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We derive a closed, model independent, expression for the electromagnetic correction factor to a phenomenolog-
ical hadronic scattering length ah extracted from a hydrogenic atom. It is obtained in a non-relativistic approach
and in the limit of a short ranged hadronic interaction to terms of order α2 log α using an extended charge distri-
bution. A hadronic πN scattering length ah

π−p
= 0.0870 (5)m−1

π is deduced leading to a πNN coupling constant

from the GMO relation g2

c/(4π) = 14.04 (17).
PACS: 36.10.Gv, 13.75.Gx, 25.80.-e, 13.40.Ks

1. Introduction

The strong interaction energy shifts ǫ1s and to-
tal decay width Γ1s in pionic hydrogen have been
measured to a remarkable precision [1]

ǫ1s = [−7.108±0.013(stat)±0.034(syst)] eV, (1)

Γ1s = [0.868± 0.040(stat)± 0.038(syst)] eV. (2)

It is well known [2,3] that the (complex) strong
interaction shift in the 1s state of hadronic atoms
is closely linked to the (complex) elastic threshold
scattering amplitude a defined in the absence of
the Coulomb field. We refer in the following to
this quantity as the (complex) scattering length.
This is conventionally expressed in the ratio of
the shift to the Bohr energy EB = −mα2/2:

ǫ1s

EB
=
ǫ01s

EB
(1 + δ1s) = 4m α a (1 + δ1s), (3)

where δ1s conveniently measures the deviation of
the shift from the lowest order estimate

ǫ01s = − 4π

2m
φ2

B(0) a. (4)

Here φB(r) is the non-relativistic 1s Bohr wave
function of a point charge and m the reduced
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mass, which in the present case is that of the π−p
system. It is important to understand the correc-
tion δ1s transparently and reliably to an accuracy
matching the high experimental precision, since
the hadronic πN scattering lengths are key test-
ing quantities for chiral physics. In addition, they
are needed phenomenologically to about 1 % for
the precision determination of the πNN coupling
constant using the GMO relation [4].

The standard conversion of experimental data
to a scattering length uses the potential approach
of Sigg et al. [5], which describes the πN interac-
tion in terms of coupled equations using phys-
ical pion masses and an isospin invariant non-
diagonal potential matched to scattering lengths
calculated by setting the neutral pion mass equal
to the charged one. This gives δ1s(Sigg) =
(−2.1±0.5)%. The procedure is model dependent
and it is not consistent with the πN low-energy
expansion [4]. Their results must therefore be
used with caution.

The classical way to obtain Eq. (3) is based on
analytical approaches using Coulomb wave func-
tions (see Refs. [2,3,6,7,8] and references therein).
To our knowledge these papers do not explore the
effect of the extended charge distribution on the
strong interaction shift. This paper discusses this
question.
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The authors of Refs. [9,10] have calculated the
ground state energy of the π−p system in the
framework of QCD+QED, using effective field
theory (EFT) techniques. The shift of the ground
state energy is related to the scattering lengths
in pure QCD, evaluated in the isospin symmet-
ric limit mu = md The corresponding correction
δǫ in the energy shift is evaluated in the frame-
work of Chiral Perturbation Theory (ChPT). At
leading order [9], one has δǫ =(−4.3 ± 2.8)%,
while the next-to-leading order result [10] is δǫ=
(−7.2±2.9)%. The uncertainty in δǫ is due to the
poor knowledge of one of the low-energy constants
occurring in the effective theory. The correction
δǫ is also considerably larger than what was found
in Ref. [5]. This EFT approach makes inherently
no distinction between the atomic corrections due
to Coulomb effects discussed here and other con-
tributions. We come back in section 4 to a com-
parison with the present work.

Our aim here concerns only the connection of
the strong atomic energy shift to the scattering
length ah defined as the one which would be ob-
served if the Coulomb field of the extended charge
could be removed and considered as due to an ex-
ternal source. This scattering length is directly
related to the one appearing in forward disper-
sion relations for πN scattering. In this spirit, no
correction is made for the internal e. m. contri-
butions to the masses. The physical scattering
lengths for the π±n scattering correspond closely
to the present definition, neglecting the very small
e. m. correction from the charged pion interac-
tion with the neutron charge distribution. These
scattering lengths with physical masses are natu-
ral ’observables’ for the study of isospin breaking.
The (complex) π+n scattering length coincides
with the π−p one in the limit of exact charge sym-
metry: it has the corresponding open charge ex-
change channel π+n → π0p and the correspond-
ing open radiative decay channel π+n → γp. This
definition is different from that of the QCD scat-
tering length used in the EFT approach. We use
here the r-representation, which is more transpar-
ent for the present problem than the equivalent
momentum representation. Since the π−p atom
is highly non-relativistic, most of the discussion
will be made using non-relativistic concepts. The

result will be expressed in terms of the empirical
on-shell parameters of the πN low-energy expan-
sion. For the electromagnetic corrections, this
approach gives intuitively interpretable expres-
sions, exact up to terms in α2 logα, provided the
Coulomb potential of the extended charge varies
little over the range of the strong interaction.

In section 2 we solve the problem exactly to all
orders in α in the limit of a short ranged strong
interaction with the charge located to a spheri-
cal shell. The correction for an arbitrary charge
distribution is then derived perturbatively to the
same order in α as in the EFT expansion [10].
Corrections for the finite interaction range are ex-
plored. We explicitly include the correction for
the vacuum polarization. In section 3 we discuss
the magnitudes of the corrections and their physi-
cal structure. In section 4, we compare our results
to those of previous approaches.

We denote by Efs, E and ǫ1s = E − Efs the
1s finite size e.m. binding energy, the total 1s
binding energy with strong interaction and finite
size, and the strong interaction shift, respectively.
The non-relativistic wave numbers are κB, κfs

and κ for EB, Efs and E, respectively. Since this
paper concerns atomic corrections we also use the
Bohr radius rB = κ−1

B = (mα)−1.

2. A Model for the π−p Atom

The aim of this section is to explore the con-
sequences of the extended charge distribution in
a pedagogically transparent and soluble model of
the π−p system. This will serve as a prototype for
the later more general discussion and it will reveal
the nature of the contributions to the correction
term in Eq. (3). In the absence of the Coulomb
potential the threshold expansion for the angu-
lar momentum l = 0, typical of a weak scattering
length, is related to the phase shift δl=0 and to
the momentum q by the relation

tan δh
l=0

q
= ah + bhq2 + .... (5)

Here ah is the hadronic scattering length and bh

is the range parameter.
The model is constructed as follows. We first

consider the case of a single channel. This avoids
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the complications of several open channels with
different masses for which the equivalent of the
single channel scattering length is ambiguous.
The generalization will be discussed later. The
charge is assumed to be concentrated to a spher-
ical shell of radius R, outside the range of the
hadronic interaction. The system is taken to be
non-relativistic. For the moment we neglect the
effect of the vacuum polarization potential. As
defined, this problem can be solved exactly in
terms of the on-shell hadronic s-wave scattering
amplitude, although we will only evaluate it for
contributions to the correction term up to order
α2 logα. In this case the definition of the scat-
tering length is clear. The model does not have
problems with the intermingling of the Coulomb
and hadronic interaction, contrary to other de-
scriptions. Such problems are particularly acute
in any description with a pointlike charge distri-
bution, since the Coulomb interaction is then di-
vergent at r = 0.

Inside a typical shell radius R of the order of
1 fm, the Coulomb potential is constant with
VC(R) = −α/R ≃ 1.4 MeV. This motivates the
non-relativistic approximation in this region to
order α. The inside wave number qc is constant:

q2c =
2mα

R
− κ2 ≃ 2mα

R
. (6)

The 1s binding energyE ≃ −3.2 keV is negligible
compared to the Coulomb field and the strong
interaction inside the charge distribution region,
although its exact value governs the scale of the
atom. The external 1s wave function for r ≥ R
is a Whittaker function Wλ;1/2(z) (see e. g., [11],
Eq. (9.237)) with λ = κB/κ and z = 2κr. The
inside wave function for r ≤ R is a standing wave
outside the strong interaction region. Neglecting
terms of order(1 − λ)2 ≃ (αmah)2 ≃ 10−6, one
has for r ≤ R,

uin(r) = N

[

sin (qcr)

qc
+

tan δh
l=0

qc
cos (qcr)

]

(7)

and for r ≥ R,

uout(r) = (4π)1/2)−1κ exp(−z/2)

×
{

z
[

(1+ (1 − λ)(1 − γ − log z)
]

+
1 − λ

λ

}

. (8)

Here γ = 0.577... is the Euler constant. Note that
the term tan(δh

l=0) is determined by the ‘phys-
ical’ hadronic phase shift in the absence of the
Coulomb field taken at the energy −VC(R). The
wave function corresponding to Eqs. (7) and (8)
is normalized to order α2.

The energy shift ǫ1s produced by the strong in-
teraction is obtained by matching the logarithmic
derivative of the wave function at the radiusR. In
accordance with standard practice, it is defined as
the difference between the total binding energy E
and the electromagnetic binding energy with a fi-
nite size charge distribution [5]. This corresponds
to the removal of the ’scattering length’ corre-
sponding to the extended charge distribution:

afs = −αmR
2

3
; ǫfs

1s =
2παR2

3
φ2

B(0). (9)

Expanding the exact analytical expression to
terms of order α2 logα by a straightforward al-
gebraic calculation gives the following correction
factors, where the hadronic scattering length ah

takes the place of a in Eq. (3):

δ1s = −2
R

rB
+ 2

ah

rB
[2 − γ − log(2αmR)]

+
2mα

R

bh

ah
. (10)

This expression serves as a guide for the later gen-
eralizations.

The assumption of a zero range hadronic inter-
action is unnecessary in our simple model. An
interaction of any shape will give the same result
provided its range is smaller than R. This follows
from the matching condition for the wave func-
tions (7) and (8), which is only required at R,
such that any interaction with the same hadronic
scattering near-threshold amplitude, ah + q2cb

h,
gives the same result.

The terms in Eq. (10) have a clear physical in-
terpretation. The extended charge wave function
at r = 0 in the absence of strong interactions
is φin(0) = φB(0)(1 − R/rB + ..) to the present
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order in α. It is a better starting approxima-
tion than the wave function of the Bohr atom
in Eq. (4), which then should be multiplied by a

factor (1 −R/rB + ..)
2 ≃ 1−2R/rB + ... This ac-

counts for the first term in Eq. (10). The second
term proportional to ah is a renormalization due
to the external wave function which is changed
at R by the hadronic scattering itself by a factor
1+2ahmα[2−γ− log(2αmR)]. The outside wave
function is determined by the energy shift. The
matching of the inside and outside wave functions
of Eqs. (7) and (8) gives near the origin

uin(r) = {1 + 2ahmα[2 − γ − log(2αmR)]}
× (r + ah) φin(0). (11)

This result agrees with that obtained by match-
ing the logarithmic derivative at R. This factor
has little sensitivity to the exact value of the ra-
dius R. The leading α logα part of the term in
ah is well known from previous approaches and
has also been found in the EFT approach where
it corresponds to a ”loop” term [9,10].

The last term in Eq. (10) follows from gauge
invariance with the replacement E → E − VC(0)
in the scattering amplitude [4]. Alternatively,
and more intuitively, it follows using the correct
energy at the point of interaction. This is not
the binding energy, but the finite depth of the
Coulomb potential of the extended charge. (For
the corresponding effect in higher Z pionic atoms,
see Refs. [12]-[14]).

Exactly the same reasoning as for the 1s state
can be applied to hadronic energy shift ǫns in
states of any n. The correction factor δns is de-
fined in complete analogy to Eq. (3):

ǫns

Ens
=

ǫ0ns

Ens
(1 + δns) = 4

ah

nrB
(1 + δns), (12)

where Ens = −mα2/(2n2) and the convenient
comparison shift ǫ0ns is the simplest perturbative
expression for the energy shift

ǫ0ns = − 4π

2m
φ2

B;ns(0) ah =
ǫ01s

n3
. (13)

One has to order α2 logα in the correction

δ1s − δns = 2
ah

rB

(

1 − 2

n
+

n
∑

1

1

k
− log n

)

. (14)

In this expression all the dependence on the pa-
rameter R has disappeared, which reflects that
all the short-ranged physics is identical but for a
renormalization factor. In the limit n→ ∞

δ1s − δ∞s = 2
ah

rB
(1 + γ), (15)

where the correction term is given by

δ∞s = −2
R

rB
+ 2

ah

rB

[

1 − 2γ − log

(

2R

rB

)]

+
2mα

R

bh

ah
. (16)

This semi-classical limit for κn ≡ (κB/n) → 0
corresponds to the Coulomb scattering length [15]
ac = ah(1 + δ∞s) in our model. For the present
case of a π−p atom the numerical difference in
the correction terms for different values of n in
Eqs. (14) and (15) is less than 10−3 and of little
practical importance.
Arbitrary Charge Distribution

The result (10) is the prototype for more gen-
eral charge distributions. The difference between
the Coulomb potential VCfs for a charge distri-
bution from the observed π− and proton form
factors, ρ(r), and VCR corresponding to that for
the spherical shell of radius R, ρR(r), gives a per-
turbative potential, which includes the f.s. charge
density associated with the anomalous magnetic
moment:

δVC(r) = VCfs(r) − VCR(r)

= −α
∞
∫

r

(

1

r′
− 1

r

)

δρ(r′)4πr
′2dr′, (17)

where δρ(r′) = ρ(r) − ρR(r′). Applying this per-
turbation to our soluble model gives a net cor-
rection independent of R to the present order in
α. The explicit calculation leads to the follow-
ing four changes in our model results. First, the
e. m. finite size energy shift (9) is changed with
the substitution of the model R2 by

〈

r2
〉

em
=

〈

r2p
〉

em
+
〈

r2π
〉

em
= 1.15(2) fm2 as in Ref. [5].

Likewise, the value of the overall Coulomb poten-
tial at the origin changes from the model value
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α/R to α 〈1/r〉em and the wave function squared
at the origin changes it value from (1− 2αR+ ..)
to (1 − 2α 〈r〉em + ..). Finally, the term logR is
replaced by 〈log r〉em. The changes are indepen-
dent of the hadronic interaction.

In the case of a single channel and in the
hadronic zero range limit, the corrections are:

δ1s = −2
〈r〉em

rB
+ 2

ah

rB

(

2−γ−
〈

log
2r

rB

〉

em

)

+2mα

〈

1

r

〉

em

bh

ah
≡ δ〈r〉 + δc + δg. (18)

We now introduce the correction δvp for the vac-
uum polarization [16]. The first order vacuum
polarization is described by a potential propor-
tional to α2 with a range much larger than that
of the hadronic and charge distribution ones and
it is insensitive to the strong interaction dynam-
ics. The joint extended Coulomb potential and
vacuum polarization one is a perfectly justifiable
alternative to the point Coulomb potential as the
starting point for the wave function in Eq. (3).
The square of the unperturbed wave function at
the origin changes by δvp = 2δφvac(0)/φB(0) =
0.48% due to vacuum polarization [16] and by
−0.85 % from the extended charge (see Table 1).
This result is model-independent and it agrees
with the prior numerical value implicit in Ref. [5].

In the derivation of the correction factors, we
nowhere used that these quantities should be real.
We can therefore take the energy shift to be com-
plex, ǫ1s − iΓ1s/2, with a hadronic complex scat-
tering length ah

r + iah
i . The complex energy shift

is related to the corresponding correction factors
by a(1 + δ) → ar(1 + δr) + iai(1 + δi), as in
Eq. (3). The imaginary part corresponds to ab-
sorptive phenomena. In the notation of Eq. (18):

δ1s,i = −2
〈r〉em

rB
+ 4

ah
r

rB

(

2 − γ −
〈

log
2r

rB

〉

em

)

+ 2mα

〈

1

r

〉

em

bhi
ah

i

≡ δ〈r〉 + 2δc + δg
i . (19)

Here the imaginary amplitudes ah
i and bhi refer to

any absorptive channel such as the π−p charge

exchange scattering. Note the additional factor 2
in the middle term as compared to that for the
real case in Eq. (18). Since ai << |ar|, the change
in δ1s,r due to absorption is negligible.

We conclude that most of the corrections to the
width are due to the change of the wave function
at origin: it is important to use wave functions
corresponding to the finite size and vacuum po-
larization potentials. In addition, the non-linear
renormalization term must also be included, but
only the real part of the scattering length is rel-
evant. To these should be added the amplitude
change due to the gauge term in analogy to the
case for the energy shift.
Coupled channels

The π−p atom is a coupled system of the con-
tinuum πon and γn channels in addition to the
π−p one. These three channels are denoted by
indices i (j) = c, o, f , respectively. The low-
energy expansion in multiple channel systems is
defined in terms of energy dependent (symmetric)
K-matrices which enter the standing wave solu-
tions. The formalism is described briefly below
and it is illustrated for the 2-channel situation.
The single channel becomes a special case. The
standing waves at distances larger than the charge
radius r > R are defined as [17]

ui
j = ui

rδi,j +Kc
i,ju

j
s, (20)

where Kc
i,j are the ”Coulomb-corrected” K-

matrix elements. The wave functions uc
r and uc

s

are defined in terms of the standard regular and
singular Coulomb functions F and G, respectively
(see e.g. Refs. [6,17]). In the limit α → 0 and q
fixed, these solutions correspond to sin(qr)/q and
cos(qr)/q, respectively. Furthermore

uc
r =

F (r)

C(η)q
→

r→∞

sin(ϕ)

C(η)q
; (21)

uc
s = G(r)C(η) − 2ηh(η)

F (r)

C(η)

→
r→∞

C(η) cos(ϕ) − 2ηh(η) sin(ϕ)

C(η)
, (22)

where η = zz′αm/q and qη = −κB. In
these equations the digamma function ψ(x) de-
fines h(η) = [ψ(iη) + ψ(−iη)]/2 − log(η2)/2 and
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C2(η) = 2πη/[exp(2πη) − 1] is the standard pen-
etration factor. At large distances the phase
ϕ = qr − η log(2qr) + σ, where σ is the Coulomb
phase shift.

From the K-matrix one obtains the scattering
amplitude T by regrouping the standing waves
into the regular and outgoing waves. With Cc =
C(η) and Co = Cf = 1, one has

T c
i,j = Ci

[

−(Kc)−1 + f
]−1

i,j
Cj . (23)

In this equation we use a diagonal matrix with
fc,c = 2ηqch(η) + iqcC

2(η) and f0,0 = iq0.
In the single channel case, the textbook relation

of Kc to the scattering amplitude T is [15]

T c = C2(η)

[

− 1

Kc
+ 2ηqh(η) + iqC2(η)

]−1

≡ −[q cot(δ) − iq]−1. (24)

The atomic level shift is obtained from the ”well
known” formula.

C2(η)q cot(δ) + 2ηqh(η) =
1

Kc
(25)

and the bound state condition cot(δ) = i. As
found by Trueman [3]

ǫ1s = − 4π

2m
φ2

B(0)ac

[

1 +
ac

rB
(2 + 2γ)

]

, (26)

where ac is given by the Coulomb K-matrix at
threshold. Its relation to the hadronic scattering
length of the present model is

ac = ah

[

1− 2R

rB
+ah∆G

]

+
2mα

R
bh; (27)

∆G =
2

rB

[

1 − 2γ − log

(

2R

rB

)]

. (28)

XXX This relation leads to the correction given
by Eq. (16).

In the 2-channel case with (i, j) = (c, o), the
leading order in the level shift follows by the re-
placement of ac by the threshold amplitude in
the charged channel Ac

c,c, which is obtained from
Eq. (23). Including terms to order q2o

Ac
c,c = Kc

c,c + iqo(K
c
c,o)

2 − q2oK
c
o,o(K

c
c,o)

2. (29)

At the charged threshold the phase space left in
the open neutral channel is described by the mo-
mentum qo. Eq. (26) should now be used with a
complex Ac

c,c:

ǫ1s − iΓ1s/2 =

− 4π

2m
φ2

B(0)Ac
c,c

[

1 +
Ac

c,c

rB
(2 + 2γ)

]

. (30)

In the zero range limit, the hadronic interaction
in the charged channel occurs at a momentum
q2c = 2mα/R, while that in the neutral channel
still occurs at the momentum qo, since the atomic
binding energy is negligible. The K-matrix el-
ements are energy dependent with a low-energy
expansion is analogous to that of Eq. (5).

Kc,c = ah
c,c + bhc,c

2mα

R
, (31)

Kc,o = ah
c,o +

1

2
(q2c + q2o) bhc,o, (32)

Ko,o = ah
o,o + q20b

h
o,o. (33)

We assume isospin invariance for the range pa-
rameters bhc,c and bhc,o since they only appear in
correction terms. In the internal region r < R
the standing waves are

ui
j ∝ sin(qir)δi,j +Ki,j cos(qjr). (34)

The continuity of the wave function matrix û and
its logarithmic derivative û−1dû/dr at the radius
of the charged shell R gives:

Kc
c,c = Kc,c

[

1 − 2R

rB
+Kc,c ∆G

]

; (35)

Kc
c,o = Kc,o

[

1 − R

rB
+Kc,c ∆G

]

; (36)

Kc
o,o = Ko,o +Ko,c ∆GKc,o. (37)

These corrections are implicit in the single chan-
nel equations (10) and (16).

The extension to the (γ, n) channel is ob-
tained with the substitution Kc

i,j → Kc
i,j +

(iqfK
c
i,fK

c
f,j)/(1 − iqfK

c
f,f) to every matrix el-

ement of the two channel system. The higher
order terms in the neutral and photon channels
Kc

o,o and Kc
f,f are negligible such that

Ac
c,c ≈ Kc

c,c + iqo(K
c
c,o)

2 + iqf (Kc
c,f)2. (38)
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The corrections (35) to (38) can be introduced
into the Trueman formula (30) in order to express
it in the form of Eq. (3).

The result for an arbitrary charge distribution
follows in complete analogy to the single channel
case discussed in Eq. (17) and following. with
the substitutions R → 〈r〉em etc.. The corrective
terms are given by Eq. (18) with the only change
that now ah = ah

c,c and bh = bhc,c. The effects
from neutral channels are negligible.

The total level width Γ1s has two components
of comparable magnitude corresponding to the
decay via the charge exchange and radiative chan-
nel, respectively:

Γ1s = Γπ0n
1s + Γγn

1s . (39)

They can be physically separated using the Panof-
sky ratio P = 1.546(9) [18]. Of special interest
in the present context is the hadronic charge ex-
change channel. Here the ratio bhi /a

h
i of Eq. (19)

is bhco/a
h
co, since the charge exchange width de-

pends quadratically on the amplitude (32) and

Γπ0n
1s =

Γ1s

1+P−1
=

4π

m
φ2

B(0)qo
[

ah
c,o (1+δΓ)

]2
. (40)

Here δΓ is the counterpart of δ1s,i/2 of Eq. (19):

δΓ ≡ 1

2
δ<r> + δc +

1

2
(q2c + q2o)

bhc,o

ah
c,o

+
1

2
δvp. (41)

We have corrected the charge exchange amplitude
ah

c,o in Eq. (40) not only for the effective interac-
tion energy in the charged channel (gauge term),
but also for the non-atomic π0 energy in the open
charge exchange channel (32). This is justified,
since this correction can be ’tuned’ externally, for
example by binding the proton into a potential.
It is thus of a different nature than the non-trivial
corrections for the mass splittings.

3. Numerical results

We now apply these results to the π−p atom.
We assume for the moment that the correction
for the finite range of hadronic interaction only
enters via the range parameter b. Isospin in-
variance is assumed for hadronic scattering pa-
rameters appearing in correction terms. The

e.m. expectation values appearing in Eq. (18)
follow from the folded (π−, p) charge distribu-
tions corresponding to the observed form fac-
tors [19]: 〈r〉em = 0.95(1) fm; 〈1/r〉em =
1.48(1) fm−1; 〈log(mr)〉em = −0.687(9) with
VC(0) = 〈α/r〉em = 2.13(2) MeV. We use the em-
pirical values for the range terms bπ−p = bπ+n =
−0.031(9) m−3

π ; bπ−n = bπ+p = −0.058(9) m−3
π

or b+ = −0.0044(7) m−3
π ; b− = −0.0013(6) m−3

π

from πN scattering data [20].
The correction terms are given in Table 1.

For the π−p energy shift they are obtained from
Eq. (18) by a two step iteration and do not require
the knowledge of aπ−p. The width corrections,
calculated from Eqs. (40) and (41), require that
one knows the sign of ah

c,o. We also give the cor-
rections for the π+p Coulomb scattering length
ac [15], which is similar to the π−p case, but
for appropriate sign changes in parameters. The
aπ+p correction terms follow from our determina-
tion of ah

c,c and ah
c,o assuming them to be isospin

invariant. The physical π±n scattering lengths
have Coulomb corrections of less than 0.1% and
can safely be identified with the hadronic ones at
the present level of precision.

There is little uncertainty in any of the correc-
tions within our assumptions. It comes mostly
from the experimental value of the range term
bπ−p = b+ + b−. Here the b− part contributes
50% to the error of the energy shift and nearly
all to that of the width. From a purely phe-
nomenological standpoint its theoretical origin is
irrelevant. However, to leading order it is sim-
ply generated by the energy dependence of the
Weinberg-Tomozawa amplitude on the one hand
and by the nucleon Born term of opposite sign on
the other one (Eqs. (44-46) in Ref. [21]), consis-
tent with the experimental value. In the case of
δΓ, the non-atomic correction in Eq. (40) for the
neutral pion energy is responsible for 60% of the
’gauge term’.

The low-energy expansion for the K-matrix de-
pends symmetrically on the initial and final mo-
menta as (q2i + q2j )/2. For the terms propor-
tional to b− this is explicitly the case in the non-
relativistic limit when the initial and final pion
are separately on the mass shell [21]. The sit-
uation is similar for the isoscalar effective range
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Table 1
Coulomb corrections in percent as described in the text. δvp is included in δ1s and δπ+p→π+p.

Extended charge Renormalization Gauge term Vacuum polarization Total

δ1s −0.853(8) 0.701(4) −0.95(29) 0.48 −0.62(29)

δΓ −0.427(4) 0.701(4) 0.50(23) 0.24 1.02(23)

δπ+p→π+p 0.853(8) 0.72(5) −1.71(29) 0.48 0.35(29)

term b+. The dominant contribution is in this
case proportional to the scalar form factor σ(t)
(see, e.g, Eq. (10.1) and following in Ref. [22]).
The corresponding nucleon Born terms have the
same structure.

We have therefore a good quantitative picture
of the precision to which the hadronic scatter-
ing length can be extracted from the strong en-
ergy shift in the limit of a short ranged energy
dependent hadronic interaction. To fully exploit
the present experimental information content, the
theoretical corrections must controlled at least to
0.5%. This has been achieved even using the er-
rors of the phenomenological parameters. The
true theoretical precision in our approach is far
higher. The model with a spherical shell charge
distribution suggests that the results are robust
with small modifications as long as the interac-
tion range is inside a characteristic charge scale.

The correction terms of Table 1 applied to the
experimental value of the pionic atom energy shift
and width of Eq. (1) give the following hadronic
scattering lengths

ah
π−p = ah

c,c = 0.0870(5) m−1
π ; (42)

ah
π−p→π0n = ah

c,o = −0.125(4) m−1
π . (43)

Here the masses are the physical ones and the
π0n and γn decay channels are open. The re-
sult (42) is 1.5% smaller and outside the quoted
uncertainty of the value 0.0883(8) deduced in
Ref. [1] which is based on the Sigg analysis [5]. We
have made no correction in Eq. (42) for the e. m.
terms outside our Coulomb potential approach, in
particular for the effect of the γn and the γ∆ in-
termediate states in the direct and crossed chan-
nels. This will be discussed in the next section.
Our value (43) for ah

π−p→π0n differs by 2.4% from

that deduced in Ref. [1].
The scattering length ah

π−p can be analyzed

jointly with the π−D scattering length to give an
isovector scattering length (aπ−p − aπ−n)/2. We
follow the procedure of Ref. [4] with two minor
additions. First, the triple scattering term in the
multiple scattering was only partly included. The
full triple scattering term according to Refs. [23,
24] represents a contribution of +0.0027 m−1

π [24]
to the theoretical π−D scattering length in
Ref. [4] in the limit of point interactions. Fol-
lowing the procedure in Ref. [4] we reduce the
overall factor < 1/r2 >D= 0.314 (25) fm−2 in
the triple scattering term by a form factor to
give < f(r)2/r2 >D= 0.238 (24) fm−2. The the-
oretical π−D scattering length in Ref. [4] should
therefore be increased by +0.0019 (2) m−1

π . Sec-
ond, the Fermi motion (’boost’) correction now
includes not only the dominant contribution from
p-wave πN scattering, but also a smaller one from
the energy dependence of s-wave isoscalar ampli-
tude at threshold as first found in a chiral ap-
proach [23]. In fact, a more accurate descrip-
tion of this correction term is obtained using the
momentum expansion of the forward scattering
amplitude near threshold [25]. The p-wave co-
efficient c0 in Ref. [4], Eq. (14), should then be
replaced by b+ + c0 with b+ = (bπ−p + bπ−n)/2.
The Fermi motion correction to the π−D scat-
tering length changes then from 0.0061 (7) m−1

π

to 0.0047 (6) m−1
π . The net contribution of these

two changes to the determination of the isovector
scattering length is only about 0.2% of its nu-
merical value. This is small in comparison to the
systematic theoretical uncertainty quoted in Ta-
ble IV of Ref. [4]. The individual contributions of
both changes are also within this uncertainty.

Using aπ−p from Eq. (42) in conjunction with
the procedure of Ref. [4] Eq.(B8), including the
corrections just described leads to the improved
isovector combination value (aπ−n − aπ−p)/

√
2 =
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−0.125 (1)m−1
π . It can therefore be directly com-

pared to the corresponding value −0.125 (4) m−1
π

deduced in Eq. (43) from the charge exchange

width Γπ0n
1s . Note that when the deuteron data

are used to extract the isovector scattering length,
the further e. m. contributions cancel in the limit
of charge symmetry [4]. Such is the situation
for the leading dispersive contributions from pro-
cesses such as the γN(γ∆) channels and their
crossed terms. Thus, there is no indication of
isospin violation in the isovector amplitude at the
present level of precision.

4. Comparison to previous approaches

In previous analytical approaches using wave
functions little attention was given to the effect
of the electromagnetic finite size effects and to
the issue of the correct energy of the interaction.
In a recent discussion, the Coulomb interaction
is cut off entirely at the range of the strong in-
teraction [8]. Several authors starting from True-
man [3,8] consider the influence of a threshold
expansion for the hadronic amplitude. However,
they incorrectly identify the momentum qc with
the Bohr momentum, which leads to a very small
correction of order α2. The correction to the scat-
tering length proportional to (ac)2 is obtained to
leading order α logα, but these previous treat-
ments give incorrectly such terms of order α. The
numerical consequences of this difference is small.

As discussed in the introduction, the numeri-
cal approach using coupled channels [5] correctly
includes the effect of the finite size and vacuum
polarization in the wave function correction as
well as the renormalization term. It is, however,
inconsistent with the low-energy expansion. In
addition, it makes model dependent corrections
for isospin violation and radiative decay effects
(see also comments in Refs. [9,10]). The numeri-
cal result for a single channel does not have these
problems. It agrees with our explicit result using
the same input parameters.

In Refs. [9,10], the energy shift ǫ1s is related to
the scattering length in pure QCD. The calcula-
tions are performed perturbatively to the same
order in α as here in the framework of an ef-
fective quantum field theory. The correction to

Eq. (3) with this scattering length is obtained us-
ing an expansion in in powers of α and of the
quark masses (m̄d, m̄u). The leading and next-to-
leading order terms can be given in closed form
in terms of πN scattering lengths [9]. The higher
order contributions have been evaluated in the
framework of ChPT in Refs. [9,10]. Since our
approach is phenomenological and uses the phys-
ical masses, the e. m. EFT corrections for mass
splittings are implicitly included in our scattering
length. One cannot therefore match the expan-
sions in detail to each other. In spite of that it is
possible to make some observations. First, the
next-to-leading order non-analytic term α logα
proportional to (ah)2 (our renormalization term)
results quantitatively also in the EFT approach
as in all previous potential approaches. This is
natural, since it describes long-range physics. In-
side our model, the charge distribution acts as a
regulator and leads quantitatively to additional
terms of order α.

As discussed at the end of the previous section,
our Coulomb scattering length Ac

c,c in Eq. (29)
contains additional non-potential e. m. contri-
butions, which are an integral part of our phe-
nomenological scattering length. Such contribu-
tions have been calculated in a chiral quark model
with quark wave functions [26]; the authors ob-
tain expressions for the EFT empirical constants
f1,2,3 in an approximation corresponding to γN
and γ∆ appearing in intermediate states. The
lack of knowledge of f1 is the largest uncertainty
quoted in the EFT approach (±2.9%) [9,10]. The
authors of Ref. [26] find that the constant f1 in
their picture is to 95% associated with the ax-
ial baryon form factor. The corresponding direct
and crossed contribution with γn as the interme-
diate state has recently been calculated using soft
pion techniques in the heavy baryon limit, which
gives a 3.4(7)% attractive contribution [27]. Such
attraction is also found in the chiral quark model
of Ref. [26]. This follows generically from the pre-
dominance of intermediate states of energy higher
than the threshold one. In Ref. [27] the leading
term has the symmetry structure corresponding
to that associated with the ChPT parameter f1.
The next order term proportional to mπ logmπ

has the same coefficient as in the corresponding
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term δT em
3 of Ref. [10], which indicates an equiv-

alent physical expansion.
The main difference of our approach to the

e. m. corrections of the EFT approach [9,10]
is the wave function and energy shift corrections
which are linear, respectively inverse, in the e. m.
charge radius. In spite of their ready intuitive in-
terpretation, we have been unable to identify ex-
plicit counterparts in the EFT approach in which
only even powers

〈

r2n
〉

em
appear, contrary to our

result with a leading linear power. This difference
occurs already at the non-relativistic level [28]. It
is due to a different handling of the e. m. charge
form factor, which is seen clearly in a configura-
tion space representation. We modify the short
range part of the Coulomb potential by the form
factor and iterate its effect on the strong inter-
action. To present order in the expansion the
authors of Refs. [9,10] consider the effect of the
form factor to be equivalent to an additional short
range effective Lagrangian term proportional to
〈

r2em

〉

; the electromagnetic Lagrangian is other-
wise taken to be independent of the form factor.
This generates an e. m. contribution afs to the
scattering length independent of the strong scat-
tering, which is identical to our result to this or-
der. However, the term in question is generated
only by the fact that the charge distribution has
a range. Contrary to the corresponding situation
for a hadronic scattering length one cannot keep
afs (see Eq. (9)) unchanged in a strict zero range
limit, since it would vanish. In addition, the Bohr
wave function varies linearly with r near the ori-
gin, contrary to the quadratic dependence for reg-
ular potentials. Both effects make it delicate to
iterate a finite range e. m. interaction using an
equivalent zero range Lagrangian. We conjecture
that this difference is only technical. The EFT
approach should generate our terms in higher or-
ders, since form factors are obtained using such
descriptions.

The π−p scattering length is the dominant con-
tribution in the direct determination of the πNN
coupling constant g2

c/(4π) via the GMO sum-rule
as given in Eq. (4) of Ref. [4]. Our result (42) for
the scattering length, together with the reanal-
ysis of the π−D scattering length as described
above, allows an improved evaluation with a new

value for g2
c/(4π) = 14.04 (17), as compared to

14.11 (19) found in Ref. [4]. As discussed above,
non-potential terms from the γN (γ∆) channel
contribute both to ah

π−p and ah
π−d, but cancel to

leading order in mπ in the combination required
for the determination [4]. Additional contribu-
tions are within the systematic uncertainties.

5. Conclusions

The aim of the present paper was to extract
the phenomenological threshold scattering ampli-
tude to high precision and model independently
from the corresponding strong interaction energy
shift and width in a hadronic atom such as the
π−p atom. Our scattering length is differently
defined with respect to the QCD one used in
Refs. [9,10] as discussed above. We reach our goal
within a non-relativistic picture by the following
key observation. The Coulomb potential of the
extended charge distribution is perfectly regular
at short distances and it is useful to consider it
to be an externally applied binding potential in
addition to the hadronic interaction. This allows
us to solve the problem exactly for a model with
respect to which perturbations can be applied. In
this situation the hadron masses are the physical
ones and the extracted hadron amplitude does
not assume isospin invariance. The regularizing
effect of the extended charge is an essential fea-
ture for the understanding of the correction terms
to the Deser-Trueman relation (3). It has pre-
viously been included only in a numerical study
using potentials [5].

We show then that an accurate relation can
only be achieved if three physical effects are prop-
erly included. First, the relevant wave function at
the origin is not the Bohr one, but should corre-
spond to an extended charge distribution includ-
ing vacuum polarization. The extended charge
distribution is at present important beyond the
purely e. m. energy shift it produces in the atom.
Second, the correct long-range behavior of the
wave function induces a characteristic change of
the wave function near the origin. The result
of this feed-back is a quadratic correction to the
scattering length proportional to αm (ah)2 logα
to leading order. The leading term is known from
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many investigations. Here we obtain a more ac-
curate result including the terms of order α with
little sensitivity to the model used. Thirdly, the
low-energy expansion of the scattering amplitude
leads to a characteristic ’gauge’ correction which
expresses that the scattering occurs at an energy
typical of that of the extended charge Coulomb
potential close to the origin [4,12]. This effect
is as important as the other corrections. There-
fore, approaches which do not respect the empiri-
cal low-energy expansion cannot extract accurate
values for scattering lengths from atomic data.

The present investigation assumes that the
charge distribution produces a Coulomb poten-
tial that varies little over the range of the strong
interaction. The results of our model in Eq. (10)
and following suggest that the results are nearly
unchanged as long as the hadronic range is within
that of the scale set by the charge distribution.
Although we have not yet investigated these as-
pects, the results appear to be robust with com-
pensations between contributions [25]. The sign
and magnitude of these corrections are unlikely
to change. Our considerations also apply to other
hadronic systems, in particular to the π+π− atom
as will be discussed in a more detailed version [25].
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