Proposal summary. To study the nuclear transparency in $\alpha+A$ reactions at energies \gtrsim 12 GeV/nucleon. Banaras¹ - Cairo² - Chandigarh³ - Jaipur⁴ - Jammu⁵ - Lund⁶ collaboration. O.E. Badaway², S. Bale³, K.B. Bhalla⁴, W.S. Bathia³, G. Claesson⁶, S. Garpman⁶, V.K. Gupta⁵, N-Y. Herrström⁶, V. Kumar⁴, I. Lund⁶, S. Lokanathan⁴, I.S. Mittra³, M. El-Nadi², I. Otterlund⁶, Y. Prakash⁵, N.K. Rao⁵, M.M. Sherif², K. Söderström⁶, S.K. Tuli¹, The question about transparency is crucial for heavy ion reaction studies. If the transparency is low at 10-15 GeV per nucleon then very large baryon densities can be achieved in this energy range, maybe enough to produce quark-gluon plasma in U+U collisions. We propose to measure, event by event, pseudo-rapidity and multiplicity distributions of singly charged relativistic particles ($\beta > 0.7$) globally and in selected regions of rapidity as well as multiplicities of recoiling protons (30-400 MeV) and multiply charged nuclear fragments. These studies will explore general features of $\alpha+A$ reactions at energies \geq 12 GeV/nucleon. Our main goal of the experiment is to measure the transparency of nuclear matter in this energy range. The detector will be nuclear emulsion. CERN LIBRARIES, GENEVA CM-P00044434