The Base-line DataFlow system of The Base The Base the ATLAS Trigger & DAQ -line DataFlow system of line DataFlow system of the ATLAS Trigger & DAQ the ATLAS Trigger & DAQ

Hanspeter Beck LHEP / Universität Bern On behalf of the Atlas TDAQ DataFlow Group

13th IEEE-NPSS Real Time Conference 2003 Montréal, Canada Ťŵ May 18 -23 2003 23 2003

Outline Outline

• ATLAS

- Interaction rates and event sizes
- $-$ The Trigger/DAQ architecture
- The DataFlow
	- ReadOut Link
	- ReadOut ReadOut System
	- –– Region of Interest Builder
	- DataCollection
		- RoI DataCollection
		- Event Builder
- Conclusions & Outlook

The Large Hadron Collider

proton-proton collider at √**s=14 T eV and 1034 cm-² s-¹ heavy ions collider at 5.5 T eV/n ucleo n and 1027 cm-² s-¹**

ALICE

CMS

Colliding particles: protons Colliding particles: protons Center of mass Energy: 14 TeV Center of mass Energy: 14 T Bunch crossing rat e:Bunch c r o ssing rat e:Interaction rate: 40 MHz 40 MHz 109 Hz 109 Hz Event size:Event size: 1-2 Mbytes 1-2 MbyteseV

 $M_{\rm eff}$ 18-23 2003 23 200313th IEEE-NPSS Real Time Conference 2003, Montréal HP Beck HP Beck

ATLAS

LHCb

RoI - Implementation Implementation Implementation

•

- **A Level-2 processor receives A Level-2 processor receives** η **-**ϕ **addresses for each RoI**η **-** ϕ **a ddresses for each R o I**
	- **Level-2 decides whi ch ROBs Level-2 decides whi ch ROBs to accessto access**–
	- **Request-reply mechani sm Request-reply mechani s m**
	- **Seq uential processin g at Seq uenti al processin g at Level-2Level-2**
- **About 2% of an events data About 2% of an events data volume makes up a n RoIvolume makes up a n RoI** •
- ⇒⇒ **one order of magnitu de one order of magnitu de smaller ReadOut networksmaller ReadOut network**
- ⇒⇒**higher system complexity higher system complexity**
- ⇒⇒ **RoI data request s integrated RoI data request s integrated in DataFlow system in D ataFlow system**

ReadOut Link ReadOut Link

• **~1600 ROLs connect detector ReadOut** • **~1600 ROLs connect detector ReadOut Drivers [ROD] with ReadOut Buffers**
- **[ROB] organized wit hin ReadOut[ROB] organiz ed within ReadOut Systems [ROS] Systems [ROS]**

• **All Level-1 accepted data i s moved** • **All Level-1 accepted data i s moved from RODs to ROSs at up to from RODs to ROSs at up to 160 MBy te/s p er ROL160 MBy te/s p e r ROL**

– **Up to 256 GByte/s capability of Atlas** – **Up to 256 GByte/s capability of Atlas Level-1 accepted data Level-1 accepted data**

• **The S-Link protocol allows for** • **The S-Lin k protocol allows for backpressure via a independent return backpressure via a independent return channel channel**

– **Xon/Xoff** – **Xon/Xoff**

• **Fibreand copper bas ed** • **Fibr e and copper bas ed implementations of LinkSource- [LSC] and LinkDestinationCards [LDC] and LinkDestination Cards [LDC]** – **Final decision pending** – **Final decision pending**

ReadOutSystem ReadOutSystem

• **Receive & buffer event fragments from the ~1600 detector ROLs** • **Receive & buffer event fragments from the ~1600 detector ROLs**

- Up to 160 MByte/s per ROL Up to 160 MByte/s per ROL
- –~1600 ReadOutBuffers [ROBs] **implement ed by RoBIns holding 2-4 ROB s each**–~1600 ReadOutBuffers [ROBs] **implement ed by RoBIns holding 2-4 ROB s each**

• **Send event fragments on request** • **Send event fragments on request**

- **ROI req uests:** high rate, low data volume **ROI req ues t s:** high rate, low data volume
	- •Rate: LVL1 rate **75 kHz**, volume: **~2%** of ROLs: **~30 kB** Rate: LVL1 rate **75 kHz**, volume: **~2%** of ROLs: **~30 k B**
- **Event Building reques ts:** low rate, high data volume **Event Building r e ques ts:** low rate, high data volume
	- Rate: \sim 4% of LVL1 rate: \sim 3 kHz, volume: complete event data: 1-2 MByte

• **Two deployment scenarios possible** • **Two deployment scenarios possible**

– **Bus-based ROS:** ROS concatenates detector data – **Bus-based ROS:** ROS concatenates detector data if more than one ROB data fragment is requested from a ROS unit

•**RoBIns read out viaPCI bus**•**RoBIns read out via PCI bus**

–Less ports in network –Less ports in network

–Less data request messages in DataFlow system – Less d ata request messages in DataFlow system

– **Switch-based ROS:** RoBIns accessed directly from Level-2 and EventBuilding – **Switch-based ROS:** RoBIns accessed directly from Level-2 and EventBuilding

- •**RoBIns read out viaGig abit Ethernet RoBIn s rea d out via Gigabit Ether net**
	- –Flexible scaling (ROB request rates and EB rates) Flexible scaling (ROB request rates and EB rates)
	- –No dependency of PCI bus and CPU in data-path –No dependency of PCI bus and CPU in data-path

Test Setup: ROS performance

- **Bus-basedROS imple mented on a 2 GHz PC Bus-based ROS imple mented on a 2 GHz PC**
	- **with 4 PCI busses (6 4 bit/ 66 MHz) with 4 PCI busses (6 4 bit/ 66 MHz)**
- •**3RoBIn emulators on PCI-bus**•**3 RoBInemulators on PCI-bus**
	- **On-boar d "local"bus limited to 266 MBy te/s On-boar d "local"bus limited to 266 MBy te/s**
	- **Each emulates 4 input links** ⇒ **12 ROLs per ROS-PC Each emulates 4 input links** ⇒ **12 ROLs per ROS-PC**

• **Level-2 & event-building emulators** • **Level-2 & event-building emulators**

- **Linux PCs connected to the ROS via Gigabit Ethernet Linux PCs connecte d to the ROS via Gigabit Ethernet**
- Sends RoI/EventBuilding requests and ROB clear messages to the ROS
- **Receive event data shipped b ack from ROS-PC Receive event data shipped b ack f rom ROS-PC**
- **Using TCP/I P as communication protocol Using TCP/IP as communication protocol**
	- **Raw Ethernet and UDP/I P also possible Raw Ethernet and UDP/I P also possible**
	- **TCP/IP unveils w orst case scenario TCP/IP unveils w orst case scenari o**

ROS Performance ROS Performance

DataCollection Components

• **DataCollection Components DataCollection Components** \bullet

- **S/w process written in C++ run on Linux PCs S/w process written in C++ run on Linux PCs**
- **communication via Gigabit Ethernet: TCP/IP, UDP/IP, R aw communication via Gigabit Ethernet: TCP/IP, UDP/IP, Raw**
- **Level-2 SuperVisor lo ad-balancing of Level-2 farm Level-2 SuperVisor load-balancing of Level-2 farm**
- **Level-2 Processing Unit Level-2 comunication layers Level-2 Processing Unit Level-2 comunication layers i.e. no trigger algorithms adde di.e. no trigger algorithms adde d**
- **DataFlowManager lo DataFlowManager load-balancing o ad-balancing of event-buildi ng SFIs f event-building SFIs**
- **Pseudo ROS Pseudo ROSLevel-2 ROS: allows to add a Level-2 Level-2 ROS: allows to add a Level-2 record into the event stream record into the event stream**
- –– **SubFarmInput building the full event SubFarmInput building the full event**
	- **SubFarm**–**Output event data a vailable for MassStorag e SubFarmOutput event data available for MassStorage**

DataFlow Prototype DataFlow Prototype

DataFlow Prototype to dem onstrate fun ctionality, performan ce and scalability of the proposed Atlas DataFlow DataFlow Prototype to demonstrate fun ctionality, performance and scalability of the proposed Atlas DataFlow

~40 Xn 2.0-2.4 GHz dual CPU Rackmountable PCs~40 Xeon 2.0-2.4 GHz dual CPU Rack-mountable PCs e o Fully interconnecte d with Gigabit Ethernet F ull y interconnecte d with Gigabit Ethernet -

4 types of ROS emulators 4 types of ROS emulators

- **ed 128 FPGA based Talk M LeVine network testernetwork tester**
-
- •**16 Alteon NICfirmware** •**16 Alteon NIC firmware re-programme dre-programme d**
- **s/w R OSemulator –PCs s/w R OS emulator –PCs**
- **•** Fully functional ROS **prototype - PCsprototype - PCs**

Capable of testing ~10% of final Atlas dataflowCapable of testing ~10% of

The TDAQ Techni c al Design Report will be submitted end of June 2003The TDAQ Techni c al Design Report will be submitted end of June 2 0 0 3

Prototy pe setup at Cern Protot y pe setup at Cern

Performances Performances Performances

• **Performance of RoI Builder** • **Performance of RoI Builder**

– **Custom built 12U VME prototype has achieved required performance** – **Custom built 12U VME prototype has achieved r equired per fo rmanc e**

• **Performance of Level-2 supervisor** • **Performance of Level-2 supervisor**

- **1 Level-2 Supervisor absorbs up to ~30 kHz of Level-1 rate 1 Level-2 Supervisor absorbs up to ~30 kHz of Level-1 rate on a 2.4 GHz dual CPU PC**⇒ **a few PCs needed for final system on a 2.4 GHz dual C P U PC** ⇒ **a few PCs neede d for final system**
- **Is insensitive to the number of Level-2 Processing Units Is insensitive to the number of Level-2 Processing Units**

• **Performance of Pseudo-ROS**• **Performance of Pseudo-ROS**

- **Not a demanding applicatio n Not a demanding applicatio n**
- $-$ Requirement to receive $<$ 10 kB of data at Level-2 accept rate (\sim 3 kHz) and **forward them to the EB is largely satisfied forward them to the EB is largely satisfied**

**DataFlow Performance of DataFlowDataFlow Performance of

a Level-2 Processing-Unit**

Rol Building - 4 Threads (UDP)

In this test setup, the total R oI size is distributed evenly over a In this test setup, the total R oI size is distributed evenly over a number of ROSs from which the Level-2 Processing-Unit needs to number of ROSs from which the Level-2 Processing-Unit needs to request R oI data fromrequest R oI data from

DFM Performance DFM Performance

DataFlow Manager DataFlow Manager

Load-balancing SFIs (event Load-balancing SFIs (event building nodes) building nodes)

Dedicated set-up exposes DFM to full Dedicated set-up exposes DFM to full I/O rates and bandwidth using special I/O rates and bandwidth using special tester application tester application

The DFMperforms an order of The DF M performs an order of magnitude above the Atlas baseline magnitude above the Atlas baseline requirements requirements

23 kHz Event Building rate could be 23 kHz Event Buildi ng rate could be sustained by the DFM sust ained by the DFM

The DFMperformance is insensitive to The DF M performance is insensitive to the number of SFIs (load-balancing) the number of SFIs (load-b alan cing)

The DFMperformance scales linearly The DF M performance scales linearly with CPU clock spee dwith CPU clock spee d

May 18-23 2003 ^{CPU clock (GHz)}
13th IEEE-NPSS Real Time Conference 2003, Montréal — HP Beck

SFI Performance SFI Performance

Conclusions & Outlook Conclusions & Outlook

- ☞**DataFlow system for ATLAS TDAQ defined** ☞**DataFlow system for ATLAS TDAQ defined**
- ☞**All component s well specified** ☞**All component s well specified**
	- **Mostly c ommodity component s Mos tly c ommodity component s**
		- ↳ Linux PCs, Gigabit Ethernet ↳ Linux PCs, Gigabit Ethernet
	- **ROL, RoBIn and RoI builder custom built**
- ☞**Few areas in the design with outstanding decisions** ☞**Few areas in the design with outstanding decisions**
	- **Number of ROLs per RoBIn Number of ROLs per RoBIn**
	- **Bus-based ROS vs switch-based ROS Bus-based ROS vs switch-based ROS**
- $\mathscr F$ Testbed capable of providing 10% of the final expected Atlas throughput
	- **~40 Linux PCs: 2.0 –2.4 dual Xeon CPU ~40 Linux PCs: 2.0 –2.4 dual Xeon CPU**
	- **Dedicated networ k testers emulating l arge number of ROSs Dedicated networ k testers emulating l arge number of ROSs**
- ☞**Performance figures promising and sometimes above requirements** ☞**Performance figures promising and sometimes above requirements**
- ☞**Now writing ATLAS T DAQ T DR; due by end of June 2003** ☞**Now writing ATLAS T DAQ T DR; due by end of June 2003**
- ☞**DataFlow system being explored on testbeam setups at CERN** ☞**DataFlow system being explored on testbeam setups at CERN**
	- **further insight on stability further insight on stability**
	- **get the detector community a cquainte d get the detector community a cquainte d**

☞**TDAQ is well on track for ATLAS** ☞**TDAQ is well on track for ATLAS**

Backup Slides Backup Slides

LHC - DESIGN PARAMETERS DESIGN PARAMETERS DESIGN PARAMETERS

LHC = Two colliding proton synchrotrons (26.7 km circumference) LHC = Two colliding proton synchrotrons (26.7 km circumference)

Extreme demands on detectors:Extreme demands on detectors:

- **high granulari t high granulari t y y**
- **high data-taking rate high data-taking rate** •
- **high radiation environment high radiation environment**

Initial Luminosity, 2=2,1033 cm⁻².s⁻¹ with goal of f 2,4t_i = 20,fb⁻¹ 1/year for 3 years. <u>High Luminosity, & 1031cm; s; unith goal of f&dt = 100 fb; /year for 10+ years</u>

Atlas Event Size Atlas Event Size

LVL1 - Muons & Calorimetry Muons & Calorimetry Muons & Calorimetry

chambers chambers 2 out of 3 (low -p T; >6 GeV) and 2 out of 3 (low - p T; >6 GeV) and 3 out of 3 (high-p T; > 20 GeV) 3 out of 3 (high-p T; > 20 GeV)

Triger efficiency 99% (low-p T) Triger efficiency 99% (low-p T) and 98% (high -p) and 98% (high - p T) T

cluster sums and isolation cluster sums and isolation criteriacriteria

[•]Σ**Eem,had , E miss** • Σ **E Tem,had , E TmissTT**

LVL1 Trigger Rates LVL1 Trigger Rates LVL1 Trigger Rates

• Rates given in kHz

No safety factor included!

 \rightarrow E_T thresholds imply 95% efficiency values

The LVL1 rate is dominated b y EM cluster tri ggers

Region of Interest - Why?

- At hadron colliders, the most severe background comes from Physics
	- QCD production of jet-jet events
		- QCD production (qq-gg-qg) is orders of magnitudes higher than interesting Physics signals
		- Quarks and gluons "materialise" into jets of particles of variable multiplicities (-> π 's, K's, etc.)
- The LVL1 trigger rejects a large fraction of it
	- from a crude profile analysis of
calorimetric energy deposition
		- But the full identification of an electron against π^0 -> $\gamma\gamma$ requires:
			- high calorimeter granularity
			- association track-energy

• Because of interconnectivity, LVL1 has

- Poor calorimeter granularity
- $-$ No access to tracking information

LVL2 - RoI mechanism RoI mechanism RoI mechanism

Level-1 triggers on high p T obj ectsLevel-1 triggers on high p T obj ects

• **Caloriemeter cells andmuon chambers** • **Caloriemeter cells andmuon chambers to find e/** γ**/** τ**-jet-**µ **candidates above to find e/** γ**/** τ**-jet-**µ **candidates above thresholdsthresholds**

Level-2 uses Regions of Interest as Level-2 uses Regions of Interest as identified by Level-1 identified by Level-1

•**Local data reconstruction, anal y sis,** • **L ocal data reconstru ction, anal y sis, and sub-detector matching of RoI data and sub-detector matching of RoI data**

The total amount of RoI data is minimal

• **~2% of the Level-1 throughput but it has to be extracted from the rest at 75 kHz**

