγ andeγ physics” of the ECFA/DESY
workshop on linear collider physics. It reports on several
new physics studies, in particular s-channel Higgs produc-
tion. A summary of R&D activities for the interaction re-
gion is presented. The merits ofe−e− collisions are briefly
recalled.

INTRODUCTION

A future e+e− linear collider (LC) offers excellent new
opportunities for the study of high energy particle colli-
sions. The idea to convert the electron beams of a LC into
photon beams, by laser backscattering, and thus create a
photon collider (PC), was first discussed about 20 years ago
in [1]. Projects for a future LC collider are studied in Eu-
rope (TESLA,CLIC), the US (NLC) and Asia (JLC), and
all consider a PC as a possible additional option. Recently,
in the context of the ECFA-DESY LC study, a detailed dis-
cussion of the physics and design of a PC was presented
in the TESLA-TDR [2] and in [3]. This paper reviews the
work done during the last two years in the study group “γγ
and eγ physics” of the extended ECFA/DESY workshop
on physics and detectors at a linear collider.

A plethora of new and exciting measurements become
accessible with a PC, in particular Higgs boson studies,
but also searches for new physics and electroweak, top and
QCD measurements can be made often in a complementary
way compared toe+e− collisions. The precision reached
at a PC is competitive if sufficiently high luminosities can
be reached.

Examples of advantages of a PC include:

• Higher cross sections for charged particles than in
e+e−.
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• DifferentJPC states than fore+e−.

• Higgs can be s-channel produced as a resonance.

• CP analysis opportunities for Higgs bosons

• Precise test of the coupling to photons

• Possible higher mass discovery range for e.g.H, A,
and sleptons

Note that a PC needs no positron drive beam but electron
beams, which can be produced with relatively high polari-
sation, are sufficient.
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Figure 1: A sketch of the creation of a photon beam by
Compton backscattering of laser photons off beam elec-
trons.

The proposed technique for a PC consists of using laser
backscattering as shown in Fig. 1. A low energy (typically
1 eV) laser beam of photons collides with the high energy
(typically 250-500 GeV) electron beam and is backscat-
tered receiving a major fraction of the incoming electron
energy. The maximum energy of the generated photons is
given byEmax

γ = xEe/(1+x), with Ee the electron beam
energy andx = 4EeEL cos2(θ/2)/m2

ec
4 with EL andθ

the laser photon energy and angle between the electron and
laser beam. The distance of the conversion to the interac-
tion point is in the range of several mm. A typical value for
x is 4.8, which leads to photon spectra which peak around
0.8Ee. The energy distribution depends on the polarisation
of the photon (Pc) and electron beam (λe), the most peaked
spectrum is obtained whenPcλe = −1. In reality, due to
the maximum polarizability of the electron beam a value
close toPcλe = −0.8 can be reached. Sometimes it is
advantageous to have a broader spectrum, e.g. to discover
particles with unknown masses, in which case the configu-
rationPcλe = +0.8 will be more useful.

The polarization of both beams can be further used to
produce interactions with the same (Jz = 0) or oppo-
site (Jz = 2) photon helicities, useful e.g. for Higgs
studies. Higher geometrical luminosities can be achieved



for photon colliders than for genuinee+e− colliders, due
to the absence or strong reduction of beamstrahlung in
the interaction region. The ’luminosity’ is usually de-
fined to be the luminosity corresponding to the region√

sγγ > 0.8√sγγ,max and is typically 10% of the ge-
ometricale+e− luminosity. For the TESLA parameters,
but including a smaller horizontalβ function at the inter-
action point namely 1.5 mm inx, compared to 15 mm
for the e+e− beam design, and reducing the horizontal
emittance from 553 nm to 140 nm, leads toLγγ(√sγγ >

0.8√sγγ,max) ∼ 1
3Le+e−. This gives event samples cor-

responding toO(100) fb−1 per year for the PC. A PC

• needs a second interaction point

• needs a cross angle

• has a rather peaked but somewhat smeared centre of
mass system (CMS) energy spectrum

Both high energyeγ and γγ interactions can be pro-
vided, depending on whether only one or both lepton beams
are converted.

TOOLS

During this workshop major progress was made on the
development and completion of the tools to study physics
at aγγ collider. These tools have now reached a high level
of maturity.

Luminosity spectra at photon colliders can not be de-
scribed completely by effective photon spectra due to the
energy-angle correlation in Compton scattering and beam
collision effects. Fully detailed luminosity distributions
were obtained by a complete simulation of beam collisions,
resulting in ’collision events’ that contain the types of col-
liding particles (photon, electron, positron), their energies
and polarizations. The PHOCOL program [4] was used to
generate these collision events for severale−e− CMS en-
ergies and laser configurations. PHOCOL includes non-
linear corrections and contributions of higher order pro-
cesses. An example of aγγ CMS energy distribution is
shown in Fig. 2. The event files can be used by the CIRCE
program [5]. These luminosity spectra are also used to tune
a simple model based on analytical formulae for the Comp-
ton scattering (CompAZ [6]). The results of such a tune
are shown in Fig. 2 as well. While being an approxima-
tion, these spectra are nevertheless extremely convenient
for studies e.g. at different energies other than the (few)
ones for which event files were produced.

A version of the fast detector simulation package
SIMDET, including modifications for the PC interaction
point (IP) has been used. Overlap events from the QCD
background can be added to the signal events. For TESLA
luminosities, we expect typically on average about one
overlaying event at low energy (

√
see ∼ 200 GeV, also

called the Higgs mode since it would be best suited for
the study of a light Higgs with mass∼ 120 GeV) and two
events at nominal energy (

√
see ∼ 500 GeV).
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Figure 2: Comparison of the center of mass energy dis-
tribution obtained from full simulation of the luminosity
spectrum [4] with results from CompAZ, for three electron
beam energies [6]

Background studies [7] have been made for incoherent
and coherente+e− pair production. A new two-mask de-
sign in the IP reduces the background by a factor 2-3 with
respect to the previous layout; the details are still being op-
timized. Tracks in the TPC and hits in the vertex detector
from incoherent and coherent pairs were found to be tol-
erable and similar to the expected background at ane+e−

collider interaction region. Hence there is now evidence
that a similar vertex detector as for ane+e− collider detec-
tor can be used for a PC detector, and therefore a similar
quality in b-tagging can be achieved. The neutron back-
ground is still under study but the first results show that it
is tolerable as well [8].

During this workshop we also had direct contact with
MC developers which resulted in getting requirements im-
plemented in e.g. the new SHERPA generator [9], and get-
ting good MC parameter tunes for PYTHIA and HER-
WIG (using mostly HERAγp data) from the JETWEB
team [10].

On the web page of the working group a link direct-
ing to the page with the tools can be found: http://www-
h1.desy.de/̃maxfield/ggcol/lcgg.html.

LUMINOSITY

One of the topics studied in detail is the precision with
which the luminosity can be measured. The following pro-
cesses are proposed for theγγ mode [11, 12]:

• ee → ee (µµ)

• ee → eeγ (µµγ)

• ee → 4 leptons

The cross sections for these channels are shown in Fig. 3.
The first channel can give the highest precision∼ 0.1%
(stat) but cannot be used forJz = 0, i.e. for the Higgs
study, because it is suppressed asm2

l /s, with ml the lepton
mass. In that case, however, the second channel can be
used. For two years of running the statistical precision for
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Figure 3: Cross sections of processes proposed to measure
luminosity at aγγ collider [12].

the channelee → eeγ, using realistic detector cuts, is

∆L

L
(
√

s > 0.8
√

sγγ,max) = 0.4% (1)

∆L

L
(mH ± 2GeV) = 1.0% (2)

Foreγ collisions the following processes are suggested:

• eγ → eγ, eZ

• eγ → eee.

The statistical precision that can be achieved is better
than 1% for one year of running.

PHYSICS TOPICS

Two-photon physics is not new. Moste+e− colliders
have or had a program of two-photon physics, by using
the photons emitted from the lepton beams, which fol-
low the well known WWA [13] energy dependence. The
known disadvantage is the rapidly decreasing photon flux
with photon energy: for collisions with a fractional energy√

sγγ/2Ebeam
e larger than 0.1 (0.5) theγγ luminosity is re-

duced by a factor 100 (10000) with respect to thee+e− lu-
minosity. Hence the PC opens a new opportunity for truly
high energy two-photon physics, which is not limited to
QCD but competes in searches for new physics and mea-
surements of Higgs properties.

The cross sections for charged particle pair productions
are considerably larger inγγ collisions than fore+e− col-
lisions and decrease more slowly with energy. Hence one
can study new particles far from threshold with higher rate.
E.g. WW pair production inγγ at 500 GeV is a factor
20 larger than ine+e−. Cross sections for charged scalars,
lepton and top pairs are a factor5−10 higher at a PC, com-
pensating for the reduced luminosity compared toe+e−.
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Figure 4: The totalγγ cross-section as function of theγγ
collision energy, compared with model calculations [17]:
BKKS band (upper and lower limits correspond to dif-
ferent photon densities) and EMM band (Eikonal Minijet
Model for total and inelastic cross-section, with different
photon densities and different minimum jet transverse mo-
mentum).

QCD

First we consider the QCD aspects of two-photon colli-
sions in the reactionγγ → hadrons. The nature of the pho-
ton is complex. A high energy photon can fluctuate into a
fermion pair or into a bound state, i.e. a vector meson with
the same quantum numbers as the photonJPC = 1−−.
These quantum fluctuations lead to the so-called hadronic
structure of the photon.

Many QCD studies of photon-photon collisions were
made for the TDR [2] and will not be repeated here. During
this workshop we got new paramterizations of the energy
dependence of the total cross section [14, 15], and new LO
parametrizations of the photon structure functions [16].

As an example the totalγγ cross-section is briefly dis-
cussed, a quantity that is not yet understood from first
principles. Fig. 4 shows the present photon-photon cross-
section data in comparison with recent phenomenological
models [14]. All models predict a rise of the cross-section
with the collision energy,

√
sγγ , but the amount of the

rise differs and predictions for high photon-photon ener-
gies show noticable differences.Proton-like-modelsfollow
closely the rise of the proton-proton cross-section, while in
QCD basedmodels, a stronger rise is predicted using the
eikonalized pQCD jet cross-section.

The figure demonstrates that large differences between
the models become apparent in the energy range of a fu-
ture 0.5-1 TeV e+e−collider. An overview of new model
predictions is reported in [14]. The absolute precision with
which these cross-sections can be measured ranges from



5% to 10%, where the largest contributions to the errors
are due to the control of the diffractive component of the
cross-section, Monte Carlo models used to correct for the
event selections, the absolute luminosity and knowledge on
the shape of the luminosity spectrum [17]. These prospects
for measurement have been updated to the TeV range and
are shown in Fig. 4.

Higgs Studies

The quest for the Higgs particle(s) and the measurement
of its properties will be one of the most important topics for
high energy collider physics in the coming years. The PC
is an ideal place to study the Higgs boson since it can be
produced as an s-channel resonance. The mass reach of the
PC is up to 80% of the CMS energy of thee−e− collider. A
detailed study of theγγH vertex is only possible at a PC.
Accurate measurements of mass and width are extremely
important and can be used to compare the SM predictions
with those of alternative models e.g. based on SUSY. Since
the two-photon decay width of the Higgs is sensitive to all
heavy charged particles which acquire mass via the Higgs
mechanism, the partial width could be modified by 5-10%
in these models.

For a light Higgs, the most promising channel isγγ →
H → bb. A first study based on detector simulation,
showed that a 2% statistical precision for the partial width
could be reached [18], for a Higgs with mass of 120 GeV.
During this workshop we have

• Revisited theH → bb channel in detail

• Studied theH → WW, ZZ channels

• Studied analysis methods for the spin and CP proper-
ties of the Higgs

• Studied the model separation power

• Studied the MSSM higgs

Members of the US PC study group have been reporting
to us on their Higgs analyses as well, in particularH, A
production and discovery, theH → γγ decay mode, and
charged Higgs studies.

First we discuss theH → bb studies. SelectingJz = 0
strongly suppresses the (Leading Order) contributions of
bb andcc production, but a good tagging of bottom quarks
with simultaneous rejection of charm quarks is needed.
During this workshop two new complete analyses were fi-
nalized [19, 20]. The two studies use a different approach
for the background process, but come to the same con-
clusions. The simulated mass spectrum for a Higgs par-
ticle with mass of 120 GeV, is shown in Fig. 5 for sig-
nal and background. The PC will determine the quantity
Γ(H → γγ) ·BR(H → bb). A feasibility study for a light
Higgs, using a parametrized simulation of the detector, has
confirmed that the quantity above can be determined with
a typical statistical accuracy of about 2-3%, as shown in

Fig. 6. These studies use as before the NLO QCD back-
grounds [21]. New in these studies are the use of a more
realistic photon spectrum, inclusion of overlap background
QCD events (on average one event per bunch crossing),b-
tagging using a neural net, and using a correction method
for the reconstructed Higgs mass, accounting for escaping
neutrinos from the heavy flavour decays.
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Figure 5: Reconstructed invariant mass distribution,Wrec

(top [19]) andMH (below[20]), for selectedbb events.
Contributions for background and signal are shown sepa-
rately. In the top plot the arrows show the optimized mass
window for the partial width measurement.

Since thebb branching ratio can be measured at ane+e−

collider with a precision of 1-2%,Γ(H → γγ) can be de-
termined with a statistical accuracy of approx. 2% for an
integrated luminosity of85 fb−1, i.e one year running.

In [22] the processesγγ → H → WW and γγ →
H → ZZ have been studied for the region 180 GeV
< mH < 350 GeV via qqqq decays for theWW chan-
nel and llqq decays for theZZ channel. Typical mass
plots are shown in Fig. 7. Due to the interference with
the standard model background the processesγγ → Higgs
→ WW/ZZ turn out to be also sensitivity to the phase
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of the γγ → Higgs coupling,φγγ . The measurement of
both the phase and partial width gives powerful tools to
discriminate a SM Higgs from that of an extended model.
A plot showing the sensitivity that can be reached on the
partial two-photon width and the phase versus the mass of
the Higgs is given in Fig. 8, using the same simulation tools
as for the light Higgs discussed above. Over a large region
a sensitivity of 3-5% can be achieved. The deviation from
the SM prediction expected by a Higgs in a 2HDM is also
indicated [22]

Furthermore the CP structure of the Higgs boson can be
verified by studying the decay intoZZ, WW and measur-
ing the azimuthal angle∆φ between the decay planes of
the two Z, W bosons. An example of the sensitivity of
the angle∆φ is shown in Fig. 9 for the decay channels
H → ZZ, WW , using a realistic simulation and for one
year of data taking. In [22] one can find a very extensive
discussion on sensitivities to CP properties using this and
other variables, showing that a PC is an excellent tool for
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line is to guide the eye.

such analyses.
Further interesting CP studies include the study of the

channelγγ → tt, measuring asymmetries composed of
the initial lepton beam polarization and the decay lepton
charge [24]. A sensitivity plot is shown in Fig. 10.

Our US colleagues have reported to us on studies of
γγ → H → γγ and charged Higgs production. The
first channel is quadratically sensitive to the two photon
Higgs partial width. The event rate is however small and
an excellent calorimeter is need for the signal to be ob-
servable. In the analysis a calorimeter energy resolution
σe/E = ((0.015/

√
E)2 + (0.0045)2)1/2 was assumed

which is better than the CMS experiment EM calorime-
ter resolution. This would be also a different calorimeter
than what is currently envisaged for the TESLA detector.
The signal for one year of running is shown in Fig. 11.
The mass resolution on the peak is 0.4 GeV, allowing for a
measurement of∆mH ∼ 100 MeV and∆σ/σ of 24%. A
crucial issue will be the understanding of the background.

An analysis of the production of charged Higgses, which
appear in extended Higgs doublet models, is reported
in [25]. The cross section is about a factor 20 larger than for
e+e− collisions. Taken into account the branching ratios,
for a charged Higgs below 200 GeV generally the channel
γγ → H+H− → τντν is the most promising. With suit-
able cuts (albeit with a very low efficiency of a few %) a
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S/B of about 3 can be achieved. This decay mode does not
allow to reconstruct the mass. To get mass information the
channelH+H− → τνqq is under study. More PC studies
of the US group are reported in [25, 26].

An important “golden” channel for the PC is the produc-
tion γγ → H, A. Indeed, a PC may help to discoverH, A
bosons in the MSSM SUSY extension of the SM when
these are inaccessible by other machines. For example the
LHC cannot extract theH, A signals out of the background
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(except perhaps for SUSY decay modes of theH, A) if the
mass is larger than about 200-300 GeV at mediumtanβ.
Fig. 12 shows the mass distribution of theH, A in the bb
decay channel. This mass distribution [28] was estimated
using exactly the same tools as for the light HiggsH → bb
analysis [19]. Fig. 13 shows the region that could be cov-
ered by a PC for several years of running (assuming a 630
GeV collider) [27] in thebb decay mode. Thee+e− mode
of that collider can reachMH,A masses up to about 300
GeV only. The PC essentially closes the wedge left by the
LHC, up to masses of 500 GeV. Fig. 14 shows the precision
with which the cross section can measured forMA in the
range of 200-350 GeV andtanβ = 7, with and without
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overlaying events.

Standard Model

Due to the large cross sections, several precise measure-
ments of SM parameters or particle properties can be made
at a PC.

Triple gauge couplings were studied in detail, using re-
alistic luminosity spectra and detector simulation [29]. The
WHIZARD [30] Monte Carlo was used for the signal. The

(GeV)
√
seγ= 450

√
sγγ= 400

√
see= 500∫

L∆t 110fb−1 110fb−1 500fb−1

∆L 0.1% 0.1 %
∆Kγ 9.9 · 10−4 6.7 · 10−4 3.1 · 10−4

∆Λγ 2.6 · 10−4 (6.0) · 10−4 4.3 · 10−4

Table 1: Precision achievable on triple gauge couplings for
aγγ, eγ andee collider.

study shows that these couplings can be measured at a PC
with a precision similar to the one achieved at ane+e−

collider, see Table 1. The sensitivity is proportional to the
momentum of the particles involved in the triple gauge bo-
son vertex. The analysis [29] includes detector simulation
and 3D fits including the azimuthal decay angle (not yet
done for theγγ study).

Top quark production was studied in [3]. Theeγ scatter-
ing gives a good sensitivity to the anomalous top couplings,
as detailed in that report. The reactionγγ → tt allows for
an extraction of the electric dipole moment: for 20 fb−1

and an electron beam energy of 250 GeV a sensitivity on
the dipole moment of1.3 · 10−16 ecm can be achieved,
when assuming a realistic luminosity spectrum [31].
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Figure 15: Cross section for gluino production inγγ col-
lisions versus the gluino mass and for different squark
masses [33] (maximal stop mixing (thin lines) and no mix-
ing (thick lines)).

Beyond the Standard Model

Supersymmetry is presently the most popular theory for
physics beyond the standard model. A few examples are
given where a PC can make significant contributions.

If the LSP is light, the processeγ → ẽχ0
1 → eχ0

1χ
0
1 can

extend the range of discovery for heavy sleptons. Indeed
LHC has difficulties discovering sleptons for masses above
300-350 GeV, and thee+e− collider has to pair produce
sleptons, hence its range is limited to

√
see/2. In case of a

eγ collider the reach is0.9 ·√see−mχ0
1
, e.g. 350 GeV for

250 GeV electron beams and a LSP of 100 GeV [32].
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Figure 17: The sensitivity to ADD extra dimensions in the
channelγγ → tt, for an ideal Compton spectrum (top) and
for a realistic one using CompAZ (bottom).

Another channel of interest at a PC isγγ → gluinos.
This reaction is only accessible at ane+e− collider if the
squarks are heavier than the gluinos and the decaysq̃ → g̃q
are open. Photons couple to squarks and quarks and can
produce gluinos via box diagrams. The yield is shown in
Fig. 15. Typically 2000 gluinos pairs can be produced/year
for light quarks (325 GeV) [33]. It remains to be seen what
one can learn more at a PC than what is known from the
LHC at that point.

Measuring the two photon width at a PC can also help
to pin down masses of sparticles which cannot be directly
produced at thee+e− collider. An example is shown in
Fig. 16, where we assume a scenario of large mass splitting

between thẽt1 and t̃2. If the t̃1 mass and̃t mixing angle
are known frome+e− studies then using a precise mea-
surement of the two-photon partial width of the Higgs one
can constrain the mass oft̃2 as shown in the Figure [26].

Other new theories propose the existence of extra dimen-
sions. It appears that the reactionγγ → WW is very sensi-
tive to ADD type of effects [34]. The sensitivity scales with
a CMS energy as 11

√
s. For e+e− → ff the sensitivity

is 6.5
√

s, and for the LHC using the processpp → jj
it is 9 TeV for 100 fb−1. A new study shows the sensi-
tivity to ADD extra dimensions in the channelγγ → tt
in Fig. 17 [35]: the top figure takes the ideal Compton
spectrum while the lower figure includes the luminosity via
CompAZ. The sensitivity is reduced fromMs = 1.7 TeV
to 1.4 TeV for one year of running.

TECHNOLOGY FOR A PC

A photon collider IP introduces new challenges: The
laser part, the optics, stability and control in the IP (to 1
nm), length control in case of a cavity, beam extraction line,
etc. Both the European and the US groups have an R&D
effort on the hardware part.

Europe is developing a scheme for an optical cavity,
shown in Fig. 18 [36], and plans are considered to make
a 1:9 scale model. The use of a cavity allows multi-
passing of the laser signal and thus reduces the required
laser power. The US group of LLNL follows a full power
laser design, as the short bunch distance at the NLC is less
favourable to benefit from such a cavity option.

The US group has commissioned a laser with 20 J pulses
at 10 Hz. The full power (100 Hz at 10 Hz) is expected to
be reached next year. In total 10 of these lasers would be
required. They have also studied interferometry for align-
ment, built a half-size focusing optics setup in the lab,
studied a beam-beam deflection feedback system, and are
preparing a proposal for a PC testbed at SLAC, using the
SLC and perhaps even parts of the SLD [37]. A picture of
the set-up of the optics is shown in Fig. 19.

In all there is progress but funding is presently certainly
and issue to continue the R&D. The developments during
the coming years will be of vital importance.

E-E- COLLISIONS

The PC will be based one−e− collisions. These col-
lisions can be of great interest by itself. No new studies
have been presented in the context of this workshop, but an
excellent overview paper can be found in the proceedings
of the LCWS2002 [38]. Here we recall on a few of the
outstanding advantages ofe−e−

• Large polarization for both beams, hence (almost)
pureeL, eR initial states.

• Excellent discovery potential for states with exotic
quantum numbers (e.g such asH−−)
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Figure 19: The optics setup at LLNL.

• Larger sensitvity (for identical luminosity) thane+e−

e.g. for contact interactions, non-commutative scales
(via Moller scattering)

• Special processes can be very clean, e.g.e−e− →
e−e−H

• Sharper onset of e.g. the slepton production threshold
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Figure 20: Since thee−e− collider requires only minor
changes to the hardware of thee+e− machine and detec-
tor, its programme could be pursued during the first face of
the facility...” International Linear Collider Technical Re-
view Committee Report- 1995 [38].

than ine+e−

• Possibility to identify TeV level Majorana neutrinos
through the lepton number violation reactione−e− →
W−W−

To be fully convincing these studies need to reach the same
maturity as for thee+e− collider or PC studies: i.e. include
detector simulation, backgrounds, beamstrahlung, ...

On the downside there are of course no classical s-
channel processes ine−e−, and since the beams show an
anti-pinch effect, the luminosity in general is lower than
for e+e−. One finds typically numbers in the ball-park of
Le−e− = 0.15− 0.3 · Le+e− [39].

Unlike for the PC there are however no major changes
required in the interaction region or accelerator. Thee−e−

option is the extra option which for TESLA would be most
easily to realize. Fig. 20 shows how easy it could be for the
machine shift leader to switch frome+e− to e−e− colli-
sions: just four switches to turn... Clearly we must keep it
on the roadmap and the future new physics will decide how
valuable this option will be for us.

CONCLUSION

An γγ andeγ collider will provide exciting physics op-
portunities, many of which have been developed in detail
during the last two years. The development of specific PC
study tools has allowed that several of the studies have now
reached the necessary maturity.

At the LCWS2002 in Jeju a panel discussion was orga-
nized on the PC option [40]. The conclusion was a clear
plea to continue the R&D and physics studies such that we
can be in a good position to incorporate a PC in the over-
all planning of a LC, when that day comes. A PC will be
largely complementary to its drive LC and will therefore
strengthen the case for such ane+e− collider. A PC option
should be considered from the onset within the planning of
the project. A vigorous R&D plan for a PC will need to be
put in place, preferably on a world-wide level.

Finally an (updated) short list of processes which are
considered to be most important for the physics program
of the photon collider option of the LC, is presented in Ta-
ble 2, taken from ref. [3]. Additionally to this list are the
processeseγ → e∗, leptoquark production, strong WW
scattering andeγ → eH . It summarizes the rich physics
program that becomes accessible at a Photon Collider!
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Reaction Remarks

γγ → H,h→ bb̄ SM/MSSM Higgs,MH,h < 160 GeV
γγ → H →WW (∗) SM Higgs, 140< MH < 190 GeV
γγ → H → ZZ(∗) SM Higgs, 180< MH < 350 GeV
γγ → H → γγ SM Higgs, 120< MH < 160 GeV
γγ → H → tt SM Higgs,MH > 350 GeV
γγ → H,A→ bb̄ MSSM heavy Higgs, interm.tan β

γγ → f̃ ¯̃f, χ̃+
i χ̃

−
i large cross sections

γγ → g̃g̃ measurable cross sections
γγ → H+H− large cross sections
γγ → S[t̃̄t̃] t̃̄t̃ stoponium
eγ → ẽ−χ̃0

1 Mẽ− < 0.9× 2E0 −Mχ̃0
1

γγ → γγ non-commutative theories
eγ → eG extra dimensions
γγ → φ Radions
eγ → ẽG̃ superlight gravitions
γγ →W+W− anom.W inter., extra dimensions
eγ →W−νe anom.W couplings
γγ → 4W/(Z) WW scatt., quartic anom.W ,Z
γγ → tt̄ anomalous top quark interactions
eγ → t̄bνe anomalousWtb coupling
γγ → hadrons totalγγ cross section
eγ → e−X, νeX NC and CC structure functions
γg → qq̄, cc̄ gluon in the photon
γγ → J/ψ J/ψ QCD Pomeron

Table 2: Update of the Gold–plated processes at photon
colliders.
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