
LARG-NO-77

June 25, 1997

A proposal of serial protocol for the
LAr calorimeter of ATLAS

O. Le Dortz, P. Nayman

LPNHE, Universit�es de Paris 6 et 7, IN2P3-CNRS

Abstract

The electronics of the Liquid Argon calorimeters of ATLAS located in the detec-

tor area needs to be controlled externally by means of a serial communication.

For this purpose, we propose an implementation of the WorldFIP �eldbus pro-

tocol. The slave front-end stations of the serial communication will be designed

as radiation tolerant ASICs.

This note describes the WorldFIP protocol and its adaptation to the LAr

electronics needs. It also points out the performances that can be reached with

this system. For example, at a symbol rate of 2.5 Megabits per seconds, the

useful data rate can reach about 2 Megabits per seconds, and the con�guration

of the whole calorimeter can be completely written and read back in about 3

seconds.

This document is available at http://www-lpnhep.in2p3.fr/atlas/gb/elec/

Contents

1 Introduction 3

1.1 Requirements of the serial communication 4

1.2 Generalities about the proposed protocol 4

2 Description of the protocol standard 5

2.1 The physical layer . 5

2.2 The Data Link layer . 6

2.2.1 Principle of the exchange of variables 7

2.2.2 Notion of macrocycle . 8

3 Application to the LAr electronics 9

3.1 Architecture of the network . 9

3.2 The user layer . 9

3.2.1 The Command variable 10

3.2.2 The Answer variable . 12

4 Concrete examples 13

4.1 Peer-to-peer register access, two-variable option 13

4.1.1 Write operation . 13

4.1.2 Read operation . 14

4.2 Peer-to-peer memory access, two-variable option 14

4.3 Broadcast examples . 16

4.3.1 Broadcast write, two-variable option 16

4.3.2 Broadcast write + read, multiple-variable option 16

5 Performance considerations 18

5.1 Variable transfer timing . 18

5.2 Comparison of the con�gurations 18

5.3 Useful data rates, realistic estimations 19

5.3.1 Write mode . 19

5.3.2 Read mode . 20

5.3.3 Summary . 20

6 Implementation 22

A Frame Check Sequence 25

A.1 Notations . 25

A.2 De�nition of the algorithm for WorldFIP frames 25

A.3 Hardware implementation . 26

1

2

1 Introduction

Each front-end crate for the Liquid Argon calorimeters of ATLAS contains a

controller board that achieves the following functions [1]:

� It receives the timing and trigger signals from the TTC system in the

trigger cavern and distributes them to the front-end crate, with the ap-

propriate programmable time delays for each front-end and calibration

board. This function will not be covered in this note.

� It is connected, through a 300 meter-long optical link to the system con-

troller in the VME readout crate. This link enables to con�gurate and

control all the parameters required by the front-end electronics.

Front-end crate 1

VME Readout crate 1

S0

E/O

System controller

S1

E/O

Controller
board

Sn S2......

300 meters Optical link

Copper link

...

ϕ axis

Front-end crate n

VME Readout crate n

Figure 1: general architecture of the serial communication network

We propose a serial protocol that ful�lls the second function, from the system

controller in the readout crate to the electronic boards in the front-end crate

(front-end boards, calibration, tower builder...). The serial communication is

made of two branches, one optical branch from the controller board to the

system controller, and a second local copper branch within the front-end crate

from the controller board to the electronic boards. Figure 1 shows a scheme

of the front-end and readout crates. The system controllers are interconnected

(through VME, ethernet link...) and supervised by a high level master monitor

not shown in this �gure.

3

1.1 Requirements of the serial communication

� The components handling the serial communication in the front-end crate

will be exposed to radiation levels (about 1012 neutrons/cm2 and 20 Gy

per year [2]) requiring a radiation-hardened technology.

� No electrical activity is authorised during data taking periods. In other

words, the copper branch of the serial link presented previously needs to

be completely quiet during data taking.

� The serial interface on the electronic board should use a clock derived from

the Bunch Crossing clock, and not a private clock source, to minimise

interferences.

� The serial protocol should enable read-write point to point register or

memory accesses, and broadcast write operations on electronic boards of

the same type.

� Care should be taken in de�ning the physical and the logical features of

the protocol, for a better reliability, in terms of immunity to electrical

noise and data integrity.

1.2 Generalities about the proposed protocol

We propose to develop an implementation of the serial protocol WorldFIP [3]

that will comply with those requirements and that, moreover, provides the

following features:

� It is a �eld bus. Robustness of the protocol is therefore guaranteed. The

physical layer operates with very good electrical noise immunity (compli-

ant with the EMC recommendations of the IEC organisation). For ex-

ample, this physical layer is more reliable than RS485 twisted-pair based

standard.

The logical layer contains a mechanism to check the integrity of the re-

ceived data.

� As a standard in industry, some 'o� the shelf' hardware or software units

can be used.

� It has the advantage to require only one signal pair carrying simultane-

ously the clock and the data.

� The physical layer enables data rates up to 2.5 Megabits per second.

� It is a deterministic protocol. Therefore, the limits of response time of

the system are clearly stated.

� It is one of the three �eldbuses recommended by CERN for the LHC

project [4].

� The same protocol is used for the optical and for the copper branches.

This simpli�es the electro-optical interface.

4

2 Description of the protocol standard

A WorldFIP network is made up of stations with two types of functions:

� bus arbitration, management of access to the transmission medium,

� production/consumption of data.

Only one station at a time can be the arbiter of the link. The arbiter asks

for data (variables) to be transmitted on the line, by emitting the label of the

variable; the unique producing station of the variable sends its value on the

link; the consuming station(s) then just pick the variable value.

Every station can be either the producer of a speci�c variable or one of

the consumers of this variable. For example, a station can be con�gurated to

produce a variable V1 and consume the variables V2, V3, V4.

The protocol is made of three OSI communication layers:

1. the physical layer,

2. the data link layer,

3. and the application layer.

The aim of this section is not to describe completely the WorldFIP standard.

However, we will describe the part of the standard necessary for our needs,

namely the physical and a part of the data link layer.

2.1 The physical layer

The bits transmitted by the physical layer are coded using a Manchester code.

This codes makes it possible to transmit simultaneously the data and its at-

tached clock on the same line. It enables to transmit four symbols: logical one,

logical zero, positive violation (V +) and negative violation (V �). The violation

symbols are only used to specify the beginning and the end of the data frames.

The waveforms of these four symbols are shown in �gure 2.

Time unit

Logical One Logical Zero
Positive
Violation

Negative
Violation

Figure 2: Manchester coding

Each WorldFIP frame is composed of four parts:

5

1 0 1 0 1 0 1 0 1 V+ V- 1 0 V- V+ 0 101V+ V-V+ V-1

CAD

PRE FSD FED

Figure 3: example of a WorldFIP frame

1. A preamble (PRE), used to synchronise the receivers clock: it is a sequence

of eight symbols, '10101010'.

2. A frame start delimiter (FSD): this eight symbols sequence indicates the

beginning of the control and data part.

3. control and data part (CAD). This �eld, containing the useful information

provided by the data link layer, exclusively consists of logical one and

logical zero symbols.

4. A frame end delimiter (FED): this eight symbols sequence indicates the

end of the CAD part.

A scheme of a WorldFIP frame is shown on �gure 3. The di�erent �elds are

clearly visible and can be easily inspected with a digital oscilloscope or analyser.

The physical layer adds 24 symbols to every transmitted frame. Therefore,

the longer the CAD �eld, the better the e�ciency.

2.2 The Data Link layer

The WorldFIP protocol is based on a Producer-Consumer model. The data ex-

changed between the producers and the consumers are bu�ers (registers, mem-

ories). A bu�er is identi�ed uniquely by a logical label. We will adopt further

in this note the WorldFIP terminology: a bu�er will be called a variable; the

logical label attached to a variable will be called its identi�er, coded as a 16-bits

word.

The exchanges of variables between the producers and the consumers can

take place either cyclically or upon explicit request. We will only use variables

exchanged cyclically because it o�ers more simplicity, more speed and the pro-

cess is deterministic. We will explain in 3.2 how this cyclic mechanism can be

used, in our case, for asynchronous commands on the electronic boards.

The data link layer speci�es the format of the CAD �eld of the physical

layer (�gure 4). It adds to the useful data one control byte at the beginning of

the CAD �eld that determines the type of this frame, and a two-bytes Frame

Check Sequence (FCS) to verify the integrity of the frame.

The FCS is the result of a polynomial division of the sent data by a generator

polynomial. It enables to detect errors in the received frame, with a very

6

high level of con�dence. The probability to consider a corrupted frame as a

valid one is about 10�15. The encoding and decoding algorithms can be easily

implemented on the
y by hardware, as explained in appendix A.

PRE

1 byte m bytes

Data field

CAD

FSD

1 byte

Ctrl

1 byte

FED

1 byte

FCS

2 bytes

Added by the physical layer

Figure 4: format of a WorldFIP frame detailing the CAD �eld

2.2.1 Principle of the exchange of variables

The bus arbiter decides when a variable must be transmitted. It emits a frame

of type ID DAT containing the identi�er of the variable and starts a timeout

counter. In consequence, the producer of the variable sends its value in a frame

PRE

1 byte

FSD

1 byte

Ctrl

1 byte

FED

1 byte

FCS

2 bytes

RP_DAT

n bytes <= 128

Data

PRE

1 byte

FSD

1 byte

Ctrl

1 byte

FED

1 byte

FCS

2 bytes

Identifier

2 bytes

ID_DAT ID_DAT frame

RP_DAT frame

Figure 5: format of variable transfer frames

of type RP DAT. The consumers of this variable read the frame emitted by the

producer. If the producer of the variable has not put the data on the line after a

certain delay, the arbiter warns the upper layers that a timeout error occured. A

timeout error does not lock the system. With this scheme, the protocol enables

the stations to be turned o� or turned on again without deadlock.

The format of the ID DAT and RP DAT WorldFIP frames are detailed in

�gure 5. The data �eld of a ID DAT frame only contains the two bytes of the

identi�er. The data �eld of a RP DAT frame contains the value of the variable.

The size of a variable is limited to 128 bytes.

The norm speci�es the value of the control byte in case of ID DAT or

RP DAT frames as indicated on table 1. Let us point out that only the six

7

least signi�cant bits of the control byte are necessary to identify ID DAT and

RP DAT frames.

Binary value

Type MSB sent �rst

MSB LSB

ID DAT xx000011

RP DAT xx000010

Table 1: values of the control byte

2.2.2 Notion of macrocycle

At initialisation, the bus arbiter is assigned a list of cyclic variables to scan

and the periodicities associated with each of these variables. Given this list,

a periodic sequence called macrocycle is performed by the bus arbiter. Each

element of the sequence, called an elementary cycle, enables to scan one or

several variables. Details about the de�nition of the process in our case is

described in 3.2.

As an example, let us consider an application where two variables A and

B are used. The variable A needs to be updated every time unit, while the

variable B needs to be updated every 2 time units. The macrocycle scanned by

the bus arbiter will contain two elementary cycles of duration 1 time unit each:

1. transfer of variable A:

� the arbiter emits the identi�er A in a ID DAT (A) frame,

� the producer of A puts its value in a RP DAT (A) frame.

2. transfer of variable A and then B.

Thus, the two variables will be updated at the appropriate periodicities.

The process is completely deterministic. If the arbiter encountered a timeout

error when it initiated a request, the macrocycle continues. The concerned

variable will just be requested again in the next macrocycle (the duration of

the macrocycle is always the same).

8

3 Application to the LAr electronics

3.1 Architecture of the network

Front-end crate

VME Readout crate

S0

E/O

WorldFIP Master
and arbiter board

S1

E/O

Controller
board

Sn S2......

Optical link

Copper link
disconnectable during data taking

Figure 6: architecture of the network

We propose to develop WorldFIP stations inside the front-end crate fully

compliant with the physical and data link layers speci�cations. This ensures

the ability to use industrial products on the network (stations located in the

VME readout crate).

The architecture of the proposed network is sketched in �gure 6. The arbiter

and 'master' station S0 is housed in the VME readout crate. In the front-end

crate, each board requiring a serial communication contains a 'slave' station

Si, where i > 0. The electro-optical interface from the top-down �bre link to

the on-detector copper link is implemented in the controller board. The 'slave'

station S1 inside the controller board also plays the role of gateway between

the two branches. Upon request of the master, the gateway will connect or

disconnect the copper branch, to avoid tra�c during data taking.

3.2 The user layer

Our user layer determines, in the data �eld of RP DAT frames, a user protocol of

exchange of data (board registers, memories...). It also uses the periodic service

provided by the data link layer to propose to the user a service of asynchronous

access to the electronic boards.

9

The 'master' station S0 will produce the Command variable COM that

contains orders such as read/write a given register/memory in a given board or

group of boards.

The 'slave' stations Si in the front-end crate will consume the Command vari-

able COM and produce one or several Answer variables ANSi that contain the

registers/memory values read from the board and/or status.

The arbiter (in station S0) will scan a macrocycle consisting of one Command

and the Answer(s).

We consider the possibility to use only one Answer variable for all the electronic

boards or one per board. Examples are provided in section 4 and a discussion

about the consequences of each option is presented in the performances sec-

tion 5.

Each board in the front-end crate provides to the serial ASIC a hardwired

board number and a group type (crate controller, calibration, tower builder,

di�erent front-end boards...).

3.2.1 The Command variable

The COM variable is set to have the following features:
Identi�er: 0000 Hexa

Size: 128 bytes.

The di�erent �elds composing the COM variable are de�ned in table 21. A

command can contain one or several register access requests or a memory access

request.

In case of register access, a register block consists of three consecutive bytes:

the address of the register and the attached 16-bits data.

In case of memory download, a 4-bytes header is sent, followed by the mem-

ory data.

Description of the �elds

� Command Counter :

for each new command, the user increments this counter; the slaves ignore

the command if this counter does not increment. This mechanism enables

to do asynchronous control of the boards. The counter value will also be

copied into the Answer frames sent back by the slaves, for cross-checking.

� Slave address/type:

the most signi�cant bit is the broadcast bit.

{ If it equals '1', the command will a�ect, in broadcast mode, all the

stations of type matching the 7 least signi�cant bits of this byte.

{ If it equals '0', the command will concern the station whose board

number matches the 7 least signi�cant bits of this byte.

1MSB sent �rst on the line

10

Byte Field description

0 Command Counter

1 Slave address/type

2 Function Code

Register Access Memory Access

3 Number of registers Number of bytes

4 Register 0 Address NTA address

5 Register 0 high byte NTA value high byte

6 Register 0 low byte NTA value low byte

7 (Register 1 Address) Write Data 0

8 (Register 1 high byte) Write Data 1

9 (Register 1 low byte) Write Data 2

...

124 (Register 40 Address) Write Data 117

125 (Register 40 high byte) Write Data 118

126 (Register 40 low byte) Write Data 119

127 Not used Write Data 120

Table 2: COM variable format

� Function Code: the type of access to be performed.
Bit 7 Read operation

(from slave in front-end crate up to the master)

Bit 6 Write operation

(master down to slave)

Bit 5 '1' for Memory access

'0' for Register access

Both bits 7 and 6 set performs a write operation followed by a read op-

eration at the same address.

Then follow, either register blocks, or the memory block. In case of register

read-only access, the write register data �elds of the register blocks shall be

ignored by the slaves.

Memory block

The memories are accessible by partitions of maximum size 121 bytes. Each

memory is assigned a 16-bits Next Transfer Address (NTA) register on the

board. The address of this NTA register is speci�ed by the byte number 4 of

the COM variable. Its value (bytes 5 and 6 in table 2) is the start address of

the block to download from (or upload into) the memory. The data block size

in bytes is given in byte 3.

In case of read-only memory access, the bytes 7 to 127 shall be ignored by the

slaves.

11

3.2.2 The Answer variable

When a command implies a response from a slave, the answer is put by the

slave in a Answer variable, upon request of the bus arbiter. The ANSi variables

have the following features:
Identi�er: 00xy Hexa

Size: 128 bytes.
where xy is the station number i.e. the hardwired board number provided by

the board to the ASIC2. An Answer variable has basically the same format as

the COM variable (see table 3), except for the Function Code which is replaced

by a Status Code.

Byte Field description

0 Command Counter

1 Slave address

2 Status Code

Register Access Memory Access

3 Number of registers Number of bytes

4 Register 0 Address NTA address

5 Register 0 high byte NTA value high byte

6 Register 0 low byte NTA value low byte

7 (Register 1 Address) Read Data 0

8 (Register 1 high byte) Read Data 1

9 (Register 1 low byte) Read Data 2

...

124 (Register 40 Address) Read Data 117

125 (Register 40 high byte) Read Data 118

126 (Register 40 low byte) Read Data 119

127 Not used Read Data 120

Table 3: ANSi variable format

� Status Code: type of data in the following �elds.
Bit 7 the data have been read from the board

Bit 6 the data have been written to the board

Bit 5 '1' : the data are a memory block

'0' : the data are register blocks

Bits [4-0] information about the transmission result (No error, FCS error,etc.)

Both bits 7 and 6 are cleared when the transaction is just an acknowledge.

This occurs when the command counter did not incremented from the

previous command to the present one.

In the two-variable option, the ANS variable is produced by the unique target

station implied in a point-to-point request. But in case of broadcast, the ANS

variable will be produced by the controller board.

2or FF if a two-variables only option is used.

12

4 Concrete examples

4.1 Peer-to-peer register access, two-variable option

4.1.1 Write operation

Figure 7 shows an example of a two-variable macrocycle in which one writes

into the front-end board number 9 the data 'FEC4' into the register of address

'02' and 'ABCD' into the register '1A'. The transaction is composed of the four

1 byte
ID_DAT

PRE FSD 03 00 FCS FED00

PRE FSD 02 FCS FED84

CNT

09

SLV #REG

02

VALUE

FE C4 1A AB CD

Not Used

COMMAND variable, 128 bytes

40

FUN

PRE FSD 03 00 FCS FEDFF

PRE FSD 02 FCS FED84

CNT

09

SLV #REG

02 02 FE C4 1A AB CD

Not Used

40

STS

ANSWER variable, 128 bytes

ADR

02

RP_DAT

ID_DAT

RP_DAT

VALUEADR

VALUEADR VALUEADR

Figure 7: example of peer-to-peer registers write operation

following frames:

1. the arbiter requests the COM variable by emitting a frame ID DAT(0000).

2. After a turnaround time, the master station writes the RP DAT frame

containing the COM variable value, containing:

� the command counter; the previous value of the command counter

was 83. It is incremented to announce a new relevant COM variable.

� The target slave address; here one accesses the board number 09.

� The function code; 40 for write registers.

� Number of registers; 2 registers are to be written.

� Address and value of the �rst register

� Address and value of the second register

� The other bytes are set to an arbitrary value. However, these bytes

are considered in the �nal FCS calculation.

The slave station 09 recognises that the command is new and that it is the

target. It therefore interprets the command into a sequence of registers

write into the board.

3. Then, the arbiter, after a turnaround time, requests the ANS variable by

emitting a frame ID DAT(00FF).

13

4. As the station 09 knows that it was the unique target station of the

command, it produces the answer variable. It sends the command counter,

its station address, the function code 40 (the following bytes are registers

written into the board), and the registers blocks.

4.1.2 Read operation

Let us now consider the following macrocycle, where one wants to read back the

registers previously written. Figure 8 illustrates the transaction. The process

1 byte
ID_DAT

PRE FSD 03 00 FCS FED00

PRE FSD 02 FCS FED85

CNT

09

SLV #REG

02

VALUE

00 00 1A 00 00

Not Used

COMMAND variable, 128 bytes

80

FUN

PRE FSD 03 00 FCS FEDFF

PRE FSD 02 FCS FED85

CNT

09

SLV #REG

02 02 FE C4 1A AB CD

Not Used

80

STS

ANSWER variable, 128 bytes

ADR

02

RP_DAT

ID_DAT

RP_DAT

VALUEADR

VALUEADR VALUEADR

Figure 8: example of peer-to-peer registers read operation

is the same as in the previous example, but there are several di�erences

� the master station increments the command counter to announce that it

is a new one. Here, its gets 85.

� The function code gets 80, for 'read registers'.

� The values �elds of the register blocks, in the command variable, are

useless.

� The target station 09 returns the ANS variable, containing the status

code 80 and the registers values read from the board.

Then, follow several 'idle' macrocycles, where the command counter is not

incremented by the master station. The slaves just ignore the command. The

last target station 09 just produces answer variables with function code 00,

indicating that nothing was done on the board.

4.2 Peer-to-peer memory access, two-variable option

We now consider a transaction where one wants to write a 16-bytes block of

memory into the front-end board number 0A, at the memory o�set '1C00'. Let

also assume that NTA register of the memory is the register of address 'F0'.

Finally, we also want to read back the contents of the memory within the same

14

1 byte
ID_DAT

PRE FSD 03 00 FCS FED00

PRE FSD 02

FCS FED

86

CNT

0A

SLV #BYT

10

VALUE

1C 00 01 23 45

Not Used

COMMAND variable, 128 bytes

D0

FUN

PRE FSD 03 00 FCS FEDFF

ANSWER variable, 128 bytes

NTA

F0

RP_DAT

ID_DAT

DATA BYTES

67 89 AB CD EF

F0 12 34 56 78 9A BC DEContinue ...

PRE FSD 02

FCS FED

86

CNT

0A

SLV #BYT

10

VALUE

1C 00 01 23 45

Not Used

D0

STS NTA

F0

RP_DAT DATA BYTES

67 89 AB CD EF

F0 12 34 56 78 9A BC DEContinue ...

Figure 9: example of peer-to-peer memory write and immediate read access

macrocycle. Figure 9 shows the transaction. The macrocycle is composed of

the four following frames:

1. the arbiter requests the COM variable by emitting a frame ID DAT(0000).

2. After a turnaround time, the master station writes the RP DAT frame

containing the COM variable value, including:

� the command counter, incremented to indicate a new command,

� the function code; D0 for write + read memory,

� the number of bytes of the memory block to write/read,

� the address of the NTA attached to the desired memory,

� the value of the NTA register: we want here to load the memory,

beginning at '1C00',

� the 16 bytes to write into the memory, beginning at o�set 1C00.

The slave station 0A gets the command, sets the NTA register to the

o�set value and writes the memory on the board.

3. Then, the arbiter, after a turnaround time, requests the ANS variable by

emitting a frame ID DAT(00FF).

4. The target station 0A sets again the NTA to the original o�set 1C00,

reads the memory contents back and sends the result into the RP DAT

frame.

15

4.3 Broadcast examples

4.3.1 Broadcast write, two-variable option

Figure 10 shows an example of broadcast write operation, when using the two-

variable option. In this case, one wants to upload the memories of all the boards

of type 2. The macrocycle contains four individual frames, as usual. These are

ID_DAT 0000

COM variable, produced by master station

RP_DAT

Turnaround Time Tr Tr

TYP=82 FUN=60 Memory block to Write

ID_DAT 00FF

ANS variable, produced by controller station (copy of COM)

RP_DAT

Turnaround Time Tr Tr

TYP=82 STS=60 Memory block written

Figure 10: example of broadcast write macrocycle, two-variable option

the information speci�c to the broadcast mode:

1. The slave address �eld of the command contains 82, for a broadcast mode

towards the stations of type 2.

2. The function code is 60, for memory write.

3. The target stations of type 2 will consider the command and write the

memory block on the board. The others stations will ignore the command.

4. As several target stations might produce the answer variable, it is stated

that none of them produces it. In broadcast mode, the controller station

produces the answer variable. In this case, the controller station just

copies the command variable into the answer variable.

4.3.2 Broadcast write + read, multiple-variable option

Figure 11 shows an example of multiple-variable macrocycle, where a new com-

mand of broadcast write + read memory is requested. Let us assume that 16

variables (i.e. 16 boards) take part of the macrocycle.

1. The arbiter �rst requests the command variable, that is produced by the

master station.

2. The command variable is the same as in the previous example, except for

the function code, that is 'D0' for memory write + read.

3. The target stations of type 2 recognise the command and achieve, on their

boards, the write operation of the memory.

4. The arbiter sequencially scans all the ANSi variables.

16

ID_DAT 0000

COM variable, produced by master station

RP_DAT

Turnaround Time Tr Tr

TYP=82 FUN=D0 Memory block to Write

ID_DAT 0001

ANS1 variable, produced by station 1, not target

RP_DAT

Turnaround Time Tr Tr

SLV=01 STS=00 Don¹t Care

ID_DAT 0005

ANS5 variable, produced by station 5, target

RP_DAT

Turnaround Time Tr Tr

SLV=05 STS=D0 Memory block Read Back from board

ID_DAT 0010

ANS10 variable, produced by station 10, not target

RP_DAT

Turnaround Time Tr Tr

SLV=10 STS=00 Don't Care

Figure 11: example of broadcast write and immediate read

� If the producer station of ANSi is not a target of the broadcast, its

answer contains the status code 00, that means that nothing was

achieved on the board.

� If the producer station of ANSi is one of the targets of the broadcast,

it reads the memory back and returns, in the ANSi variable, the

content of the memory on the board.

17

5 Performance considerations

The deterministic aspect of the WorldFIP protocol allows to estimate precisely

the useful data rate accessible with the adopted architecture.

5.1 Variable transfer timing

We propose to use, for the whole network, a symbol rate of 2.5 Mbits.s�1. Then,

the time unit spent to emit a logical symbol (one out of the four provided by

the Manchester coding system) is Tu = 400ns.

A complete exchange of variable consists in the emission, by the arbiter, of the

ID DAT frame and the production of a RP DAT frame by the producer of the

variable. The time between ID DAT and RP DAT is called the turnaround

time Tr. The protocol speci�es that:

10:Tu � Tr � 70:Tu:

In our case, taking account of the cable lengths, we can assume that:

Tr ' 10:Tu ' 4�s:

The total transaction time includes times needed for:

� the transmission of the ID DAT frame (TID DAT),

� the turnaround time,

� the transmission of the variable value in a RP DAT frame (TRP DAT),

� the turnaround time.

An ID DAT frame is 8-bytes long, thus TID DAT = 64:Tu.

As we will use 128-byte variables, a RP DAT frame is 134-bytes long (�gure 5):

TRP DAT = 1072:Tu.

The total time required to exchange one variable is:

64:Tu + 10:Tu + 1072:Tu + 10:Tu = 1156:Tu ' 460�s:

5.2 Comparison of the con�gurations

Two con�gurations of variables are considered. One option consists in using

one answer variable ANSi for each board. Typically, about 15 boards per 'half-

crate' will require a serial communication. In this case, the arbiter needs to

scan, within a macrocycle, 16 variables. The other option consists in using

only one answer variable ANS per 'half-crate'. In that case, the macrocycle is

limited to two exchanges of variable. Each option o�ers di�erent advantages, in

term of speed performances, depending on the type of transfer (write broadcast,

point-to-point access...).

The table 4 summarizes the speci�cations of the two options.

In this table, a block is 121 memory bytes or 1 to 41 individual 16-bits

registers.

18

16-variable option 2-variable option

Macrocycle duration 7:3ms 0:920ms

Broadcast Write 1 block in 7:3ms 1 block in 0:920ms

Status of n boards Available in ANSi Not available

'Broadcast Read' 1 block in 7:3ms impossible

Individual Read or Write 1 block in 7:3ms 1 block in 0:920ms

Individual Read or Write 1 block in 7:3ms 1 block in n � 0:920ms

of n boards same addresses

Table 4: comparison of the proposed options

In broadcast mode, the COM variable is asked by the arbiter (ID DAT[0]) and

produced by the master. The target slaves Si consume this variable and write

the broadcast data in their boards. Then, for the 16-variable option, within

the same macrocycle, the arbiter scans the answer variables ANSi (ID DAT[i]).

Each slave, including the target slaves implied in the broadcast transfer, answers

by producing their ANSi response. This way, it is possible to get the result of the

broadcast operation in one macrocycle: the target slaves just put in their ANSi

variables a status, or even the result from a read operation on their boards.

The 'broadcast read' in the table 4 is the case when the slave stations put in

their answer variables the data read back from their boards.

To summarize the table, as concerns write operations or point-to-point read

operations, the 2-variables option is the fastest, in any case. However, the

16-variable option might be twice faster when performing broadcast write op-

erations requiring a read back of the status or the data from the boards.

Anyway, whatever option is adopted, the time needed to transfer one register

or a block of up to 41 registers is the same. In other words, the more registers

are written/read on a board in the same transaction, the more e�cient 3 the

protocol is.

5.3 Useful data rates, realistic estimations

As an example, a front-end board could contain less than 40 individual registers

and a memory (for FPGA programming) of less than 50 kilobytes [5].

5.3.1 Write mode

The 40 registers can be written on the board in a macrocycle, while the memory

can be downloaded in about 415 partitions (each one taking one macrocycle).

The time needed to download a complete board is 416 macrocycles, or:

� 382 ms in the two-variable option,

� 2:9 s in the 16-variable option.

3in terms of amount of useful data transmitted per time unit

19

When programming a whole front-end crate, it seems realistic to assert

that the front-end board memories will be written in broadcast mode and the

registers will be written in point-to-point access.

Given a number of front-end boards of about 15, the time needed to write data

into the whole crate will be 415 + 15 macrocycles, or:

� 396 ms in the two-variable option,

� 3:1 s in the 16-variable option.

5.3.2 Read mode

Let us consider now the case where we read back the data previously written.

The time spent to read back all the registers and memory blocks of a front-end

board is the same as the time spent in writting them. In the 16-variable option,

the 'broadcast read' mode can be very useful to read back a whole crate, in the

same macrocycles. Therefore, the front-end crate will be read back in the same

time as the time needed to write it.

On the other hand, in the two-variable option, a point-to-point approach is

necessary to read back a whole crate.

Finally, the time required to write a whole crate, and then to read it back is:

� 396 ms+ 15� 382 ms = 6:1 s in the two-variable option,

� 2� 3:1 s = 6:2 s in the 16-variable option.

� 3:1 s in the 16-variable option, when the broadcast write and then read

in the same macrocycle option is used.

5.3.3 Summary

All these numbers are summarized in the table 5. The data rates estimations

are based on the amount of useful data, namely:

� in write mode, 50 kbytes = 400 kbits of data sent in broadcast,

� in read mode, the data read back from each board, i.e.

15� 50 kbytes = 6 Mbits.

� in write and read mode, the data sent + then data read back, i.e.

16� 50 kbytes = 6:4 Mbits.

The best performance can be reached when using the 16-variable option, in

'broadcast write and immediate read' mode. In that case, a whole front-end

crate can be con�gurated and checked in about 3 seconds. Provided that this

operation is achieved in parallel for all the crates of the calorimeter, 3 seconds

will be the time required to control and check the whole calorimeter.

20

16-variable option 2-variable option

Memory simple access 132 kbits/s 988 kbits/s

Register simple access 90 kbits/s 713 kbits/s

Task

write a crate 3.1 seconds 396 milliseconds

129 kbits/s 1.01 Mbit/s

write then read a crate 6.2 seconds 6.1 seconds

1.03 Mbit/s 1.04 Mbit/s

write and read in the same 3.1 seconds

macrocycle the whole crate 2.06 Mbits/s

Table 5: performances summary

21

6 Implementation

We are designing an ASIC (�gure 12) ful�lling the function of 'slave' station as

described in section 3. It will be connected to the copper serial link and to a

parallel port on the board (address, data and commands). It also receives from

the board a hardwired board number and a board type (e.g. front-end board

calibration board, tower builder, controller board, etc.). A general purpose

output 8-bit register is also available. The controller board will implement the

8

Serial I/O

8 16

Type

Board
Number

4

6
O

utput R
egister

AD DATA CTL

40 MHz
Clock

Figure 12: the slave WorldFIP ASIC

function of gateway between the optical link and the copper inner link. The

state of the gateway will be controlled by one bit of the general purpose register

of the controller board station ASIC. Thus, the copper link can be isolated

from the external world upon request of the master station. The connections

between the control station and the slave stations of the other boards are shown

in �gure 13.

Before the production of an ASIC prototype, a FPGA pre-prototype will be

produced.

22

in Controller Board

Serial I/O

8 16

Type

Board
Number

4

6

O
utput R

egister

AD DATA CTL

40 MHz
Clock

O/E interface

2 ports / 1 port

Controller

000001

Out 0

Out 7

Board n (Front-end, middle)

8

8 16

Type

Board
Number

4

6

O
utput R

egister

AD DATA CTL

40 MHz
Clock FE Middle

n

Ser

GatewaySerial Link

Figure 13: connections of the serial link in the front-end crate

23

References

[1] O.B. Abdinov et al., ATLAS, Liquid Argon Calorimeter Technical Design

Report, CERN/LHCC/96-41, ATLAS TDR 2, 15 December 1996, Chapter

10, p.355-358

[2] idem, Chapter 11, p.467

[3] Information about the WorldFIP standard can be found at

http://www.world�p.org/

[4] The Working Group on Fieldbuses, Recommendations for the use of �eld-

buses at CERN, CERN/ECP-DO,

http://ecpcowww.cern.ch/�eldbus/report1.html

[5] Al. Gara, private communication

24

A Frame Check Sequence

We present here the principle applied to calculate the frame check sequence that

is appended, in the data link layer (see 2.2), to the CTRL and DATA �eld of

the frame CAD. The FCS is the result of a polynomial division by a generator

polynomial of the input bit stream, composed of the CTRL and DATA bits of

the CAD �eld.

A.1 Notations

Let d be the input k bits sequence on which the algorithm is to be applied.

dk�1 is the �rst bit sent and d0 is the last bit sent.

The encoding algorithm will append to the sequence d a frame check sequence

f of l bits, where fl�1 is the �rst bit appended and f0 is the last one. The

complete sequence r will be n-bits long, such that n = k + l and

rn�1; rn�2; � � �rn�k ; rn�k�1; � � �r0 = dk�1; dk�2; � � �d0; fl�1; � � �f0:

Let us regard the bit sequences as polynomials D(X), F (X), and R(X), such

that:

D(X) =
k�1X

i=0

di �X
i

F (X) =
l�1X

i=0

fi �X
i

R(X) =
n�1X

i=0

ri �X
i

=
k�1X

i=0

di �X
n�k+i +

n�k�1X

i=0

fl �X
i

= D(X) �Xn�k + F (X)

A.2 De�nition of the algorithm for WorldFIP frames

Encoding

In our case, the FCS is a 16-bits word. The resulting sequence r is the whole

CAD �eld of a WorldFIP frame, and the input sequence d is the k �rst bits of

the CAD �eld represented by the CTRL byte and the DATA bytes.

l = 16 and n = k + 16:

The frame check sequence is de�ned as the remainder of the division of a poly-

nomial derived from D(X) by the generator polynomial G(X):

F (X) = L(X)(Xk + 1) +D(X) �X16 modulo G(X) (1)

25

where:

G(X) = X16 +X12 +X11 +X10 +X8 +X7 +X6 +X3 +X2 +X + 1

L(X) =
15X

i=0

X i

Decoding

The received encoded sequence, after transmission, R0(X) can di�er from the

encoded sequence R(X). A syndrom S(X) is calculated on the received se-

quence:

S(X) = L(X) �Xk+16 +R0(X) �X16 modulo G(X) (2)

If no error occured during the transmission, i.e. R0(X) = R(X), the syndrom

polynomial S(X) is independant from the input sequence and given by:

S(X) = X15 +X14 +X13 +X9 +X8 +X7 +X4 +X2 (3)

A.3 Hardware implementation

An example of hardware implementation of the FCS calculation, as well as the

encoding and decoding procedure are presented on �gure 14.

Encoding

The input sequence is sent on 'Data Input'. The 16 D-latches are preset before

the emission of the data to encode. When the input sequence is fed to 'Data

Input' and 'IsData' is set, the outputs fQ15; � � �Q0g of the D-latches will contain

the resulting FCS of the input sequence. When all the input bits have been

provided, i.e. after k clock cycles, the result FCS can be retrieved

� either in parallel by reading, in one clock cycle, fQ15; � � �Q0g values,

� or sequentially, by resetting 'IsData' to inhibit the feedback action and

reading, during 16 clock cycles, the output signal 'Serial Output'.

Decoding

The decoding process is equivalent to the encoding process. The received se-

quence is fed to 'Data Input', as for encoding. When all the k+16 received bits

(including the 16 FCS bits) have been provided to the circuit input, the 16-byte

word fQ15; � � �Q0g is the syndrom sequence, and should respect the following

conditions if no error occured during the transmission:

fQ15; � � �Q0g = E394 Hexa :

26

Q
D

S1

Q
D

S2

Q
D

S3

Q
D

S4

Q
D

S5

Q
D

S6

Q
D

S7

Q
D

S8

Q
D

S9

Q
D

S10

Q
D

S11

Q
D

S12

Q
D

S13

Q
D

S14

Q
D

0 S

C
lk

P
reset

D
ata Input

Is D
ata

F
eedback

S
erial

O
utput

Q
D

S15

P
reset

D
ata Input

P
R

E
F

S
D

C
T

R
L

D
A

T
A

 B
Y

T
E

S

Is D
ata

S
erial O

utput
F

C
S

N
ot V

alid

P
reset

D
ata Input

P
R

E
F

S
D

C
T

R
L

D
A

T
A

 B
Y

T
E

S

Is D
ata

Q
[15:0]

F
C

S

N
ot V

alid

F
E

D

? E
394 ?

E
ncoding

D
ecoding

8 bits

Figure 14: example of hardware implementation of the frame check sequence,

and application to WorldFIP frames

27

