The Base-line DataFlow system of the ATLAS Trigger & DAQ

Hanspeter Beck LHEP / Universität Bern On behalf of the Atlas TDAQ DataFlow Group

13th IEEE-NPSS Real Time Conference 2003 Montréal, Canada May 18-23 2003

May 18-23 2003 —— 13th IEEE-NPSS Real Time Conference 2003, Montréal — HP Beck —

Outline

• ATLAS

- Interaction rates and event sizes
- The Trigger/DAQ architecture
- The DataFlow
 - ReadOut Link
 - ReadOut System
 - Region of Interest Builder
 - DataCollection
 - RoI DataCollection
 - Event Builder
- Conclusions & Outlook

L May 18-23 2003 — 13th IEEE-NPSS Real Time Conference 2003, Montréal — HP Beck

The Large Hadron Collider

proton-proton collider at $\sqrt{s}=14$ TeV and 10^{34} cm⁻²s⁻¹ heavy ions collider at 5.5 TeV/nucleon and 10^{27} cm⁻²s⁻¹

ALICE

CMS

Colliding particles:protonsCenter of mass Energy:14 TeVBunch crossing rate:40 MHzInteraction rate:10° HzEvent size:1-2 Mbytes

ATLAS

LHCb

Event rate and particle multiplicity

RoI - Implementation

- **A Level-2 processor receives** η-φ addresses for each RoI
 - Level-2 decides which ROBs to access
 - Request-reply mechanism
 - Sequential processing at Level-2
- About 2% of an events data volume makes up an RoI
- ⇒ one order of magnitude smaller ReadOut network
- ⇒ higher system complexity
- ⇒ RoI data requests integrated in DataFlow system

- May 18-23 2003 — 13th IEEE-NPSS Real Time Conference 2003, Montréal — HP Beck

ReadOut Link

S-LINK S-LINK ~1600 ROLs connect detector ReadOut ROD ROS **Drivers [ROD] with ReadOut Buffers** Forward Channel [ROB] organized within ReadOut **Systems** [ROS] Return Channe All Level-1 accepted data is moved from RODs to ROSs at up to 160 MByte/s per ROL **Readout** Link - Up to 256 GByte/s capability of Atlas Level-1 accepted data The S-Link protocol allows for backpressure via a independent return channel **ROD sub-detector specific** -Xon/Xoff Fibre and copper based **ROB** and ROS common for all of implementations of LinkSource- [LSC] TDAQ and LinkDestination Cards [LDC] - Final decision pending between detector and TDAQ world

- May 18-23 2003 — 13th IEEE-NPSS Real Time Conference 2003, Montréal — HP Beck

ReadOutSystem

Receive & buffer event fragments from the ~1600 detector ROLs

- Up to 160 MByte/s per ROL
- ~1600 ReadOutBuffers [ROBs] implemented by RoBIns holding 2-4 ROBs each

Send event fragments on request

- ROI requests: high rate, low data volume
 - Rate: LVL1 rate 75 kHz, volume: ~2% of ROLs: ~30 kB
- EventBuilding requests: low rate, high data volume
 - Rate: ~4% of LVL1 rate: ~3 kHz, volume: complete event data: 1-2 MByte

Two deployment scenarios possible

 Bus-based ROS: ROS concatenates detector data if more than one ROB data fragment is requested from a ROS unit

- RoBIns read out via PCI bus
 - -Less ports in network
 - -Less data request messages in DataFlow system
- Switch-based ROS: RoBIns accessed directly from Level-2 and EventBuilding
 - RoBIns read out via Gigabit Ethernet
 - -Flexible scaling (ROB request rates and EB rates)
 - -No dependency of PCI bus and CPU in data-path

May 18-23 2003 — 13th IEEE-NPSS Real Time Conference 2003, Montréal — HP Beck –

Test Setup: ROS performance

- Bus-based ROS implemented on a 2 GHz PC
 - with 4 PCI busses (64 bit/66 MHz)
- 3 RoBIn emulators on PCI-bus
 - On-board "local" bus limited to 266 MByte/s
 - Each emulates 4 input links \Rightarrow 12 ROLs per ROS-PC

Level-2 & event-building emulators

- Linux PCs connected to the ROS via Gigabit Ethernet
- Sends RoI/EventBuilding requests and ROB clear messages to the ROS
- Receive event data shipped back from ROS-PC
- Using TCP/IP as communication protocol
 - Raw Ethernet and UDP/IP also possible
 - TCP/IP unveils worst case scenario

L May 18-23 2003 — 13th IEEE-NPSS Real Time Conference 2003, Montréal — HP Beck

ROS Performance

DataCollection Components

DataCollection Components

- S/w process written in C++ run on Linux PCs
- communication via Gigabit Ethernet: TCP/IP, UDP/IP, Raw

Level-2 SuperVisor
 load-balancing of Level-2 farm

- Level-2 Processing Unit Level-2 comunication layers i.e. no trigger algorithms added
- DataFlowManager
 load-balancing of event-building SFIs
- Pseudo ROS Level-2 ROS: allows to add a Level-2 record into the event stream
- SubFarmInput building the full event
- SubFarmOutput event data available for MassStorage

^L May 18-23 2003 — 13th IEEE-NPSS Real Time Conference 2003, Montréal — HP Beck

DataFlow Prototype

DataFlow Prototype to demonstrate functionality, performance and scalability of the proposed Atlas DataFlow

~40 Xeon 2.0-2.4 GHz dual CPU Rack-mountable PCs **Fully interconnected with Gigabit Ethernet**

4 types of ROS emulators

- 128 FPGA based Talk M LeVine network tester
- 16 Alteon NIC firmware re-programmed
- s/w ROS emulator PCs
- Fully functional ROS prototype - PCs

Capable of testing ~10% of final Atlas dataflow

The TDAQ Technical Design Report will be submitted end of June 2003

Prototype setup at Cern

May 18-23 2003 — 13th IEEE-NPSS Real Time Conference 2003, Montréal — HP Beck

Performances

Performance of RoI Builder

Custom built 12U VME prototype has achieved required performance

• Performance of Level-2 supervisor

- 1 Level-2 Supervisor absorbs up to ~30 kHz of Level-1 rate on a 2.4 GHz dual CPU PC ⇒ a few PCs needed for final system
- Is insensitive to the number of Level-2 Processing Units

Performance of Pseudo-ROS

- Not a demanding application
- Requirement to receive <10 kB of data at Level-2 accept rate (~3 kHz) and forward them to the EB is largely satisfied

^L May 18-23 2003 — 13th IEEE-NPSS Real Time Conference 2003, Montréal — HP Beck

DataFlow Performance of a Level-2 Processing-Unit

Rol Building - 4 Threads (UDP)

ut tele in 55 ical time conterence 2005, Montreal DCCM

DFM Performance

DataFlow Manager

Load-balancing SFIs (event building nodes)

Dedicated set-up exposes DFM to full I/O rates and bandwidth using special tester application

The DFM performs an order of magnitude above the Atlas baseline requirements

23 kHz Event Building rate could be sustained by the DFM

The DFM performance is insensitive to the number of SFIs (load-balancing)

The DFM performance scales linearly with CPU clock speed

May 18-23 2003 — 13th IEEE-NPSS Real Time Conference 2003, Montréal — HP Beck –

SFI Performance

Conclusions & Outlook

- DataFlow system for ATLAS TDAQ defined
- All components well specified
 - Mostly commodity components
 - 🖌 Linux PCs, Gigabit Ethernet
 - ROL, RoBIn and RoI builder custom built
- Few areas in the design with outstanding decisions
 - Number of ROLs per RoBIn
 - Bus-based ROS vs switch-based ROS
- Testbed capable of providing 10% of the final expected Atlas throughput
 - ~40 Linux PCs: 2.0 2.4 dual Xeon CPU
 - Dedicated network testers emulating large number of ROSs
- Performance figures promising and sometimes above requirements
- Now writing ATLAS TDAQ TDR; due by end of June 2003
- DataFlow system being explored on testbeam setups at CERN
 - further insight on stability
 - get the detector community acquainted

TDAQ is well on track for ATLAS

- May 18-23 2003 —— 13th IEEE-NPSS Real Time Conference 2003, Montréal — HP Beck —

Backup Slides

- May 18-23 2003 — 13th IEEE-NPSS Real Time Conference 2003, Montréal — HP Beck

LHC - DESIGN PARAMETERS

LHC = Two colliding proton synchrotrons (26.7 km circumference)

Injection Energy	0.45 TeV
Collision Energy	7 TeV
Dipole field at 7 TeV	8.33 T
Design Luminosity	10 ³⁴ cm ⁻² s ⁻¹
Luminosity Lifetime	10 h
Protons per bunch	1011
Bunches per beam	2808 (filled)
	3546 (total)
Bunch spacing	25 ns
DC Beam Current	0.56 A

Extreme demands on detectors:

- high granularity
- high data-taking rate
- high radiation environment

Initial Luminosity $\mathscr{L}=2.10^{33}$ cm⁻² s⁻¹ with goal of $\int \mathscr{L} dt \approx 20$ fb⁻¹ / year, for 3 years High Luminosity $\mathscr{L}=10^{34}$ cm⁻² s⁻¹, with goal of $\int \mathscr{L} dt \approx 100$ fb⁻¹ / year, for 10+ years

- May 18-23 2003 — 13th IEEE-NPSS Real Time Conference 2003, Montréal — HP Beck -

Atlas Event Size

T		Fragme	L G	Muon		Fragmen
Inner Detector	Channels	nt size -	5	Spectromete	Channels	t size -
Pixels	1.4x10 ⁸	60		MDT	3.7x10 ⁵	154
SCT	6.2x10 ⁶	110		CSC	6.7x10 ⁴	256
TRT	3.7x10⁵	307		RPC	3.5x10 ⁵	12
				TGC	4.4x10 ⁵	6
		Fragmen				Fragme
Calorimetry	Channels	t size -	A	Trigger	Channels	nt size -
LAr	1.8x10 ⁵	576		LVL1		28
Tile	104	48	HE			
				Mass Storage:		
Atlas total such sizes 1 5 Milutes			300 MBytes/sec			
Atlas total event size: 1.5 Mbytes 140 Mio Channels			🖛 3 PetaBytes/year			
organized into ~1600 Readout Links for offline analysis			S			
May 18-23 2003 — 13th IEEE-NPSS Real Time Conference 2003, Montréal — HP Beck						

LVL1 - Muons & Calorimetry

3 out of 3 (high- p_{τ} ; > 20 GeV) and

Triger efficiency 99% (low- p_T) and 98% (high- p_T)

• Various combinations of cluster sums and isolation criteria

- May 18-23 2003 — 13th IEEE-NPSS Real Time Conference 2003, Montréal — HP Beck -

LVL1 Trigger Rates

Selection	2*10 ³³ cm ⁻² s ⁻¹	10 ³⁴ cm ⁻² s ⁻¹
MU20 (20)	0.8	4.0
2MU6	0.2	1.0
EM25I (30)	12.0	22.0
2EM15I (20)	4.0	5.0
J200 (290)	0.2	0.2
3J90 (130)	0.2	0,2
4J65 (90)	0.2	0,2
J60 + xE60 (100+100)	0.4	0.5
TAU25 + xE30 (60+60)	2.0	1.0
MU10 + EM15I	0,1	0.4
Others (pre-scales, calibration,)	5.0	5.0
Total	~ 25	~ 40

• Rates given in kHz

No safety factor included!

 \rightarrow E_T thresholds imply 95% efficiency values

The LVL1 rate is dominated by EM cluster triggers

L May 18-23 2003 — 13th IEEE-NPSS Real Time Conference 2003, Montréal — HP Beck

Region of Interest - Why?

- At hadron colliders, the most severe background comes from **Physics**
 - QCD production of jet-jet events
 - QCD production (qq-gg-qg) is orders of magnitudes higher than interesting Physics signals
 - Quarks and gluons "materialise" into jets of particles of variable multiplicities (-> π 's, K's, etc.)
- The LVL1 trigger rejects a large fraction of it
 - from a crude profile analysis of calorimetric energy deposition
 - But the full identification of an electron against π^{0} -> $\gamma\gamma$ requires: - high calorimeter granularity

 - association track-energy

Because of interconnectivity, LVL1 has

- Poor calorimeter granularity
- No access to tracking information

May 18-23 2003 — 13th IEEE-NPSS Real Time Conference 2003, Montréal — HP Beck

LVL2 - RoI mechanism

Level-1 triggers on high p_T **objects**

• Caloriemeter cells and muon chambers to find $e/\gamma/\tau$ -jet- μ candidates above thresholds

Level-2 uses Regions of Interest as identified by Level-1

• Local data reconstruction, analysis, and sub-detector matching of RoI data

The total amount of RoI data is minimal

 ~2% of the Level-1 throughput but it has to be extracted from the rest at 75 kHz

May 18-23 2003 — 13th IEEE-NPSS Real Time Conference 2003, Montréal — HP Beck –

