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ABSTRACT

Each approach to the quantum-gravity problem originates from expertise in one or another area
of theoretical physics. The particle-physics perspective encourages one to attempt to reproduce in
quantum gravity as much as possible of the successes of the Standard Model of particle physics, and
therefore, as done in String Theory, the core features of quantum gravity are described in terms of
graviton-like exchange in a background classical spacetime. From the general-relativity perspective
it is natural to renounce to any reference to a background spacetime, and to describe spacetime in a
way that takes into account the in-principle limitations of measurements. The Loop Quantum Gravity
approach and the approaches based on noncommutative geometry originate from this general-relativity
perspective. The condensed-matter perspective, which has been adopted in a few recent quantum-
gravity proposals, naturally leads to scenarios in which some familiar properties of spacetime are
only emergent, just like, for example, some emergent collective degrees of freedom are relevant to the
description of certain physical systems only near a critical point. Both from the general-relativity
perspective and from the condensed-matter perspective it is natural to explore the possibility that
quantum gravity might have significant implications for the fate of Lorentz symmetry in the Planckian
regime. From the particle-physics perspective there is instead no obvious reason to renounce to exact
Lorentz symmetry, although (“spontaneous”) Lorentz symmetry breaking is of course possible. A fast-
growing phenomenological programme looking for Planck-scale departures from Lorentz symmetry can
contribute to this ongoing debate.

1Based on invited seminars given at Perspectives on Quantum Gravity: a tribute to John Stachel
(Boston, March 6-7, 2003) and Tenth Marcel Grossmann Meeting on General Relativity (Rio de
Janeiro, July 20-26, 2003).
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1 Preliminaries

1.1 Lorentz symmetry and the three perspectives on the Quan-
tum Gravity problem

Each quantum-gravity research line can be connected with one of three perspectives
on the problem: the particle-physics perspective, the general-relativity perspective and
the condensed-matter perspective.

From a particle-physics perspective it is natural to attempt to reproduce as much
as possible the successes of the Standard Model of particle physics. One is tempted to
see gravity simply as one more gauge interaction. Among the quantum-gravity open
issues the failure of perturbative renormalization in naive quantum-gravity is perceived
as most significant. From this particle-physics perspective a natural solution of the
quantum gravity problem would be String-Theory-like: a quantum gravity whose core
features are essentially described in terms of graviton-like exchange in a background
classical spacetime.

The general-relativity perspective naturally leads to reject the use of a background
spacetime, and this is widely acknowledged [1, 2]. Although less publicized, there is
also growing awareness of the fact that the development of general relativity relied
heavily on the careful consideration of the in-principle limitations that measurement
procedures can encounter. Think for example of the limitations that the speed-of-light
limit imposes on certain setups for clock synchronization and of the contexts in which
it is impossible to distinguish between a constant acceleration and the presence of a
gravitational field. In light of the various arguments (some briefly reviewed later in
these notes) suggesting that, whenever both quantum mechanics and general relativity
are taken into account, there should be an in-principle limitation to the localization of
a spacetime point (an event), the general-relativity perspective invites one to renounce
to any direct reference to a classical spacetime [3, 4, 5, 6, 7]. Indeed this requirement
that spacetime be described as fundamentally nonclassical (“fundamentally quantum”),
that the in-principle measurability limitations be reflected by the adoption of a corre-
sponding measurability-limited description of spacetime, is another element of intuition
which is guiding quantum-gravity research from the general-relativity perspective. This
naturally leads us to consider certain types of discretized spacetimes, as in the Loop
Quantum Gravity approach, or noncommutative spacetimes. Loop Quantum Gravity
is also a background-independent approach and therefore combines both elements of
the general-relativity perspectivea. Noncommutative spacetimes could be introduced
in a background-independent way, as in preliminary attempts reported in Ref. [3] and
follow-up work, but in most studies, for simplicity, noncommutative spacetimes are
adopted as background spacetimes [8, 9, 10, 11, 12] (leading to an approach which in a
sense can be seen as originating from a hybrid of the particle-physics perspective and
the general-relativity perspective).

The third possibility is a condensed-matter perspective (see, e.g., the research pro-
grams of Refs. [13] and [14]) on the quantum-gravity problem, in which some of the

aAlthough it must be noted that this is actually achieved, so far, at the price of some possibly
concerning compromises. For example, as stressed by John Stachel and others, one could be concerned
of the fact that most of the Loop-Quantum-Gravity results are obtained preserving only 3D (space)
diffeomorphisms.
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familiar properties of spacetime are only emergent. Condensed-matter theorists are
used to describe some of the degrees of freedom that are measured in the laboratory as
collective excitations within a theoretical framework whose primary description is given
in terms of much different, and often practically unaccessible, fundamental degrees of
freedom. Close to a critical point some symmetries arise for the collective-excitations
theory, which do not carry the significance of fundamental symmetries, and are in fact
lost as soon as the theory is probed somewhat away from the critical point. Notably,
some familiar systems are known to exhibit special-relativistic invariance in certain
limits, even though, at a more fundamental level, they are described in terms of a non-
relativistic theory. For a rather general class of fermionic systems one finds [13] that at
low energies, as a Fermi point is approached, fermions gradually become chiral Weyl
fermions, while bosonic collective modes of the vacuum transform into gauge fields and
gravity.

Clearly from the (relatively new) condensed-matter perspective on the quantum-
gravity problem it is natural to see the familiar classical continuous Lorentz symmetry
only as an approximate (emergent) symmetry. Results obtained over the last few
years (which are partly reviewed later in these notes) allow us to formulate a similar
expectation from the general-relativity perspective. Loop quantum gravity and other
discretized-spacetime quantum-gravity approaches appear to require some departures,
governed by the Planck scale, from the familiar (continuous) Lorentz symmetry. And
in the study of noncommutative spacetimes some Planck-scale departures from Lorentz
symmetry might be inevitable, since (at least in a large majority of noncommutative
spacetimes) a Lie algebra is not even the appropriate language for the description of
the symmetries of a noncommutative spacetime (one must resort to the richer structure
of Hopf algebras).

From the particle-physics perspective there is instead no obvious reason to renounce
to exact Lorentz symmetry. Minkowski classical spacetime is an admissible background
spacetime, and in classical Minkowski there cannot be any a priori obstruction for
classical Lorentz symmetry. Still, a breakup of Lorentz symmetry, in the sense of
spontaneous symmetry breaking, is of course possible. This possibility has been studied
extensively [10, 15] over the last few years, particularly in String Theory, which is
the most mature quantum-gravity approach that emerged from the particle-physics
perspective.

1.2 What do we know about quantum-gravity?

The theory debate clearly is a confrontation between very different perspectives on
the quantum-gravity problem. If we had any robust information on quantum gravity
certainly at least some of these ideas would have been proven to fail. But after more
than 70 years [16] of work on the “quantum-gravity problem” there is still not a single
measured number whose interpretation requires advocating “quantum gravity”.

I have so far mentioned the quantum-gravity problem as if it was a well-established
and familiar concept, but it is perhaps useful to give here an intuitive characterization
of this problem. The quantum-gravity problem is sometimes described as a sort of
“human discomfort”, as a problem pertaining to the achievement of a more satisfactory
philosophical worldview. For example, as motivation for research in quantum gravity
it is sometimes stated that “quantum theory” (in an appropriate generalized sense)
has turned out to be relevant for the description of measurement results in all other
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branches of fundamental physics, and we therefore must assume that it will eventually
be relevant also for spacetime/gravity physics. Analogously (and amounting to the
same thing), it is sometimes stated that it is unsatisfactory to have on one side our
present unified quantum-field-theory description of electromagnetic, weak and strong
forces and on the other side gravity which is still described in a very different way. These
“human discomforts” do not of course define a scientific problem, but actually there is,
as emphasized by some, a well-defined scientific problem which can be naturally called
“quantum-gravity problem”.

The scientific problem that can be reasonably called “quantum-gravity problem”
is actually the problem of producing numbers (predictions), in a logically-consistent
way, for situations in which both gravity effects and particle-physics quantum-field-
theory effects cannot be neglected. For example, although we are presently (and for
the foreseeable future) unable to set up and observe collisions between two electrons
each with energy of, say, 1050eV , our present theories provide no obstruction for the
analysis of such high-energy collisions, but are unable to produce a logically consistent
number for, say, the probability that such a collision would result in two muons with
certain energies and momenta. The problem, as I shall try to point out later in these
notes, resides in the fact that quantum field theory implicitly assumes that gravity
effects can be neglected. When the gravity effects are so large that (from the field-
theory perspective) space geometry evolves significantly on very short time scales, field
theory cannot be consistently appliedb. Similarly, field theory runs into trouble when
gravity effects are strong enough to admit the emergence of spacetime singularities (e.g.
black holes). We are able to get “numbers” out of quantum field theory in contexts in
which there is a curved static (or slowly varying) nonsingular space, but fast-varying
and/or singular space geometries are untreatable.

One might argue that 1050eV electrons should be the least of our concerns, since we
are never going to be able to produce and/or observe them, but first of all in cosmology
there are some numbers we should produce that depend on very early times after the
big bang (where we have reason to believe that particles with extremely high energies
were abundant), and, secondly, the fact that our theories fail to produce numbers in
some contexts which those same theories describe as accessible (in principle) makes us
concerned in general about the robustness of these theories. Since we know that new
elements would have to be introduced in our theories for the description of collisions
between 1050eV electrons (or for a justification of an in-principle exclusion of such
collisions from the list of processes that can occur in Nature), it is natural then to
wonder whether those new elements can affect also some of the contexts in which our
present theories do provide us an apparently acceptable prediction. In some cases the
issues we encounter in analyzing, say, collisions among 1050eV electrons might bring
to the surface some issues that could also modify more ordinary (but still untested)
predictions produced by our theories.

bHere the reader should keep in mind that general relativity governs self-consistently the spacetime
dynamics in terms of (and together with) the particle dynamics, but particle dynamics is only defined
asymptotically, in the S-matrix sense, in quantum field theory. During a collision process the, say,
electrons involved are not following any trajectories. We can associate to them some (however fuzzy)
trajectories only asymptotically, much before and much after the collision. If one tries to apply general
relativity to the formally-classical trajectories that appear in the path integral formulation of quantum
mechanics, the problem becomes anyway ill defined (and affected by unremovable divergences) if the
energies of the particles are high enough to induce significant geometrodynamics.
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There is a very natural explanation for our lack of insight on this quantum-gravity
problem. One of the few (perhaps the only) robust hint we have about quantum gravity
is that the energy scale at which the particle-physics quantum-field-theory description
starts to appear inadequate is the Planck scale Ep ∼ 1028eV . For particles of those
energies and higher the fact that the Standard Model of particle physics ignores gravi-
tational effects is clearly unsatisfactory. And usually the scale that sets the break point
of an effective low-energy theory is also the scale that sets the magnitude of the new
effects to be expected going beyond the effective low-energy theory. It is therefore rea-
sonable to expectc that “quantum-gravity corrections” to our low-energy predictions
would be very small, with their magnitude set by some power of the ratio between the
Planck length (Lp ∼ 10−35m, which is the inverse the Planck scale Ep ∼ 1028eV ) and
the (much bigger) wavelength of the particles involved in the process. So we have good
reasons to suspect that the quantum-gravity effects would be very small (and actually
they must be typically small, since we have not managed to see them yet). Contem-
plating the horrifying smallness of the Planck length the quantum-gravity community
had reached the conviction (see, e.g., Ref. [18]) that experimental hints could never be
obtained. If this was true, if this expectation was really robust, there could not possibly
be a “quantum gravity” scientific programme. But, on the basis of results obtained
over the last 4 or 5 years, it is now clear that these pessimistic expectations were based
on incorrect premises: “quantum-gravity experiments” are possible. Of course, there is
no guarantee that they will ever lead to any actual discovery, but it is clearly incorrect
to adopt the a priori assumption that the search of the tiny Planck-scale effects should
be hopeless.

In order to look for quantum-gravity effects it is of course useful to have some
guidance from theories. While the long history of quantum-gravity research has not led
to experimental facts, it did produce theories that can valuable both for providing some
guidance to quantum-gravity experiments and for clarifying some technical difficulties
that are encountered in any theory that attempts to incorporate (as appropriate limits)
both general relativity and the quantum field theory that describes the Standard Model
of particle physics. Results obtained in String Theory provide encouragement for the
idea that a theory combining gravity and the Standard Model of particle physics could
admit a perturbative treatment (perturbative renormalizability), at least in certain
contexts in which it might be appropriate to make reference to a background spacetime.
Before these String-Theory results it appeared that “quantum gravity” should in all
cases be treated using (to-be-determined) nonperturbative techniques, with obvious
associated difficulties. Another example is provided by some results obtained in Loop
Quantum Gravity, which provide encouragement for the idea that a truly background-
spacetime-independent quantum theory can be constructed. Before this loop-quantum-
gravity studies it appeared that there would be a more profound conflict between the
background-spacetime independence of general relativity and the fact that quantum
field theory assumes from the start a background spacetime.

cLike all expectations not fully confirmed by experiments, also the apparently-robust expectation
that quantum-gravity effects be governed by the Planck scale should be challenged, and has been
challenged occasionally. In particular, the so-called “theories with large extra dimensions” [17] pro-
vide a scenario for an effective increase of the size of the characteristic quantum-gravity length scale
(decrease of the quantum-gravity energy scale). These scenarios are not necessarily “natural”, but
they do justify some prudence concerning the assumptions being made on the characteristic scale of
quantum-gravity effects.
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Unfortunately, loop quantum gravity is being constructed (so far, pending work
in progress), as a fundamentally nonperturbative theory, without access to the tools
of perturbative analysis which are so valuable in our efforts to “produce numbers”.
And equally unfortunate is the fact that for String Theory there is (so far) no gen-
uinely background-independent formulation. But perhaps these weaknesses should not
generate too much concern. For the phenomenological aspects of the line of analysis
advocated in these notes these two theories and other popular quantum-gravity ap-
proaches simply play the role of toy models. The objective being pursued is the one of
finding the first experimental fact (or even the first few experimental facts) about the
quantum-gravity problem. And we need some guidance. Where should we look? The
toy models can provide inspiration. Even if neither of them ended up providing the
full solution of the quantum-gravity problem, it is still rather plausible that they might
have managed to capture some genuine feature of the correct theory. Experiments
should tell us if this is the case.

1.3 Quantum Gravity Phenomenology

The most difficult aspect of the search of experimental hints relevant for the quantum-
gravity problem is the smallness of the effects that one would naturally expect to be
induced by a quantum gravity. A key point for this “Quantum Gravity Phenomenol-
ogy” [19] is that we actually are familiar with ways to gain sensitivity to very small
effects. For example, our understanding of brownian motion is based on the fact that
the collective result of a large number of tiny microscopic effects eventually leads to
observably large macroscopic effects. Similarly, our present very accurate bounds on
the possibility of a difference in the masses of the K0 and K̄0 neutral kaons (relevant for
studies of CPT symmetry) are at a level of precision (better than ∆mK < 10−18mK)
which can only be achieved thanks to the fact that some signatures associated with
a K0/K̄0 mass difference are actually amplified by a large ordinary-physics number
present in the relevant physical contexts (the ratio between the average mass of neu-
tral kaons and the difference in mass of the short-living and long-living neutral-kaon
weak-interactions eigenstates: mK ∼ 1015[mKL

−mKS
]).

Now that quantum-gravity phenomenology has grown into a research area involving
some twenty research groups around the world, it is amusing to compare quantum-
gravity reviews and grandunification reviews written in the early 1990s. The quantum-
gravity reviews considered physics characterized by the scale 1028eV and were claiming
that experiments could never set useful constraints, and simultaneously the grandunifi-
cation reviews went into detailed explanations of how certain grandunification pictures
were being rules out by data on proton stability. The prediction of proton decay within
certain grandunification theories (theories providing a unified description of electroweak
and strong particle-physics interactions) is really a small effect, suppressed by the fourth
power of the ratio between the mass of the proton and the grandunification scale, which
is only three orders of magnitude smaller than the Planck scale (Egut ∼ 1025eV ). In
spite of this horrifying suppression, of order [mproton/Egut]

4 ∼ 10−64, with a simple
idea we have managed to acquire a remarkable sensitivity to the possible new effect:
the proton lifetime predicted by grandunification theories is of order 1039s and “quite
a few” generations of physicists should invest their entire lifetimes staring at a single
proton before its decay, but by managing to keep under observation a large number
of protons (think for example of a situation in which 1033 protons are monitored) our
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sensitivity to proton decay is significantly increased. In that context the number of
protons is the (ordinary-physics) dimensionless quantity that works as “amplifier” of
the new-physics effect.

We should therefore focus our attention [19] on experiments which have something
to do with spacetime structure and that host an ordinary-physics dimensionless quan-
tity large enough that it could amplify the extremely small effects we are hoping to
discover. The amplifier can be the number of small effects contributing to the observed
signal (as in brownian motion and in proton-stability studies) or some other dimen-
sionless ordinary-physics number (as in studies of a possible difference in the masses
of the K0 and K̄0).

Using these general guidelines, a few quantum-gravity research lines have matured
over these past few years. Later in these notes I will focus on studies of the fate of
Lorentz symmetry in quantum spacetime, emphasizing the relevance for observations
of gamma rays in astrophysics [20, 21], the relevance for the analysis of the cosmic-
ray spectrum [22, 23, 24, 25, 26], and the relevance for certain observations involving
particle decays [27, 28].

Concerning laser-interferometric tests of Planck-scale effects I will only comment on
the ones [29] that are directly relevant for the study of the fate of Lorentz symmetry
in quantum spacetime. I will not discuss “spacetime foam” studies based on laser-
interferometry, on which there is a growing literature (see, e.g., Refs. [30, 31, 32]).

Similarly I will not discuss here matter-interferometric limits on Planck-scale ef-
fects and limits on Planck-scale effects obtained using the mentioned sensitivity to new
physics that one finds naturally in the neutral-kaon system. Matter interferometers
and the neutral-kaon system were among the first contexts to be considered from the
perspective of Planck-scale effects (see, e.g., Refs. [33, 34, 35, 36, 37, 38]), but in these
contexts there is not much discussion of possible implications of Planck-scale depar-
tures from Lorentz symmetry, and actually the connection with Planck-scale/quantum-
gravity physics remains rather indirectd. Both the analysis of matter interferometers
and of the neutral-kaon system appear to require a proper understanding of Planck-
scale-induced decoherence [36, 38, 39], something which we are still unable to perform
satisfactorily even in the simplest quantum spacetimes (such as the simplest noncom-
mutative spacetimes). One must therefore rely on general parametrizations, whose
connection with quantum-gravity theories is rather indirect. Similarly, the analysis of
the neutral-kaon system requires an understanding of the fate of CPT symmetry in
quantum spacetime, and this too is something which we are unable to do rigorously
even in the simplest quantum spacetimes [8, 40].

Finally, to give a tentative complete list of quantum-gravity-phenomenology topics
which I will not discuss, I should stress that I intend to focus here on the possibility
of a “genuinely quantum” spacetime. I will discuss (at least intuitively) the difference
between a quantum gravity with a classical spacetime (background) and a quantum
gravity with a genuinely quantum spacetime. Interesting ideas about the interplay
between gravity and quantum mechanics which do not require a genuinely quantum
spacetime can be found in Refs. [41, 42, 43, 44, 45, 46, 47, 48].

dThis is perhaps the reason why the early studies reported in Refs. [33, 34, 35, 36, 37, 38] did not
manage to generate the interest of a significant portion of the quantum-gravity community.
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1.4 A key issue: should we adopt a fundamentally quantum
spacetime?

As I already stressed it is rather obvious that from the particle-physics perspective
one would not expect any departures from Lorentz symmetry and on the contrary
from the condensed-matter perspective Lorentz symmetry is naturally seen only as an
approximate symmetry. It is instead less obvious what one should expect for the fate
of Lorentz symmetry in quantum-gravity approaches based on the general-relativity
perspective, and in fact some key insight (leading to the expectation that departures
from Lorentz symmetry are usually present) has been gained only very recently, mostly
in the study of loop quantum gravity and certain noncommutative spacetimes.

A key point that needs to be clarified when approaching the quantum-gravity prob-
lem from the general-relativity perspective is whether or not one should adopt a “gen-
uinely quantum” spacetime. This concept will not be defined rigorously here, but
combining various points and remarks in these notes the reader should get an intu-
itive picture of this concept. A genuinely quantum spacetime is essentially a spacetime
in which an event (a spacetime point) cannot be sharply localized. I will use Loop
Quantum Gravity (the present understanding of Loop Quantum Gravity) and certain
noncommutative spacetimes as examples of genuinely quantum spacetimes. In the
case in which one might be able to introduce coordinates for the event, in a quantum
spacetime it must be impossible to determine (in the sense of measurement) all of the
coordinates of an event.

I shall use the familiar relativistic quantum field theory as an example in which
spacetime is not fundamentally quantum. The position of a generic particle cannot
be sharply determined in relativistic quantum field theory, but it is possible to de-
termine sharply the position of a particle with infinite mass. This infinite-mass limit
gives operative meaning to the classical spacetime background in which we describe
relativistic quantum field theory. I shall argue that if it was not for this infinite-mass
limit, if there was any incompatibility between the infinite-mass limit and the logical
structure of relativistic quantum field theory, it would have been impossible to make
reference to a classical background spacetime. But there is no incompatibility between
the infinite-mass limit and the logical structure of relativistic quantum field theory, so
we do have a classical spacetime in that context.

I will stress that the infinite-mass limit is evidently troublesome once gravity is
taken into account, and I will argue, summarizing the evidence that emerged in several
studies, that a theory that truly admits both general relativity and quantum mechanics
as appropriate limits must renounce to any reference to a classical spacetime. Such a
theory is automatically incompatible with the possibility of localizing sharply a space-
time point.

This point is relevant for the fate of Lorentz symmetry in quantum gravity. I will
review results obtained over the last 3 or 4 years which suggest that, if spacetime is
“quantum” in the sense of noncommutativity or discreteness, the familiar (classical/Lie-
algebra, continuous) Lorentz symmetry naturally ends up being only an approximate
symmetry of the relevant “flat-spacetime limit” of quantum gravity.

1.5 Outline

These notes are composed of various sections and each section is (nearly) self-contained.
Only in rare cases there is a direct reference in a given section to a previous section,
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but through the combination of the points made in the different sections I am trying
to provide the different elements of a certain view of the quantum-gravity problem.

The next section is an aside on the hypothesis of a “genuinely quantum” spacetime.
I will argue that there should be an absolute limit on the localization of an event in
quantum gravity, and that this fact should invite us to renounce to any reference to a
non-physical classical spacetime.

In Section 3 I comment on how different approaches to the quantum-gravity problem
describe the fate of Lorentz symmetry in quantum gravity.

Section 4 focuses on the fate of Lorentz symmetry in discretized spacetimes, a topic
on which some insight can be gained on the basis of some rather general considerations,
even without the guidance of a specific quantum-gravity theory.

In Section 5 I review some recent proposals for testing scenarios for Planck-scale
departures from ordinary (classical, continuous) Lorentz symmetry.

Some closing remarks are in Section 6.

2 Aside on the hypothesis of a genuinely quantum

spacetime

2.1 Classical spacetime and localization

The concept of a classical spacetime is appropriate in physics (operatively meaningful)
when the theory of interest allows to localize sharply a spacetime point. This state-
ment is intended in the same sense that a classical concept of angular momentum is
only appropriate when the angular-momentum vector (all of its components) can be
sharply measured. In 19th century physics angular momentum was a classical concept.
In our modern theories we acknowledge the experimental fact that there are limita-
tions on the measurability of the angular-momentum vector (one cannot measure all
of its components simultaneously) and therefore we describe angular momentum us-
ing a nonclassical formalism (the one of noncommuting operators) which captures this
measurability limitations.

The consistency between the measurability limits established by the formalism and
the in-principle measurability limits that affect measurement procedures is a key re-
quirement for a physical theory. This important issue usually takes center stage in the
physics literature only when a major “scientific revolution” challenges our understand-
ing of the physical world. In the course of such a “revolution” it is natural to question
the logical consistency of the novel theoretical frameworks which are being proposed.
Once these logical-consistency issues have been settled, and substantial experimental
support for the new theory has been obtained, the focus shifts toward computational
matters: one is comfortable with the logical structure of the new theory and with the
fact that the new theory has some relevance for the description of Nature, and therefore
precise calculations and accurate experiments become the top priority. For example,
this natural sequence of steps for the development of new theories is easily recognized in
the development of the “relativity revolution” and of the “quantum-theory revolution”.

While the limited scope of these notes does not allow me to describe rigorously the
issues that are to be considered in measurability analysis (and its role in establishing
the logical consistency of a formalism), the interested reader can find a careful discus-
sion in the literature, especially the literature reporting the debate (among Einstein,
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Peierls, Bohr, Rosenfeld and others) on the measurability of the electromagnetic fields
in quantum electrodynamics (see Ref. [49] and references therein). At first these mea-
surability studies appeared to expose an in-principle limitation on the measurability
of electromagnetic fields, and this was of serious concern since a measurability limit
would have implied an inadequacy of quantum electrodynamics. Quantum electro-
dynamics makes direct reference to the electromagnetic fields and describes them as
sharply measurable (although the sharp measurement of a quantum field can only be
achieved at the cost of loosing all information on a conjugate field). Eventually, it was
clarified by Bohr and Rosenfeld [49] that there is no limitation on the measurability of
the electromagnetic fields, and this opened the way for the wide adoption of quantum
electrodynamics.

There are several other examples of the importance of these studies of in-principle
measurability limits, and of the necessity that the theoretical framework reproduces
faithfully the measurability limits. In understanding the replacement of absolute time
by a relative time a key role is played by the analysis of how an absolute maximum
velocity limits the synchronization of certain pairs of clocks. In combing quantum
mechanics with special relativity one must adopt quantum field theory, rather than
a relativistic version of quantum mechanics itself, because the position of a particle
of finite (i.e. non-infinite) mass cannot be sharply determined through a logically
consistent measurement procedure.

In “quantum gravity”, a theory that admits both quantum field theory and general
relativity as appropriate limits, is it legitimate to adopt a classical spacetime? or is it
instead necessary to adopt a nonclassical description of spacetime? I will argue that
spacetime is fundamentally nonclassical in quantum gravity. And I will argue that
adopting a classical spacetime for quantum gravity is problematic just in the same
sense that a naive relativistic formulation of quantum mechanics is problematic (and
needs to be replaced by quantum field theory). The relativistic formulation of quantum
mechanics can appear to make formal sense up to a certain point, but eventually one
discovers some inconsistencies (negative energy states...) and these inconsistencies are
easily traced back to the fact that quantum mechanics assumes that the position of
a particle can be sharply measured, whereas any procedure that combines the uncer-
tainty principle and special relativity cannot possibly provide a sharp measurement of
the particle position. I conjecture that analogously any quantum-gravity theory that
assumes a classical spacetime will eventually turn out to be inconsistent or incomplete,
because of the failure to provide a logically-consistent description of the measurability
limits (obtained by combining the uncertainty principle with general relativity) on the
localization of a spacetime point.

2.2 Spacetime in classical mechanics and in nonrelativistic

quantum mechanics

Of course, spacetime is classical in classical mechanics. This has a precise operative
meaning which I shall not discuss here, since the intuitive picture of a classical space-
time will suffice for the purposes of these notes.

Spacetime is also classical in nonrelativistic quantum mechanics. Quantum me-
chanics introduces an absolute limit on the (simultaneous) measurability of pairs of
conjugate observables, but each observable can still be sharply measured (at the cost
of loosing all information on a conjugate observable). Notably the space coordinates
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of a particle are independent observables (not conjugate to one another) so they can
all be measured sharply at once. Quantum mechanics indeed makes direct reference
to a classical background spacetime. This classical spacetime can be endowed with
proper operative meaning by imagining a dense array of pointlike synchronized clocks.
The clocks mark the time variable (really an external variable in quantum mechanics)
and the (sharply-measurable) position of the clocks give physical meaning to the space
coordinates.

I will argue that the concept of infinite-mass point particlese plays a crucial role in
spacetime measurability analysis in relativistic quantum field theory. Within nonrela-
tivistic quantum mechanics the role of infinite-mass point particles is more subtle, and
I am not even completely sure that such particles are necessary. Still an infinite-mass
limit might be hidden in the discussion of the dense array of pointlike synchronized
clocks, providing the reference frame. If the clocks had finite mass one should worry
about uncertainties in the time evolution of the reference frame, due to the fact that
position and velocity cannot be both sharp if the mass is finite. So it appears that the
classical spacetime background of nonrelativistic quantum mechanics acquires proper
operative meaning only in the limit of infinite mass of the particles that provide iden-
tity to the spacetime points. This is of course not troublesome since ordinary quantum
mechanics neglects gravitational effects, and therefore its logical consistency can rely
on the idealization of a physical reference frame constituted of infinitely massive point
particles.

2.3 Spacetime in relativistic quantum field theory

As discussed in the previous subection, the uncertainty principle coexists with Galileo
relativity (which describes the symmetries of nonrelativistic quantum mechanics) in
such a way that a physically meaningful classical spacetime can be introduced. The
formalism of quantum mechanics assumes and requires a classical spacetime since it
describes, in terms of the wave function, the probability that a particle be found at
time t in the (sharply-defined) space point (x, y, z).

There is no (special-)relativistic version of quantum mechanics because the inter-
play of the uncertainty principle and special relativity does not allow one to consider
the probability that a particle be found at time t in the (sharply-defined) space point
(x, y, z). At time t the particle can only be localized with an accuracy set by its Comp-
ton wavelength. This can be seen by considering a localization procedure as something
which ultimately must involve an interaction between a probe and the particle under
study. In order for the localization to achieve δx accuracy the probe must carry at
least energy 1/δx (so that the probe itself is confined to a region of size δx), but if this
energy 1/δx is higher than the mass of the particle being studied/measured additional
copies of the original particle could be produced (in a special-relativistic framework)
as a result of the measurement procedure. This is of course incompatible with the idea
of using the procedure for the measurement of the position of a given particle. The
position of a particle of mass m and small velocity/momentum cannot be measured

eOf course, in analyses aimed at defining operatively certain physical entities the concept of infinite-
mass particle can only be introduced in the sense of a limiting procedure. For example, in referring
to a dense array of infinite-mass synchronized clocks one is really thinking of a limiting procedure in
which heavier and heavier clocks are used.
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with better accuracy than δx ∼ 1/m. More generally the position of a particle of
energy E cannot be measured with better accuracy than δx ∼ 1/E.

The fact that the position of a particle with finite (non-infinite) mass cannot be
sharply determined imposes that instead of a relativistic quantum mechanics we resort
to (relativistic) quantum field theory. It is noteworthy that in quantum field theory
it is legitimate to make reference to a classical spacetime, and indeed quantum field
theory does make reference to a classical spacetime. In fact, quantum field theory
(which again ignores gravity) is perfectly compatible with the introduction of infinite-
mass point particles, and these can provide a classical spacetime (a classical reference
frame) exactly in the same sense already discussed above for nonrelativistic quantum
mechanics. For an infinite-mass particle the combination of the uncertainty principle
and special relativity does not introduce a limit on position measurement (the comp-
ton wavelength is 0). The (in-priciple) presence of a reference frame constituted of a
network of infinite-mass particles allows us to refer to a classical spacetime. In that
classical spacetime the positions of finite-mass particles cannot however be sharply
determined.

In summary, both ordinary (nonrelativistic) quantum mechanics and (relativistic)
quantum field theory do refer to a classical spacetime in a logically consistent way. At
least in quantum field theory (but, in the sense discussed in the preceding subsection,
also in nonrelativistic quantum mechanics) the classical spacetime can be operatively
described in terms of a limiting procedure in which spacetime points are marked by
point particles of larger and larger mass, with the sharp localization of a spacetime
point accessible as the infinite-mass limit of this procedure. It is therefore possible to
combine special relativity and the uncertainty principle while preserving a physically
meaningful classical spacetime.

This is no longer possible when gravity is present: combining general relativity and
quantum mechanics one finds that on the one hand sharp localization would still require
an infinite mass point particle, but on the other hand, since general relativity imposes
to treat mass as gravitational charge, the infinite-mass limit is evidently incompatible
with the localization measurement procedure.

2.4 Spacetime in quantum gravity: events marked by colli-
sions involving massless point particles or closed strings

The idea of an absolute limit on localization has a very long tradition in quantum-
gravity research [16]. Some representative studies of various realizations of this idea
can be found in Refs. [3, 4, 5, 6, 50, 51]. The simplest argument is found in Refs. [50,
51]. It can be summarized by viewing again a localization procedure as something
which ultimately must involve an interaction between a probe and the “target” particle
under study. Assuming that the probe is a massless particle (or a massive particle
in the relativistic regime, with velocity high enough to neglect the mass) one is led
straightforwardly to a limit on localization which is set by the Planck length Lp.

Again a key point is that in order for the localization procedure to achieve δx
accuracy the probe must carry at least energy 1/δx. However, taking now into account
gravity we see that it is necessary to require δx ≥ Lp. In fact, a source of localization
uncertainty comes from the uncertainties in the gravitational interaction between the
probe and the target. It suffices to consider these uncertainties in a small region, of size
ε, around the collision, i.e. the stage of the procedure when the probe and the target
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are at distances of order ε. And we consider ε ∼ δx since in order for the collision to
be localized with accuracy δx the probe and the target must eventually come to be at
least as close as δx. The gravitational energy stored in the system during this stage
of the collision, which lasts a time of order ε (since the probe is massless/relativistic),
is of orderf U ∼ L2

pME/ε, where M is the mass of the target particle and E is the
energy of the probe. As a result of the uncertainty in the probe’s energy, δE ∼ 1/δx,
this gravitational energy is also uncertain by an amount of order δU ∼ L2

pMδE/ε.
Consequently when the probe-target distance is of order ε the probe momentum is
uncertain by an amount δpγ ∼ L2

pMδE/ε and by momentum conservation also the
momentum of the target particle has the same uncertainty δpM ∼ L2

pMδE/ε. There
is therefore a time interval of order ε around the time of the collision in which the
velocity of the target particle is uncertain by an amount δvM ∼ L2

pδE/ε. One concludes
that the position of the collision cannot be established with better accuracy than
δx′ ∼ δvMε ∼ L2

pδE. This indeed leads to the conclusion δx ≥ Lp, since δE ∼ 1/δx.
Concerning the uncertainty in the time of the collision one easily finds (the probe is
relativistic) δt ∼ δx ≥ Lp. I also observe, in preparation for a point I shall articulate
later in this section, that δxδt ≥ L2

p.
There has been some interest in generalizing this analysis to the case in which the

probe is a closed string rather than a photon. It is useful to observe that (even though a
dedicated study is still missing) in light of the related findings reported in Ref. [52] one
expects only one relevant difference between ordinary (point-like) massless probes and
closed-string probes: closed-string probes have the property that their size increases
with their momentum in such a way that localization is limited to δx ≥ Ls, where
Ls is the string length, and (since the analysis in Ref. [52] requires Ls > Lp) this is
consistent with the general expectation δx ≥ Lp.

2.5 Spacetime in quantum gravity: events marked by colli-

sions of neutral nonrelativistic particles

The localization limit δx ≥ Lp is widely accepted within the quantum-gravity commu-
nity. I stress that this localization limit relies on two crucial ingredients: the nature
and strength of the gravitational interactions and the fact that a massless particle
with energy uncertainty δE has position uncertainty 1/δE. I observe that, while in
practice localization procedures always rely on massless (or anyway relativistic probes),
according to the Bohr-Rosenfeld line of analysis [49] (which is really the definitive work
on the role of measurability analyses in the logical structure of a physical theory) it
is necessary to wonder whether the probes that turn out to be useful for practical
reasons are the ones conceptually best suited for the task of localization. Moreover,
one should not only search among the probes we find to be available in Nature: any
type of (“gedanken”) probe that is consistent with the conceptual/formal structure of
the theory should be considered [49]. It is plausible that the correct quantum-gravity

fFor simplicity, the analysis of the uncertainties in the gravitational energy stored in the system
composed by the photon and the target particle is here discussed within Newtonian gravity. As shown
in Ref. [50], the estimate obtained using Newtonian gravity turns out to be correct (using general
relativity one obtains the same estimate, after a somewhat more lengthy analysis).
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would predict its constituents, but at present, since we are still uncertain about the
structure of the correct theory, any discussion of a general localization limitation must
be accompanied by a very general analysis of possible probes.

In order to establish a localization limit of more general validity one should in par-
ticular consider the possibility of using non-relativistic neutral probes, where “neutral”
here indicates that they only carry the familiar gravitational (mass/energy) charge, and
only interact gravitationally.

For neutral non-relativistic probes the generalization of the analysis reviewed in
the preceding section is rather straightforward. Let me consider the event of collision
between a probe of velocity VP � 1 and mass MP (mass of the probe) and a target
particle of mass MT . The source of localization uncertainty due to the uncertainties in
the gravitational interaction between the probe and the target is also easily analyzed
in the case of non-relativistic neutral probe. Again it suffices to consider these uncer-
tainties in the stage of the procedure when the probe and the target have distances
of a certain (arbitrarily chosen but small) order ε. The gravitational energy stored
in the system during this stage of the collision, which lasts a time of order ε/VP , is
of order U ∼ L2

pMT EP /ε, where EP is the probe’s energy. As a result of the uncer-
tainty MP VP δVP in the probe energy this gravitational energy is also uncertaing by an
amount of order δU ∼ L2

pMT MP VP δVP/ε. Consequently when the probe-target dis-

tance is of order ε the probe momentum is uncertain by an amount L2
pMT MP δVP /ε and

by momentum conservation also the momentum of the target has the same uncertainty.
There is therefore a time interval of order ε/VP around the time of the collision in which
the velocity of the target is uncertain by an amount δVT ∼ L2

pMP δVP /ε, leading to

a target-position uncertainty δxT ∼ L2
pMP δVP . Correspondingly the probe-position

uncertainty is of order δxP ∼ 1/(MP δVP ). Since the overall localization uncertainty
will receive contributions both from δxT and δxP , δx ≥ δxT + δxP , one concludes
that δx ≥ Lp/

√
VP . Following analogous reasoning for the uncertainty in the time of

the event one finds δt ≥ Lp/
√

V 3
P . Since consistency with the hypothesis of using a

nonrelativistic probe requires VP � 1, we can safely conclude that there is nothing to
be gained by substituting massless probes with neutral nonrelativistic probes. While
using a massless probe one finds δx ≥ Lp, the use of a neutral nonrelativistic probe
leads to an even more severe limit on localization δx ≥ Lp/

√
VP . I also observe that,

while with a massless probe we found δtδx ≥ L2
p, using neutral nonrelativistic probes

the localizzation procedure is even more strictly limited: δtδx ≥ L2
p/V

2
P � L2

p.

gNote that one can also estimate δU as δU ∼ [L2
pMT MP/(ε + δx0)] − [L2

pMT MP /ε], thereby
obtaining the result δVT ≥ L2

pMP δx0/(VP ε2). This would allow to conclude that there is a time
interval of order ε/VP around the time of the collision in which the velocity of the target is uncertain
by an amount δVT ∼ L2

pMP δVP /ε and the velocity of the probe is (see above) uncertain by at least
δVP ≥ M−1

P V −1
P . From these uncertainties one would again be able to conclude that the position of

the collision can only be established with accuracy worse than Lp.

13



2.6 Spacetime in quantum gravity: events marked by D-particle
collisions

As stressed above there is a quantum-gravity intuition that assumes a minimum lo-
calization uncertainty δx ≥ Lp. I have also stressed that this intuition is based on
an argument which is not fully robust, since it relies on the assumption that rela-
tivistic probes carrying only gravitational charge (“neutral”) should achieve the best
localization of a spacetime point. In the preceding subsection I removed one of these
assumptions by considering a nonrelativistic probe (still neutral), and found that this
cannot be used to improve on δx ≥ Lp. In this subsection I intend to remove the other
key assumption: I want to explore the possibility that probes carrying other charges
(in addition to the gravitational) might lead to a better localization. My conclusion
will be positive: certain types of charged particles can be used to obtain an improved
(although still limited) localization. This might have rather profound implications,
since it modifies the traditional quantum-gravity intuition favouring δx ≥ Lp.

My observation actually relies on well-established results. In the study of the String
Theory a new type of spacetime probe was encountered, the so-called D-particles. I
shall not enter into a detailed description of this new probes, which however the inter-
ested reader can easily find in the literature (see, e.g., Refs. [53, 54, 55, 56]). One key
point is that the underlying supersymmetry of the theoretical framework imposes that
D-particles, besides carrying gravitation charge, also carry another charge associated
(in an appropriate sense) to the gravitational charge through supersymmetry. The end
result is that [56] as long as the distance d between two D-particles is greater than

√
vLs

(denoting with v the relative velocity and Ls the string length) the energy stored in a
two-D-particle system can be described as U ∼ −L6

sv
4/d7, up to an (here irrelevant)

overall numerical factor of order 1. This energy law replaces the corresponding Newton
energy law that applies to uncharged particles. Another key property of D-particles
is the relation between the D-particle mass MD the string coupling gs and the string
length: MD ∼ g−1

s L−1
s . For gs � 1 D-particles with appropriately small relative veloc-

ity can be basically treated as ordinary very-weakly-interacting point particles up to
distances as small as g1/3

s Ls, without encountering comparatively large relative-position
quantum uncertainties.

On the basis of these facts in Refs. [55, 56] it was argued, within an analysis of D-
particle scattering, that the point of collision between two D-particles can be localized
with uncertainty as low as δx ∼ g1/3

s Ls (but not lower). Since in the relevant theoretical
framework gs � 1 and the (10-dimensional) Planck length is Lp ∼ g1/4

s Ls, this result
suggests that a certain level of subPlanckian localization accuracy is achievable.

Indeed proceeding in complete analogy with the discussion presented in the previous
two subsections, and taking into account the mentioned D-particle properties, I find
that the limit on localization using a D-particle probe (and target) is δx ≥ g1/3

s Ls ∼
g1/12

s Lp. I do observe however that such a level of spatial localization can only be
achieved at the cost of a rather poor level of temporal localization. In fact, I find
(again proceeding in complete analogy with the discussion presented in the previous
two subsections) that the event is temporally localized with uncertainty δt ≥ g−1/3

s Ls ≥
g−7/12

s Lp, and, since gs � 1, this amounts to an uncertainty limit which is significantly
larger than the usually expected Planck-scale limit.
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The example of D-particles suggests that the usual quantum-gravity expectation
that δx ≥ Lp and δt ≥ Lp should separately hold might be incorrect. It is not obvious
that D-particles should be included in the analysis. The fact that they have emerged
in String Theory is of course not sufficient to conclude that they should be part of the
correct quantum gravity. But, in the spirit of the Bohr-Rosenfeld ideas, D-particles
might have to be considered even if they turned out not to exist in Nature. And actually
we are free to look for other types of formal descriptions of probes which might achieve
an even better localization. On the basis of this observation, I argue that a satisfactory
conclusive analysis of the quantum-gravity limit on localization is still missing. The fact
that the infinite-mass limit is no longer available in quantum gravity implies that some
localization limit must hold, but additional studies are needed in order to establish the
exact form of the limit.

In this respect I want to venture formulating a conjecture: for all types of probes
that can be introduced in a logically consistent manner in quantum gravity the following
measurability limit will apply δxδt ≥ L2

p. So I argue that δx ≥ Lp and δt ≥ Lp might
not have to hold simultaneously, but for the product of the two uncertainties one should
always findh δxδt ≥ L2

p. This is actually verified in all the contexts I considered,

including the D-particle context, where the relationi δxδt ≥ L2
s � L2

p holds.
With respect to this conjecture one possible concern could come from the fact that

the analyses that inspired it are (to a large extent) 1+1-dimensional. Perhaps a relation
of the type δxδyδzδt ≥ L4

p should also be considered. It is temptingj to think of a
localization limit which basically states that a given event can only be localized within
a four-volume of a certain fixed size (e.g. L4

p). This would also ease concerns about
the covariance of the measurability limit (a four-volume is a rotation/boost invariant).

3 Spacetime and Lorentz symmetry in some quantum-

gravity approaches

3.1 The three possibilities for the fate of Lorentz symmetry
in quantum gravity

There are three possibilities for the fate of Lorentz symmetry in quantum gravity:
Lorentz symmetry remains unmodified (exact ordinary Lorentz symmetry in the flat-
spacetime limit), Lorentz symmetry is broken, Lorentz symmetry is deformed.

hAn uncertainty limit even more significant than the δxδt ≥ L2
p might emerge in contexts in which

there is quantum-gravity-induced decoherence, and finds support in various versions of the Salecker-
Wigner inspired quantum-gravity measurability bounds [5, 6].

iYoneya (see, e.g. Ref. [57]) has proposed arguments in favour of the general validity in String
Theory of an uncertainty relation δxδt ≥ L2

s. The arguments adopted by Yoneya do not appear to be
fully in the spirit of more traditional measurability analyses (and therefore it would be important to
find additional evidence in support of δxδt ≥ L2

s), but it is nonetheless noteworthy that an uncertainty
relation of the type δxδt ≥ L2

s, derived in perturbative String-Theory frameworks with Ls > Lp, would
be again consistent with my more general conjecture δxδt ≥ L2

p.
jJohn Stachel has often expressed a similar intuition.
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It is of course not difficult to characterize the case in which Lorentz symmetry is
preserved. In the flat-spacetime limit of quantum gravity the familiar relations between
observations done by different inertial observers should emerge. If a given length is at
rest and has value L for observer O, an observer O′ boosted with velocity V (along the
direction defined by the interval being measured) with respect to O must attribute to
that length the value L′ =

√
1− V 2L. For massless particles all observers agree on the

dispersion relation E = p.
We are also all familiar with the concept of “broken Lorentz symmetry” that is be-

ing encountered and discussed in some quantum-gravity research lines. It is completely
analogous to the familiar situation in which the presence of a background selects a pre-
ferred class of inertial observers. This is reflected, for example, in the fact that the
dispersion relation for light travelling in water, in certain crystals, and in other media
is modified. Of course, the existence of crystals is fully compatible with a theoreti-
cal framework that is fundamentally Lorentz invariant, but in presence of the crystal
the Lorentz invariance is manifest only when different observers take into account
the different form taken by the tensors that characterize the crystal (or other back-
ground/medium) in their respective reference systems. If the observers only take into
account the transformation rules for the energy-momentum of the particles involved in
a process the results are not the ones predicted by Lorentz symmetry. In particular,
the dispersion relation between energy and momentum of a particle depends on the
background (and therefore takes different form in different frames since the background
tensors take different form in different frames).

While the case in which Lorentz symmetry is preserved and the case in which
Lorentz symmetry is broken are familiar, the third possibility recently explored in
the quantum-gravity literature, the case of deformed Lorentz symmetry introduced in
Ref. [58], is rather new and it might be useful to describe it here intuitively. It is the
idea that in quantum gravity it might be appropriate to introduce a second observer-
independent scale, a large-energy/small-length scale, possibly related to the Planck
scale. It would amount to another step of the same type of the one that connects
Galilei Relativity and Einstein’s Special Relativity: whereas in Galilei Relativity the
description of rotation/boost transformations does not involve any invariant/observer-
independent scale, the observer-independent speed-of-light scale “c” is encoded in the
Lorentz rotation/boost transformations (which can be viewed as a c-deformation of
the Galileo rotation/boost transformations), and similarly in the case of a deformed
Lorentz symmetry of the type introduced in Ref. [58] there are two scales encoded
in the rotation/boost transformations between inertial observers (observers which are
still indistinguishable, there is no preferred observer). In addition to the familiar
observer-independent velocity scale c, there is a second, length (or inverse-momentum),
observer-independent scale λ.

In order to provide additional intuition for the concept of deformed Lorentz sym-
metry let me consider the particular much-studied case in which the deformation in-
volves a new dispersion relation m2 = f(E, p; λ) with f(E, p; λ) → E2 − p2 in the
limit λ → 0 (see, e.g., Refs. [58, 59, 60] and, for some related follow-up work in
cosmology, also see Ref. [61]). A modified dispersion relation can also emerge (and
commonly emerges) when Lorentz symmetry is broken, but of course the role of the
modified dispersion relation in the formalism is very different in the two cases: when
Lorentz symmetry is broken the modified dispersion relation reflects properties of a
background/medium and the laws of boost/rotation transformation between inertial

16



observers are not modified, while when Lorentz symmetry is deformed the modified
dispersion relation reflects the properties of some new laws of boost/rotation transfor-
mation between inertial observers. This comparison provides an invitation to consider
again the analogy with the transition from Galilei Relativity to Special Relativity. In
Galilei Relativity, which does not have any relativistic-invariant scale, the dispersion
relation is written as E = p2/(2m) (whose structure fulfills the requirements of di-
mensional analysis without the need for dimensionful coefficients). As experimental
evidence in favour of Maxwell equations started to grow, the fact that those equations
involve a special velocity scale appeared to require (since it was assumed that the va-
lidity of the Galilei transformations should not be questioned) the introduction of a
preferred class of inertial observers, i.e. the “ether” background. Special Relativity
introduces the first observer-independent scale, the velocity scale c, its dispersion rela-
tion takes the form E2 = c2p2 + c4m2 (in which c plays a crucial role for what concerns
dimensional analysis), and the presence of c in Maxwell’s equations is now understood
not as a manifestation of the existence of a preferred class of inertial observers but
rather as a manifestation of the necessity to deform the Galilei transformations (the
Lorentz transformations are a dimensionful deformation of the Galilei transformations).
Analogously in some recent quantum-gravity research there has been some interest (see
later in these notes) in dispersion relations of the type c4m2 = E2− c2~p2 + f(E, ~p2; Ep)
and the fact that these dispersion relations involve an absolute energy scale, Ep, has
led to the assumption that a preferred class of inertial observers should be introduced
in the relevant quantum-gravity scenarios. But, as I stressed in the papers proposing
physical theories with deformed Lorentz symmetry [58], this assumption is not neces-
sarily correct: a modified dispersion relation involving two dimensionful scales might
be a manifestation of new laws of transformation between inertial observers, rather
than a manifestation of Lorentz-symmetry breaking.

This concludes my brief non-technical review of the concepts of preserved Lorentz
symmetry, broken Lorentz symmetry, and deformed Lorentz symmetry. Before closing
this subsection I must however introduce some terminology, which might be useful to
readers interested in finding additional reading material on this subject. Relativis-
tic theories based on deformed Lorentz transformations, with two relativistic-invariant
scales, are sometimes called “doubly-special relativity” theories [58, 59, 60]. In describ-
ing a framework with broken Lorentz symmetry the fact that there is still full invariance
under transformations taking into account of both the background and the particles
energy/momentum is sometimes called “invariance under observer Lorentz transfor-
mations” [62]. And the fact that in a framework with broken Lorentz symmetry there
are departures from Lorentz symmetry, if one does not take into account the laws of
transformation of the backgrounds (and simply transforms the energy-momentum of
the particles involved in a process), is sometimes described as a “lack of invariance
under particle Lorentz transformations” [62].

3.2 Aside on the hypothesis of the Planck scale as a relativistic
invariant

In quantum-gravity proposals it is very common that the Planck scale (or some related
scale, like the string length) acquires a special role. One then must understand what
are the implications of the presence of the Planck scale for Lorentz symmetry. The
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analysis is often rather difficult, since the formalisms used in quantum-gravity research
have a very rich structure. As partial guidance for this type of studies one can resort
to some useful analogies. The four topics on which I want to comment briefly are:
the possibility of a maximum-velocity scale and its implications for Galilei transforma-
tions, the possibility of a minimum-wavelength scale and its implications for Lorentz
transformations, the possibility of angular-momentum discretization scale (in the sense
of ordinary nonrelativistic quantum mechanics) and its implications for rotation trans-
formations, and the possibility of a maximum-acceleration scale and its implications
for Lorentz transformations.

The Galilei transformations act on velocities, and therefore the presence of a maximum-
velocity scale naturally invites one to consider departures from Galilei symmetry. If
different inertial observers attribute different values to the maximum-velocity scale one
should find that Galilei symmetry is broken (ether). If the maximum-velocity scale
takes the same value for all inertial observers then Galilei transformation must be re-
placed by new laws of transformation between inertial observers (Special Relativity),
in which the maximum-velocity scale should appear explicitly in the formulas that gov-
erns the transformations between different inertial observers (in fact, c does appear in
the Lorentz transformation laws).

The Lorentz transformations act on wavelengths, and therefore the presence of
a minimum-wavelength scale would naturally invite one to consider departures from
Lorentz symmetry. If different inertial observers attribute different values to the
minimum-wavelength scale one should find that Lorentz symmetry is broken (“quantum-
gravity ether”). If the minimum-wavelength scale takes the same value for all inertial
observers then Lorentz transformations must be replaced by new laws of transforma-
tion between inertial observers (doubly special relativity [58]), in which the minimum-
wavelength scale should appear explicitly in the formulas that governs the transforma-
tions between different inertial observers (in fact, the minimum-wavelength scale does
appear in the deformed transformation laws, in the doubly-special-relativity frame-
works that do assume a minimum wavelength [58]).

Space-rotation transformations do act on the angular-momentum vector, but, as
discussed more carefully in the later Section 5, the type of h̄-discretization of angular
momentum introduced in ordinary nonrelativistic quantum mechanics is not affected by
the discretization scale [63, 64]. Therefore this angular-momentum discretization scale
h̄ does not require departures from space-rotation symmetry. In the formulas describing
space-rotation transformations within ordinary nonrelativistic quantum mechanics the
angular-momentum discretization scale h̄ does not appear.

The Lorentz transformations do not act on accelerations, and therefore the presence
of a maximum-acceleration scale would not encourage one to consider departures from
Lorentz symmetry [65]. There is no reason for a maximum-velocity scale to appear in
the formulas that govern the transformations between different inertial observers.

Clearly all of these scales can be introduced as invariants of some relevant sym-
metry transformations, but it is also clear that the nature of these invariants is some-
what different. I would like to tentatively propose the terminologies “trivial invariant”
and “nontrivial invariant”. The maximum-velocity scale is a nontrivial invariant of
Lorentz boost transformations. And similarly a maximum-wavelength scale would be
a nontrivial invariant of suitable doubly-special-relativity (deformed Lorentz) boost
transformations. The angular-momentum-discretization scale encountered in ordinary
nonrelativistic quantum mechanics is a trivial invariant of space-rotation transforma-
tions. And similarly a maximum-acceleration scale would be a trivial invariant of
Lorentz boost transformations.

18



3.3 Fuzzyness and Lorentz symmetry

The description of different possibilities for the fate of Lorentz symmetry in quantum
gravity was (intentionally) rather vague in the previous subsections. To provide a
more precise characterization one should in particular describe how the symmetries are
realized on (ensembles of) measurements. In particular, a point which appears to be
often overlooked in the literature concerns the fact that symmetries should also govern
the formulas that describe quantum uncertainty relations, and if quantum gravity
introduces new uncertainty relations the rotation/boost transformations will have to
be applied also to the uncertainty relations, so that the overall picture is consistent
with the symmetry principles.

I will try to give an intuitive description of this concept in this subsection, by
discussing a specific context. Consider a source which emits “simultaneously” a large
number of photons (massless particles), and the photons are such that their energies
E ± δE are contained in a certain wide range E0 − ∆E ≤ E ≤ E0 + ∆E, the range
∆E being much larger than the average uncertainties δE. With “simultaneously” here
one of course must mean a level of simultaneity which is at least compatible with what
we already know about ordinary quantum mechanics: since the time of emission is
uncertain, δt ∼ 1/δE, the simultaneity cannot be better than 1/δE. One class of
predictions coming from (deformed, broken or preserved) Lorentz symmetry concerns
the average times of arrival at a detector. Unmodified Lorentz symmetry imposes that
the average time of arrival is independent of energy, tfE1

= tfE2
for any E1 and E2.

In a deformed-Lorentz-symmetry or broken-Lorentz-symmetry scenario one could have
instead a certain dependence of the average time of arrival on the energy (also see later
Section 5).

Setting aside the analysis of the average arrival times (for which the implications
of a given symmetry scenario are easily seen), let us consider the uncertainty in the
arrival times. An interesting hypothesis is that quantum gravity might affect these
uncertainties. Perhaps a group of particles emitted “simultaneously” with energy E1
and energy uncertainty δE would reach the detector after a journey of time duration
T with a time-of-arrival uncertainty δtf = F (E1, T, δti; Lp), where F is some function
that describes possible energy dependence, time-of-travel dependence and dependence
on the initial time-of-emission uncertainty. The actual form of the function F should
somehow reflect the symmetries of the theory (in particular, the admissible forms
for the function F are different depending on whether there is exact classical Lorenz
symmetry, deformed Lorentz symmetry or broken Lorentz symmetry).

3.4 Spacetime and Lorentz symmetry in String Theory

String Theory is the most mature quantum-gravity approach coming from the particle-
physics perspective. As such it of course attempts to reproduce as much as possible
the successes of quantum field theory, with gravity seen (to a large extent) simply as
one more gauge interaction. Although the introduction of extended objects (strings,
branes, ...) leads to subtle elements on novelty, in String Theory the core features
of quantum gravity are described in terms of graviton-like exchange in a background
classical spacetime.

Indeed String Theory does not lead to spacetime quantization, at least in the sense
that its background spacetime has been so far described as completely classical. How-
ever, this point is not fully settled: it has been shown that String Theory eventually
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leads to the emergence of fundamental limitations on the localization of a spacetime
event, which are not yet formalized in a fully satisfactory manner [66], and this might
be in conflict with the assumption of a classical background spacetime. The Bohr-
Rosenfeld consistency criteria are not yet satisfied: one adopts a background space-
time which can be classical, but then the theory itself tells us that the localization of
a spacetime point is affected by a fundamental limitation. Clearly the description of
spacetime in String Theory is still being developed, and requires the analysis of some
subtle points. This logical inconsistency probably tells us that the classical spacetime
background cannot be anything else but a formal tool, void of operative meaning, which
should be eventually replaced by a physically meaningful spacetime picture in which
no classical-spacetime idealization is assumed.

If eventually there will be a formulation of String Theory in a background spacetime
that is truly quantum, it is likely (on the basis of the observations reported in these
notes) that Lorentz symmetry will then not be an exact symmetry of the theory. If in-
stead somehow a classical spacetime background can be meaningfully adopted, of course
then there would be no a priori reason to conjecture departures from Lorentz symme-
try: classical Minkowski spacetime would naturally be an acceptable background, and
a theory in the Minkowski background can be easily formulated in Lorentz-invariant
manner. Still , it is noteworthy that, even assuming that it makes sense to consider
a classical background spacetime, the fate of Lorentz symmetry in String Theory is
somewhat uncertain: it has been found that under appropriate conditions (a vacuum
expectation value for certain tensor fields) Lorentz symmetry is broken in the sense
I described above. In these cases String Theory admits description (in the effective-
theory sense) in terms of field theory in a noncommutative spacetime [15] with most
of the studies focusing on the possibility that the emerging noncommutative spacetime
is “canonical”. Canonical noncommutative spacetimes are discussed in Subsection 3.4
and I postpone to that subsection a discussion of some features of the relevant Lorentz-
symmetry breaking.

In summary in String Theory (as presently formulated, admitting classical back-
grounds) it is natural to expect that Lorentz symmetry be preserved. In some cases
(when certain suitable background/“external” fields are introduced) this fundamen-
tally Lorentz-invariant theory can experience Lorentz-symmetry breaking. There has
been so far no significant interest or results on deformation of Lorentz symmetry in
String Theory (see, however, Refs. [67]).

3.5 Spacetime and Lorentz symmetry in Loop Quantum Grav-

ity

Loop Quantum Gravity is the most mature approach to the quantum-gravity problem
that originates from the general-relativity perspective. As in the case of String Theory,
it must be stressed that the understanding of this rich formalism is still in progress.
As presently understood, Loop Quantum Gravity predicts an inherently discretized
spacetime [68], and this occurs in a rather compelling way: it is not that one introduces
by hand an a priori discrete background spacetime; it is rather a case in which a
fully background-independent analysis ultimately leads, by a sort of self-consistency,
to the emergence of spacetime discretization. There has been much discussion recently,
prompted by the studies [20, 69, 70], of the possibility that this discretization might
lead to broken Lorentz symmetry. Although there are cases in which a discretization
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is compatible with the presence of continuous classical symmetries [71, 63, 64], it is of
course natural, when adopting a discretized spacetime, to put Lorentz symmetry under
careful scrutiny. Arguments presented in Refs. [69, 70, 72], support the idea of broken
Lorentz symmetry in Loop Quantum Gravity.

Moreover, very recently Smolin, Starodubtsev and I proposed [73] (also see the
follow-up study in Ref. [74]) a mechanism such that Loop Quantum Gravity would
be described at the most fundamental level as a theory that in the flat-spacetime
limit admits deformed Lorentz symmetry. Our argument originates from the role that
certain quantum symmetry groups have in the Loop-Quantum-Gravity description of
spacetime with a cosmological constant, and observing that in the flat-spacetime limit
(the limit of vanishing cosmological constant) these quantum groups might not contract
to a classical Lie algebra, but rather contract to a quantum Hopf algebra.

In summary in Loop Quantum Gravity the study of the fate of Lorentz is still at
a preliminary stage. All three possibilities are still being explored: Lorentz-symmetry
preserved, broken or deformed. It is noteworthy however that until 3 or 4 years ago
there was a nearly general consensus that Loop Quantum Gravity would preserve
Lorentz symmetry, whereas presently the intuition of a majority of experts has shifted
toward the possibility that Lorentz symmetry be broken or deformedk.

3.6 On the fate of Lorentz symmetry in canonical noncommu-

tative spacetime

There has been much recent interest in flat noncommutative spacetimes, as possible
quantum versions of Minkowski spacetime. Most of the work has focused on various
parts of the two-tensor parameter space

[xµ, xν ] = iθµν + iγβ
µνxβ . (1)

The assumption that the commutators of spacetime coordinates would depend on the
coordinates at most linearly is usually adopted for simplicity, but it also captures a
very general intuition: assuming that the Planck scale governs noncommutativity (and
therefore noncommutativity should disappear in the formal Lp → 0 limit) and assuming
that the commutators do not involve singular, 1/xn, terms one actually cannot write
anything more general than

[xµ, xν ] = iL2
pQµν + iLpC

β
µνxβ , (2)

where now the tensors, Q and C, are dimensionless.
Most authors actually consider two particular limits [75]: the “canonical noncom-

mutative spacetimes”, with γβ
µν = 0,

[xµ, xν ] = iθµν (3)

kActually it is of course conceivable that Lorentz symmetry be deformed and broken. This would
mean that at the fundamental level the laws of transformation between inertial observers are described
a la doubly-special relativity [58] (deformed Lorentz symmetry), and then, for example, some tensor
fields acquire a vacuum expectation value.
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and the “Lie-algebra noncommutative spacetimes”, with θµν = 0,

[xµ, xν ] = iγβ
µνxβ . (4)

Let me start by discussing briefly the fate of Lorentz symmetry in canonical non-
commutative spacetimes. An intuitive characterization can be obtained by looking
at wave exponentials. The Fourier theory in canonical noncommutative spacetime is
based [75] on simple wave exponentials eipµxµ and from the [xµ, xν ] = iθµν noncommu-
tativity relations one finds that

eipµxµeikνxν = e−
i
2
pµθµνkν

ei(p+k)µxµ , (5)

i.e. the Fourier parameters pµ and kµ combine just as usual, with the only new in-
gredient of the overall phase factor that depends on θµν . The fact that momenta
combine in the usual way reflects the fact that the transformation rules for energy-
momentum from one (inertial) observer to another are still the familiar, undeformed,
Lorentz transformation rules. However, the product of wave exponentials depends on
pµθµνk

ν , it depends on the “orientation” of the energy-momentum vectors pµ and kν

with respect to the θµν tensor. This is a first indication that in these canonical non-
commutative spacetimes there is Lorentz symmetry breaking. The θµν tensor plays the
role of a background that identifies a preferred class of inertial observersl. Different
particles are affected by the presence of this background in different ways, leading to
the emergence of different dispersion relations, as shown by the results [9, 10, 11, 12]
of the study of field theories in canonical noncommutative spacetimes.

3.7 On the fate of Lorentz symmetry in κ-Minkowski noncom-
mutative spacetime

In canonical noncommutative spacetimes Lorentz symmetry is “broken” and there is
growing evidence that Lorentz symmetry breaking occurs for most choices of the tensors
θ and γ. It is at this point clear, in light of several recent results, that the only way
to preserve Lorentz symmetry is the choice θ = 0 = γ, i.e. the case in which there is
no noncommutativity and one is back to the familiar classical commutative Minkowski
spacetime. When noncommutativity is present Lorentz symmetry is usually broken,
but recent results suggest that for some special choices of the tensors θ and γ Lorentz
symmetry might be deformed, rather than broken. In particular, this appears to be the
case for the Lie-algebra κ-Minkowski [8, 76, 77, 78, 79, 80] noncommutative spacetime
(l, m = 1, 2, 3)

[xm, t] =
i

κ
xm , [xm, xl] = 0 . (6)

lNote that these remarks apply to canonical noncommutative spacetimes as studied in the most
recent (often String-Theory inspired) literature, in which θµν is indeed simply a tensor (for a given
observer, an antisymmetric matrix of numbers). I should stress however that the earliest studies of
canonical noncommutative spacetimes (see Ref. [3] and follow-up work) considered a θµν with richer
mathematical properties, notably with nontrivial algebra relations with the spacetime coordinates. In
that earlier, and more ambitious, setup it is not obvious that Lorentz symmetry is broken: the fate
of Lorentz symmetry depends on the properties attributed to θµν .
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κ-Minkowski is a Lie-algebra spacetime that clearly enjoys classical space-rotation
symmetry; moreover, at least in the Hopf-algebra sense discussed in Ref. [79], κ-
Minkowski is invariant under noncommutative translations. Since I am focusing here
on Lorentz symmetry, it is particularly noteworthy that in κ-Minkowski boost trans-
formations are necessarily modified [79]. A first hint of this comes from the necessity
of a deformed law of composition of momenta, encoded in the so-called coproduct (a
standard structure for a Hopf algebra). One can see this clearly by considering the
Fourier tranform. It turns out [8, 78, 81] that in the κ-Minkowski case the correct
formulation of the Fourier theory requires a suitable ordering prescription for wave
exponentials. From

: eikµxµ :≡ eikmxmeik0x0 , (7)

as a result of [xm, t] = ixm/κ (and [xm, xl] = 0), it follows that the wave exponentials
combine in a nontrivial way:

(: eipµxµ :)(: eikνxν :) =: ei(p+̇k)µxµ : . (8)

The notation “+̇” here introduced reflects the behaviour of the mentioned “coproduct”
composition of momenta in κ-Minkowski spacetime:

pµ+̇kµ ≡ δµ,0(p0 + k0) + (1− δµ,0)(pµ + eλp0kµ) . (9)

As argued in Refs. [58] the nonlinearity of the law of composition of momenta
might require an absolute (observer-independent) momentum scale, just like upon in-
troducing a nonlinear law of composition of velocities one must introduce the absolute
observer-independent scale of velocity c. The inverse of the noncommutativity scale λ
should play the role of this absolute momentum scale. This invites one to consider the
possibility [58] that the transformation laws for energy-momentum between different
observers would have two invariants, c and λ.

It is not yet fully established whether κ-Minkowski can be the basis for physical the-
ories with deformed Lorentz symmetry, but very recent works provide encouragement
for this idea [58, 59]. In work that preceded Refs. [58], some examples of Hopf algebras,
the so-called κ-Poincaré algebras, which could describe deformed infinitesimal symme-
try transformations for κ-Minkowski, had been worked out [77], but it was believed
(on the basis of a few attempts [82]) that these algebra structures would not be com-
patible with a genuine symmetry group of finite transformations. In Refs. [58] it was
proposed that one should look for deformed transformation laws that form a genuine
group and it was shown that one example of the κ-Poincaré Hopf algebras previously
considered in the mathematical literature did allow for the emergence of a group of
finite transformations of the energy-momentum of a particle (while the same is not
true for other examples of these Hopf algebras). That result amounts to proving that
the mathematics of κ-Poincaré Hopf algebras (and therefore possibly κ-Minkowski) can
meaningfully describe the one-particle sector of a physical theory in a way that involves
deformed Lorentz symmetry. But it is still unclear whether some κ-Poincaré Hopf al-
gebras can be used to construct a theory which genuinely enjoys deformed Lorentz
symmetry throughout, including multiparticle systems.

The recipe adopted in the κ-Poincaré literature for the description of two-particle
systems relies on a law of composition of momenta obtained through the coproduct sum
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(9), and an action of boosts on the composed momenta induced by the action on each
of the momenta entering the composition. This has been adopted in the κ-Poincaré lit-
erature even very recently [83], not withstanding the new deformed-Lorentz-symmetry
perspective proposed in Ref. [58]. From a deformed-Lorentz-symmetry perspective this
κ-Poincaré description of two-particle systems is not acceptable; in fact, for a particle-
producing collision process a + b → c + d laws of the type (pa+̇pb)

µ = (pc+̇pd)
µ are

inconsistent with the relevant laws of transformation for the momenta of the four par-
ticles. The condition (pa+̇pb)

µ = (pc+̇pd)
µ can be imposed in a given inertial frame

but it will then be violated in other inertial frames (i.e. (pa+̇pb)
µ − (pc+̇pd)

µ = 0 →
(p′a+̇p′b)

µ − (p′c+̇p′d)
µ 6= 0).

So, in summary, in κ-Minkowski spacetime there are definitely some departures
from Lorentz symmetry, and it appears likely that these departures could be codified
within the deformed-Lorentz-symmetry (doubly-special relativity) scenario proposed in
Ref. [58], but more work is needed to fully establish the role of deformed rotation/boost
transformations.

4 Aside on Lorentz symmetry in discrete space-

times

4.1 Introduction and summary of this Section

Now that I have provided a general picture of the fate of Lorentz symmetry in quantum
gravity, I am basically ready to consider possible experimental tests that could establish
which of these different pictures is correct. This is discussed in the next section. Before
that, I thought it might be appropriate to devote a few pages to an aside on one of the
key topics of debate in the quantum-gravity literature: does spacetime discretization
automatically imply a broken Lorentz symmetry?

It is rather natural for quantum-gravity research to consider Planck-scale discretiza-
tion, and this is one of the reasons for the interest in possible departures from Lorentz
symmetry. In fact, most types of spacetime discretizations would be clearly incompat-
ible with the presence of an exact continuous (Lorentz) symmetry. While this is true,
the assumption that ordinary Lorentz symmetry be only an approximate symmetry
in discrete-spacetime pictures is often made too simplistically: some quantum-gravity
papers rely on the assumption that in any discretized space it would not be possible to
realize continuous symmetries (and from that it is concluded that spacetime discretiza-
tion would necessarily be in conflict with continuous Lorentz symmetry). But clearly
it is not true that by introducing some element of discretization in a space one must
necessarily renounce to the presence of continuous symmetries. There is an example in
physics with which we are all familiar: angular momentum is discretized in ordinary
(nonrelativistic) quantum mechanics but the theory is still consistent with invariance
under space rotations.

While most forms of discretization are incompatible with continuous symmetries,
some discretizations are compatible with continuous symmetries. It is therefore not
possible to assume a priori that any scenario for spacetime discretization considered in
the quantum-gravity literature should lead to departures from Lorentz symmetry. The

24



fate of Lorentz symmetry should be examined carefully in any specific discretization
scenario.

In the remainder of this section I make some observations which could be use-
ful for the analysis of the implications for Lorentz symmetry of popular ideas about
a quantum-gravity discretization of the spectrum of the observables length, area, 3-
volume, and 4-volume. I start with some comments on the somewhat analogous situa-
tion involving space-rotation symmetry and angular-momentum discretization. I then
consider the possible implications for Lorentz symmetry of discretization of length,
area, 3-volume, and 4-volume. In the closing subsection I argue that these observa-
tions might be relevant for the analysis of the fate of Lorentz symmetry in the Loop
Quantum Gravity approach.

4.2 Space-rotation symmetry in classical and ordinary (non-
relativistic) quantum mechanics

For the purposes of these notes it is sufficient to focus on the implications of space-
rotation symmetry for the angular momentum 3-vector. When an observer measures
one or more components of the angular momentum of a classical system some facts
can immediately be deduced about how that same angular momentum appears to a
second observerm, an observer whose reference axes are rotated with respect to the
ones of the first observer. Let us call (x, y, z) the axes of the first observer O and
(x′, y′, z′) the axes of the second observer O′. If O measures all three components of
the angular momentum, along the (x, y, z) axes, everything can be said about all of
the components of that angular momentum along the (x′, y′, z′) axes of O′. The triads
(Lx, Ly, Lz) and (Lx′ , Ly′ , Lz′) are of course different but they are related by a simple
rule of transformation (a space-rotation transformation). Similarly, if O measures the
modulus of the angular momentum vector everything can be said about how that
modulus appears to a second observer: the value of the modulus is the same for both
observers. However, if O measures only the x component of the angular momentum
it is still not possible to predict any of the components Lx′ , Ly′, Lz′ that are most
meaningful for O′.

Space-rotation symmetry transformations are crucial for the objectivity (“reality”)
of the angular-momentum vector. Each observer characterizes this vector by three
(real, dimensionful) measured numbers. Each of these numbers is to be seen as the

projection of the objective vector ~L along one of the axes of the observer, and, of

mThese remarks, which concern how the same physical process is described by different observers,
characterize passive space-rotation symmetry transformations. The active transformations instead
connect different processes observed by a single observer. For example, in a world with space-rotation
symmetry a collection of systems prepared in a way that does not break that symmetry will have
to enjoy, as an esemble, the same properties along any given direction (e.g. the average result of
measurements of Lx should coincide with the average result of measurements of Ly). Another example
of manifestation of space-rotation symmetry within the class of processes observed by a single observer
is the fact that the total angular momentum of an isolated system does not change in time (space-
rotation symmetry imposes a constraint on the physical processes observed by a single observer by
disallowing processes in which the total angular momentum of an isolated system is not a constant of
time evolution).
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course, in turn these axes must be physically identified by the observer. For example,
an observer may choose as “x axis” the direction of a certain magnetic field (another
vector), and in that case a crucial role is played by the fact that both in measurement

and in theory one can meaningfully consider the projection ~L· ~B. The observable simply
denoted by “Lx” in the formalism inevitably corresponds physically to an observable
obtained from two objective vectors, the angular-momentum vector ~L and a second
vector such as ~B. When ~B is known one can set up a measurement procedure for
Lx ≡ ~L· ~B. Knowledge of the three components Lx, Ly, Lz (i.e. of the projections

along a triplet of orthogonal directions ~B(i), ~B(j), ~B(k)) is sufficient for predicting the
component along any other given direction. But the knowledge of a single component,
Lx, is not sufficient to determine how the angular-momentum vector projects along
some other direction.

This observation is rather crucial in understanding how space-rotation symmetry, a
classical continuous symmetry, can be maintained as a symmetry of systems in ordinary
nonrelativistic quantum mechanics, in which angular momentum is “discretized”. One
might, at first sight, be skeptical that some rules of mechanics that discretize angular
momentum could enjoy a continuous symmetry, but more careful reasoning quickly
leads to the conclusion that there is no a priori contradiction between discretization
and a continuous symmetry. In fact, the type of discretization of angular momentum
which emerges in ordinary non-relativistic quantum mechanics is fully consistent with
classical space-rotation symmetry.

It will be proper [64] to speak of classical symmetries of a quantum theory whenever
all the measurements that the quantum theory allows are still subject to the rules
imposed by the classical symmetry. Certain measurements that are allowed in classical
mechanics are no longer allowed in quantum mechanics, but on those measurements
that are still allowed at the quantum level the symmetry criteria can fail or succeed just
as in classical mechanics. It is actually easy to verify that the presence of classical space-
rotation symmetry is perfectly compatible with the principles of ordinary nonrelativistic
quantum mechanics.

Just as in classical mechanics, in quantum mechanics the information that O obtains
by measuring the square-modulus L2 of the angular momentum is sufficient to establish
how that square-modulus appears to a second observer: the value of the modulus is the
same for both observers. It happens to be the case that the values of L2 are constrained
by quantum mechanics on a discrete spectrum (while all real positive values are allowed
in classical mechanics), but this of course does not represent an obstruction for the
action of the continuous symmetry on invariants, such as L2.

When O measures the x component, Lx, of the angular momentum it is still not
possible to predict the value of any of the components of that angular momentum
along the (x′, y′, z′) axes of O′. This is true at the quantum level just as much as it is
true at the classical level. The fact that quantum mechanics constrains the values of
the observable Lx on a discrete spectrum is compatible with continuous space-rotation
symmetry, simply because the symmetry does not make predictions relevant for the
single measurement of Lx.

In classical physics space-rotation symmetry also governs the relation between the
triple sharp measurement (Lx, Ly, Lz) made by O and the corresponding measurement
of (Lx′ , Ly′, Lz′) made by O′. This statement is neither true nor false in quantum
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mechanics. In fact, quantum mechanics excludesn the possibility of simultaneous clas-
sical/sharp measurement of all components of angular momentum. This prediction of
the classical symmetry is, in a sense, not verifiable in ordinary quantum mechanics,
but it would be improper to say that it fails.

In summary, in quantum mechanics there is a specific type of “discretization of
angular momentum” which only affects measurements of space-rotation invariants and
measurements, such as the measurement of a single component Lx of angular momen-
tum, on which space-rotation symmetry makes no predictions at all (space-rotation
symmetry is not such that one can predict the value of Lx′ on the basis of the mea-
surement of Lx). Since space-rotation symmetry does govern the relation between
the triple measurement (Lx, Ly, Lz) made by O and the corresponding measurement
of (Lx′, Ly′ , Lz′) made by O′, it is crucial (for the compatibility betweeen quantum
mechanics and space-rotation symmetry) that according to quantum mechanics the
measurement of one component, say Lx, introduces (in general) a significant uncer-
tainty concerning Ly and Lz. If some theory (clearly very different from quantum
mechanics) allowed the simultaneous sharp measurement of Lx, Ly, Lz and predicted
discrete spectra for them, then the classical continuous space-rotation symmetry would
inevitably fail to apply.

These observations clarify the deep connection between discretization and noncom-
mutativity. In a space-rotation-invariant theory discretization of the spectrum of Lx

requires noncommutativity of Lx with Ly and Lz. In traditional textbooks the relation
between discretization and noncommutativity is only stressed at the level of formal-
ism (as a property of the operators we use to formalize the properties of the relevant
measurements), but here I have considered a direct relation between discretization of
measurement results and noncommutativity of observables (intended as an obstruc-
tion for the simultaneous sharp measurement) in the context of a theory which, like
ordinary quantum mechanics, is compatible with space-rotation symmetry.

We only need one last (but very important) test before concluding that the dis-
cretization of Lx in quantum mechanics is truly compatible with space-rotation sym-
metry. This is connected with the fact that, as I stressed, discretization of Lx requires,
in presence of space-rotation symmetry, that whenever Lx is sharply measured the
other components Ly and Lz are affected by significant uncertainty. There is a risk
here of a logical inconsistency: one must verify that (at least some of) the procedures
that are suitable for the sharp measurement of Lx are not such that they require sharp
information on Ly and Lz. Even this test is successful: one can indeed measure sharply
Lx without using any knowledge of Ly and Lz. For example, the Stern-Gerlach setupo

measures sharply Lx without using any knowledge of Ly and Lz. Since also this final

nOf course, only the properties of generic eigenstates are of interest here. The fact that one could
have an eigenstate with Lx = Ly = Lz = 0, in the special case L2 = 0, has no implications for my
argument. Also note that the condition Lx = Ly = Lz = 0 does not involve the discretization scale
h̄ and is space-rotation invariant both at the classical and the quantum level (Lx = Ly = Lz = 0 →
Lx′ = Ly′ = Lz′ = 0).

oThe Stern-Gerlach setup realizes physically the projection of the vector ~L along the direction of
a magnetic field ~B. It provides the measurement of Lx in terms of a primary measurement which is
a measurement of a corresponding coordinate of the point of arrival of the particle on a screen. The
value of the measured coordinate is insensitive (even in classical physics) on the value of Ly and Lz.
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logical-consistency test is successful, I conclude that the type of discretization of angu-
lar momentum which is realized in ordinary nonrelativistic quantum mechanics is fully
compatible with classical continuous space-rotation symmetry.

I will later make use of the criteria introduced in this subsection for some consider-
ations on the possibility that some form of discretization of lengths, areas, 3-volumes
and 4-volumes might be compatible with the presence of classical continuous Lorentz
symmetry. The analogy is very close, but there are some important differences. A key
observation arises there at the last stage of analysis, the one that here required us to
verify that one could actually measure sharply Lx without using any knowledge of Ly

and Lz.

4.3 Discretization of lengths and Lorentz symmetry

I now want to explore the possibility that discretization of lengths might be compatible
with ordinary (classical and continous) Lorentz symmetry. In setting up this analysis it
is useful to start by considering a very simple procedure for the measurement of lengths,
and examine this procedure ignoring, for the moment, all the measurability limits
imposed by quantum mechanics (I therefore examine the measurement procedure as if
it was carried through in classical mechanics). Let us consider a ruler with extremities
marked A and C on a given spaceship O (the inertial frame O). In order to measure
the length of the ruler, L = AC, one places a mirror at C and sends a light signal from
A to C, which eventually returns at A after reflection by the mirror at C. The length
of the ruler will be obtained from the measurement of the time needed for the two-way
journey A → C → A. This time of travel is measured by a “light-clock of size d”, i.e.
another light beam is bounced back and forth between point A and a point B located
at a distance d from A in the direction orthogonal to AC (if A and C lie on the x axis,
B has the same x coordinate as A). A clock “tick” corresponds to each event of return
of the light-clock beam at A. For the clock to be useful the distance d = AB must be
known very accurately, and in order to measure L accurately it must be that d � L.

I am assuming that the 3-point system A, B, C, is in rigid motion with respect to
the observer on the spaceship (with respect to the origin of the inertial frame O), but
it is useful not to assume that the points A, B, C are at rest. A possible dependence
of the measurement result on the velocity of the A-B-C system will in fact play an
important role in some observations reported later on. Let us therefore introduce a
velocity V , which is the velocity of the A-B-C system with respect to the observer on
the spaceship; specifically, let us take this common velocity of the points A, B, C as
a 3-vector of modulus V , directed along the AC direction (along the x axis), pointing
away from A and toward C.

The velocity V is already relevant at the level of establishing the calibration of the
light-clock. Since the AB light-clock is moving with velocity V with respect to O,
the observer O sees the trajectory of the light-clock light beam as a “zig-zag” between
the moving points A and B. [For example, when bounced back from B toward A
the light beam, according to observer O, goes in an oblique direction, and while the
light beam progresses toward A, the point A keeps moving with velocity V .] We
conclude that, according to observer O, each tick of the light-clock corresponds to a
time τV = 2 AC/

√
c2 − V 2 = 2 d/

√
c2 − V 2. The dependence on V of the light-clock

tick time is easily understood as a manifestation of time dilatation: if the light-clock
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is at rest (V = 0) each tick corresponds to a time τ0 = 2 d/c, while for 0 < V < c the
light-clock tick corresponds to 2 d/

√
c2 − V 2 > τ0.

The velocity V also enters in the relation between the measured time (the time for
the two-way A → C → A journey) and the sought length L of the AC ruler. Since
the AC ruler is moving with velocity V , the two parts of the two-way journey of the
probe are of different length. For the first part of the journey of the probe the fact
that the ruler is moving causes an increase of the duration of the probe’s trip toward
the next extremity of the ruler, while for the second part of the journey the distance is
effectively shortened by the motion of the ruler. The first part of the journey (A → C)
requires that the probe travel a distance cL/(c−V ), while for the second part (C → A)
the distance is cL/(c + V ). The relation between the time T (given in the “number of
ticks” form NτV ) needed by the probe for its two-way journey and the length L of the
AC ruler is

T = NτV =
L

c− V
+

L

c + V
=

2cL

c2 − V 2
, (10)

i.e.

L =
T (c2 − V 2)

2c
=

NτV (c2 − V 2)

2c
= Nd

√
1− V 2

c2
, (11)

Here the V dependence is a manifestation of the FitsGerald-Lorentz length contraction.
If the ruler is at rest (V = 0) its length L is given by the number of ticks of the clock
multiplied by the size of the light-clock, L = Nd, while for 0 < V < c one finds a

contracted length of the ruler Nd
√

1− V 2/c2 < Nd.

Let us now consider a second spaceship/observer O′ moving with velocity V0 with
respect to O. Of course the measurement procedure just described from the O per-
spective can be simultaneously witnessed by O′. However, O′ must attribute a dif-
ferent calibration to the light-clock, since for O′ the velocity of the A-B-C system is
V ′ = (V + V0)/(1 + V V0/c

2). It is easy to verify that for O′ each tick of the light-clock
amounts to 2 d/

√
c2 − V ′2. And according to O′ the result of the measurement proce-

dure, the fact that the two-way journey of the probe takes N ticks of the light-clock,

leads to the conclusion that the ruler has length L′ = Nd
√

1− V ′2/c2.

In summary, a x-axis boost corresponding to relative OO′ velocity V0 is such that
a ruler with x-axis velocity V and length L for O is, for O′, a ruler with velocity

V ′ = (V +V0)/(1+V V0/c
2) and length L′ = L

√
(c2 − V ′2)/(c2 − V 2). The way in which

a Lorentz boost transforms the length L into the length L′ depends on the velocity of
the ruler. It is also important to notice that the measurement procedure for L, at least
as here setup in terms of a primary time measurement, can only be successful if the
velocity of the ruler is known (from Eq.(11) we see that L = f(T ; V ) = T (c2−V 2)/(2c)).

Let us first focus on the fact that the way in which a Lorentz boost transforms the
length L into the length L′ depends on the velocity of the ruler. This can be viewed
in analogy with the fact that a space-rotation around the z axis transforms the x-axis
component of angular momentum, Lx, into the x′-axis component, Lx′ , in a way that
depends on the value of the y-axis component Ly: Lx′ = cos(α)Lx + sin(α)Ly. As
emphasized in the previous subsection, discretization of the Lx (Lx′) spectrum can
be compatible with invariance under arbitrary continuous α-angle rotation only if the
instances in which Lx does take a sharp (discrete) value are such that Ly is affected

29



by an irreducible uncertainty. This is the case in ordinary quantum mechanics, where
the Lx and Ly observables do not commute. Analogously, in a quantum-gravity theory
in which the spectrum of lengths is discrete compatibility with Lorentz symmetry
requires [64] that the length observable does not commute with the velocity observable,
i.e. it requires that the instances in which the length of the ruler L does take a sharp
(discrete) value are such that the velocity V of the ruler is affected by an irreducible
uncertainty. This follows from the fact that a Lorentz boost by a velocity V0 leads to a

transformation {V, L} → {V ′, L′} ≡ {(V +V0)/(1+V V0/c
2), L

√
(c2 − V ′2)/(c2 − V 2)}.

The fact that a Lorentz boost transforms the length L into the length L′ in a way that
is continuous and depends on the velocity of the ruler leads to a necessary condition,
[L, V ] 6= 0, for length discretization to be compatible with ordinary Lorentz symmetry.

However, even in theories in which [L, V ] 6= 0 it might still not be possible to
achieve a logically-consistent scheme for the compatibility of length discretization with
Lorentz symmetry. An obstruction is suggested from the observation that, as empha-
sized above, a sharp measurement of the length of the ruler L requires that the velocity
of the ruler is known exactly. In ordinary quantum mechanics Lx discretization is com-
patible with space-rotation symmetry because sharp measurements of Lx introduce a
large uncertainty in the measurement of Ly. Since information on Ly is not needed
for the completion of Lx measurement procedures (as in the Stern-Gerlach example) it
is perfectly logical to contemplate contexts in which Lx is sharply measured while Ly

is affected by an irreducible uncertainty. Now we have seen that length discretization
could be compatible with Lorentz symmetry only if a sharp measurement of L intro-
duces a large uncertainty in the measurement of V . But since sharp information on V
is needed for the completion of a sharp L measurement procedure it is puzzling to con-
template contexts in which L is sharply measured while V is affected by an irreducible
uncertainty.

This obstruction represents a serious challenge for the idea of discrete lengths in-
troduced compatibly with ordinary Lorentz symmetry. The obstruction cannot be
eliminated within the length-measurement procedure here adopted: any uncertainty
in the velocity of the ruler would lead to at least some uncertainty in measurement
of the length of the ruler (therefore creating a conflict with hypothesis of sharp mea-
surement of L). Perhaps one should consider other length-measurement procedures,
but the reader will easily verify that all the commonly considered length-measurement
procedures do require sharp knowledge of the velocity of the ruler in order to achieve a
sharp measurement of its length. Moreover, from a conceptual perspective it is puzzling
to consider the possibility that only some very special length-measurement procedures
could achieve sharp results. In fact, we usually refer to the “length of the ruler” as if
it was an intrinsic property of the ruler, verifiable with any of a large choice of pos-
sible equivalent measurement procedures. If we must consider two classes of length
measurements, a “class A” that can achieve sharp measurement and a “class B” that
cannot, we would be more properly thinking of two different observablesp, one sharply
measurable and one with fuzzy properties.

pAn observable is properly introduced through a specific measurement procedure. We can attribute
several measurement procedures to “the same” observable only when these procedures give the same
results (allowing us to abstract the concept of length as an intrinsic property of the ruler, rather than
a property of a specific measurement procedure applied to the ruler).
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Some of these conceptual issues should be studied in the future, and the results
may affect the perspective here advocated, but in the meantime it appears necessary to
take seriously the obstruction here encountered. While waiting for studies of alternative
length-measurement procedures (length-measurement procedures that somehow do not
require knowledge of the speed of the ruler), it is proper to assume that we do not have
a logically-consistent scenario for introducing length discretization in a way that is
compatible with ordinary Lorentz symmetry.

4.4 On discretization of area, 3-volume and 4-volume

The conclusions drawn in the previous subsection for what concerns length discretiza-
tion are also applicable to area discretization and 3-volume discretization. The action
of a Lorentz boost on a given area (3-volume) depends on the velocity of the surface
(3-dimensional object) whose area (3-volume) is being measured. And a sharp mea-
surement of an area (3-volume) requires that the velocity of the surface (3-dimensional
object) is simultaneously known sharply. This observation can be easily verified by
considering the area of the triangle defined by 3 mirrors. That area can be measured
in terms of a time-of-travel procedure analogous to the one described in the previous
section.

For areas there has been also much discussion [84] of the possibility to measure the
area of a metal plate using an electromagnetic device that keeps a second metal plate
at a small distance d and measures the capacity C of the capacitor formed by the two
plates. The primary measurement would be the capacity, and the sought area would be
evaluated through the relationq A = dC/ε0. Also in the case of this area-measurement
procedure it is necessary to assume that one can measure accurately the velocityr of
the (metallic) surface whose area is being measured. In fact it is necessary to make
sure that the two surfaces that compose the capacitor are parallel (constant distance
d) and that they be centered with respect to one another. If the second surface (the
one that belongs to the measuring device) is much larger than the surface whose area
is being measured one should be concerned about “boundary effects” since the formula
A = dC/ε0 actually assume a highly symmetric configuration (it strictly applies to
infinite parallel metallic plates). If the two surfaces are roughly of the same size any
relative velocity would of course affect the capacity.

The situation for area ad 3-volume therefore appears to be completely analogous to
the one more carefully described here for what concerns lengths. Area discretization,
intended as the existence of “states” in which area is sharp (no uncertainty) and only
allowed to take discrete values, could be compatible with ordinary Lorentz symmetry

qThe presence of ε0 reflects the simplifying assumption that the measurement be perfomed in
absolute vacuum. This simplification does not affect the validity of my remarks.

rAlthough it is rather marginal with respect to the line of analysis advocated here, I should stress
that in this area-measurement procedure based on capacity measurement it is necessary to measure the
distance between the plates: if d is not known sharply then the relation between C and A becomes fuzzy
and the discretization of A may become unobservable. Assuming that all area measurements rely on
some distance/length measurement one would conclude that there are inevitable logical inconsistencies
in any attempt to construct a theory in which areas can be sharply measured but lengths cannot be
sharply measured. It is therefore a high priority for future research on these topics to establish whether
it is possible to devise an area-measurement procedure that does not rely on any length measurements.
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only in a theory in which the sharp measurement of the area requires an irreducible
uncertainty in the measurement of the velocity of the surface whose area is being
measured. But actually, since in the measurement procedures so far considered the
sharp measurement of areas requires an equally sharp knowledge of the velocity of the
surface, there appears to be a logical obstruction for the idea of a discretization of area
that is consistent with ordinary Lorentz symmetry. Clearly an analogous argument
applies to 3-volume discretization.

Somewhat different is the case of 4-volumes. A 4-volume is an invariant of Lorentz
transformations. There should not be any in-principle obstruction for introducing a
discretization of 4-volumes in a way that is compatible with ordinary Lorentz symmetry.
I am not really familiar with measurement procedures that allow the measurement of
a 4-volume without resorting to separate measurements of, say, a 3-volume and a time
interval, but assuming that procedures for the direct measurement of 4-volumes can be
devised it appears natural to assume that the outcome of these measurements could be
constrained on a discrete spectrum (when the outcome is sharp) and that this could
be implemented in a way that is fully compatible with ordinary Lorentz symmetry.

4.5 Lorentz symmetry and the type of discretization of area

and 3-volume discussed in the Loop Quantum Gravity
literature

As already mentioned earlier in these notes, the present understanding of Loop Quan-
tum Gravity involves a discretization of spacetime. The discretization is such that [68]
the spectra of the area observable and of the 3-volume observable are discrete.

Since it is not uncommon (although not necessary either, as stressed above) for a
“discretized space” to be affected by departures from the symmetries of the continuum
limit, the fact that in the Loop Quantum Gravity literature there has been much discus-
sion of broken Lorentz symmetry scenarios [69, 70, 72] and deformed Lorentz symmetry
scenarios [73, 74] could be interpreted as a manifestation of this discretization.

Indeed, following the line of reasoning advocated in this section (and in Ref. [64])
one is led to the conclusion that, while in general discretization of a space does not
necessarily imply loss of all continuous symmetries, a discretization of area and 3-
volume cannot be introduced compatibly with Lorentz symmetry. Even if one devises
a scenario in which the area observable does not commute with the surface-velocity
observable, one still should end up finding a logical inconsistency between discretization
of area and Lorentz symmetry. The inconsistency, as stressed above, originates from
the fact that, when the area observable and the surface-velocity observable do not
commute, a sharp measurement of the area observable appears to be impossible, since
(at least in the most common area-measurement procedures, some of which have been
considered here) information on the surface velocity is needed in order to perform an
accurate surface-area measurement.

In giving a physical meaning to the area-discretization results it is commonly stated
in the Loop-Quantum-Gravity literature that the flat surface of a table (or similar
examples) could only take certain discrete values. In light of the analysis here reported
this appears to be inconsistent with an unmodified Lorentz symmetry.
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In light of the present preliminary status of the development of Loop Quantum
Gravity, it is perhaps useful to stress that the arguments presented here do not com-
pletely rule out a compatibility between area discretization and ordinary Lorentz sym-
metry. In order for my argument to be applicable the area discretization must concerns
flat surfaces in a flat spacetime. It seems to me that at present very little is under-
stood of the physical interpretation of Loop-Quantum-Gravity area eigenstates. The
familiar Lorentz-transformation formulas for areas (and surface velocity) assume that
the underlying spacetime is flat and the surface is flat. Perhaps none of the Loop-
Quantum-Gravity area eigenstates would provide a suitable description of this situa-
tion (although the example adopted in the Loop-Quantum-Gravity literature, making
reference to the flat surface of a table, would suggest it). None of the results obtained
in the Loop-Quantum-Gravity literature appears to prove that the area of a flat sur-
face can be measured sharply. Perhaps only certain specific non-flat surfaces can be
measured sharply. If the area discretization only concerns such non-flat surfaces then
there is no obvious reason for questioning ordinary Lorentz symmetry on the basis of
area discretization.

5 Experimental searches of Planck-scale departures

from Lorentz symmetry

Studies of the fate of Lorentz symmetry in quantum gravity provide an excellent ex-
ample of quantum-gravity-phenomenology research line. As discussed in the previous
sections, in several (though, of course, not all) approaches to the quantum-gravity
problem one finds some evidence of departures from the familiar Lorentz symmetry.
Like other effects discussed in the quantum-gravity literature, the ones associated with
departures from Lorentz symmetry are very striking from a conceptual perspective.
There is a general consensus that some strikingly new effects should be present in
quantum gravity, although different intuitions for the quantum gravity problem may
lead to favouring one or another of these effects. As mentioned, it was tradition-
ally believed that even such strikingly new effects (certainly leading to characteristic
signatures) could not be tested because of their small magnitude, set by the small
ratio between the energy of the particles involved and the Planck energy scale. Work
on quantum-gravity phenomenology has proven that this old expectation is incorrect.
There is of course no guarantee that “quantum-gravity experiments” will ever lead to
any actual discovery, but it is clearly incorrect to adopt the a priori assumption that
the search of the tiny Planck-scale effects should be hopeless. This point is very clearly
illustrated in the context of tests of Planck-scale departures from Lorentz symmetry,
on which I focus in this section.

Rather than providing a more general discussion, I intend to convey my point in a
simple way by focusing on the possible emergence of Planck-scale-modified dispersion
relations,

E2 = m2 + ~p2 + f(~p2, E, m; Lp) , (12)

which are found in the large majority of quantum-gravity-motivated schemes for devi-
ations from ordinary Lorentz invariance (see, e.g., Refs. [8, 10, 20, 69, 72, 77]).
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If the function f is nontrivials and the energy-momentum transformation rules are
unmodified (the familiar Lorentz transformations) then clearly f cannot have the exact
same structure for all inertial observers. In this case Lorentz symmetry is necessarily
“broken”, in the sense clarified earlier in these notes, and it is legitimate to assume that,
in spite of the deformation of the dispersion relation, the rules for energy-momentum
conservation would be undeformed.

If instead f does have the exact same structure for all inertial observers, then neces-
sarily the laws of transformation between observers must be deformed (they cannot be
the ordinary Lorentz transformation rules). In this case Lorentz symmetry is deformed,
in the sense of the doubly special relativity [58] discussed earlier in these notes. There
is no preferred frame. The deformation of the laws of transformation between observers
impose that one must also necessarily [58] deform the rules for energy-momentum con-
servation (these rules are “laws of physics” and must therefore be the same for all
inertial observers).

While the case of deformed Lorentz symmetry might exercise a stronger conceptual
appeal (since it does not rely on a preferred class of inertial observers), for the purposes
of this paper it is sufficient to consider the technically simpler context of broken Lorentz
symmetry. Upon admitting a broken Lorentz symmetry it becomes legitimate, for
example, to adopt a dispersion relation with leading-order-in-Lp form

E2 ' ~p2 + m2 − η(LpE)n~p2 , (13)

without modifying the rules for energy-momentum conservation. In (13) η is a phe-
nomenological parameter of order 1 (and actually, for simplicity, I will often implicitly
take η = 1). n, the lowest power of Lp that leads to a nonvanishing contribution, is
model dependent. In any given noncommutative geometry one finds a definite value
of n, and it appears to be equally easy [58, 59, 85] to construct noncommutative ge-
ometries with n = 1 or with n = 2. In Loop Quantum Gravity one might typically
expect [85] to find n = 2, but certain scenarios [69, 86] have been shownt to lead to
n = 1.

I will use this widely-used scheme for Planck-scale Lorentz-symmetry breaking,
with dispersion relation (13) and unmodified rules for energy-momentum conservation,
to illustrate how a tiny (Planck-length suppressed) effect can be observed in certain
experimental contexts. The analysis will also show that the difference between the case
n=1 and the case n=2 is very significant from a phenomenology perspective. Already
with n = 1, which corresponds to effects that are linearly suppressed by the Planck
length, the correction term in Eq. (13) is very small: assuming η'1, for particles with
energy E ∼ 1012eV , some of the highest-energy particles we produce in laboratory, it
represents only a correction of one part in 1016. Of course, the case n = 2 pays the
even higher price of quadratic suppression by the Planck length and for E∼1012eV its
effects are at the 10−32 level.

sFor example, it would be pointless to introduce an f = L2
p[E2−~p2−m2]2, since then the dispersion

relation (12) would be equivalent to E2 = m2 + ~p2.
tNote however that the Loop-Quantum-Gravity scenario of Ref. [69] does not exactly lead to the

dispersion relation (13): for photons (m = 0) Ref. [69] describes a polarization-dependent effect
(birefringence).
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5.1 Gamma-ray bursts and Planck-scale-induced in-vacuo dis-
persion

A deformation term of the type Ln
pEnp2 in the dispersion relation, such as the one in

(13), leads to a small energy dependence of the speed of photons of order Ln
pEn (using

the relation v = dE/dp). An energy dependence of the speed of photons of order
Ln

pEn is completely negligible (both for n = 1 and for n = 2) in nearly all physical
contexts, but, at least for n = 1, it can be significant [20, 21] in the analysis of short-
duration gamma-ray bursts that reach us from cosmological distances. For a gamma-
ray burst a typical estimateu of the time travelled before reaching our Earth detectors is
T ∼ 1017s. Microbursts within a burst can have very short duration, as short as 10−4s.
We therefore have one of the “amplifiers” mentioned in Section 1: the ratio between
time travelled by the signal and time structure in the signal is a (conventional-physics)
dimensionless quantity of order ∼ 1017/10−4 = 1021. It turns out that this “amplifier”
is sufficient to study energy dependence of the speed of photons of order LpE. In
fact, some of the photons in these bursts have energies in the 100MeV range and
higher. For two photons with energy difference of order ∆E ∼ 100MeV an Lp∆E
speed difference over a time of travel of 1017s leads to a relative time-of-arrival delay of
order ∆t ∼ ηTLp∆E ∼ 10−3s. Such a quantum-gravity-induced time-of-arrival delay
could be revealed [20, 21] upon comparison of the structure of the gamma-ray-burst
signal in different energy channels.

The next generation of gamma-ray telescopes, such as GLAST [87], will exploit this
idea to search for energy dependence of the speed of photons of order LpE.

The same analysis leading to a time-of-arrival difference of order 10−3s for the n = 1
case, leads of course to a much smaller effect in the case n = 2 (the case of quadratic
suppression by the Planck length). For n = 2 the same analysis leads to a time-
of-arrival-difference estimate of order 10−23s, which is much beyond the sensitivities
achievable with GLAST and all foreseeable gamma-ray observatories.

Some access to effects characterized by the n = 2 case could be gained by ex-
ploiting the fact that, according to current models [88], gamma-ray bursters should
also emit a substantial amount of high-energy neutrinos. With advanced planned neu-
trino observatories, such as ANTARES [89], NEMO [90] and EUSO [91], it should
be possible to observe neutrinos with energies between 1014 and 1019 eV . Models of
gamma-ray bursters predict in particular a substantial flux of neutrinos with energies
of about 1014 or 1015 eV . One could, for example, compare the times of arrival of
these neutrinos emitted by gamma-ray bursters to the corresponding times of arrival
of low-energy photons. For the case n = 1 one would predict a huge time-of-arrival
difference (∆t ∼ 104s) and even for the case n = 2 the time-of-arrival difference could
be significant (e.g. ∆t ∼ 10−9s) and possibly within the reach of observatories that
could conceivably be planned for the not-so-distant future.

Current models of gamma-ray bursters also predict some production of neutrinos
with energies extending to the 1019eV level and higher. For such ultra-energetic neutri-
nos a comparison of time-of-arrival differences with respect to soft photons also emitted

uUp to 1997 the distances from the gamma-ray bursters to the Earth were not established experi-
mentally. By a suitable analysis of the gamma-ray-burst “afterglow” [20], it is now possible to establish
the distance from the gamma-ray bursters to the Earth for a significant portion of all detected bursts.
1017s is a rough average of this distance measurements.
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by the burster should provide, assuming n=2, an even more significant signal, possibly
at the level ∆t∼1s, which would be comfortablyv within the realm of timing accuracy
of the relevant observatories.

5.2 UHE cosmic rays and Planck-scale-modified thresholds

Let us now consider another significant prediction that comes from adopting the dis-
persion relation (13). I want to show that also certain types of energy thresholds for
particle-production processes may be sensitive to the tiny Ln

pEnp2 modification of the
dispersion relation I am considering. While in-vacuo dispersion, discussed in the pre-
ceding subsection, only depends on the deformation of the dispersion relationw, the
effects considered in this subsection also depend on the rules for energy-momentum
conservation, which are not modified in the Lorentz-symmetry breaking scenario I am
considering.

Let us start by considering a collision between a soft photon of fixed/known energy ε
and a high-energy photon of energy E. It is useful to review briefly the usual calculation
of the E threshold for electron-positron pair production: γ + γ → e+ + e−. One
can optimize the calculation by starting with the observation that the photon-photon
invariant evaluated in the lab frame must be equal to (among other things) the electron-
positron invariant evaluated in the center-of-mass frame:

(E + ε)2 − (P − p)2 = 4m2
e . (14)

Using the ordinary special-relativistic dispersion relation, this leads to the “threshold
condition”

E ≥ Eth = m2
e/ε . (15)

vFor this strategy relying on ultra-high-energy neutrinos the delicate point is clearly not timing, but
rather the statistics (sufficient number of observed neutrinos) needed to establish a robust experimental
result. Moreover, it appears necessary to understand gamma-ray bursters well enough to establish
whether there are typical at-the-source time delays. For example, if the analysis is based on a time-
of-arrival comparison between the first (triggering) photons detected from the burster and the first
neutrinos detected from the burster it is necessary to establish that there is no significant at-the-
source effect such that the relevant neutrinos and the relevant photons are emitted at significantly
different times. The fact that this “time history” of the gamma-ray burst must be understood only
with precision of, say, 1s (which is a comfortably large time scale with respect to the short time
scales present in most gamma-ray bursts) gives us some hope that the needed understanding could be
achieved in the not-so-distant future.

wThe dispersion relation (13) can also be implemented in a doubly special relativity (deformed
Lorentz symmetry) scenario [58]. The in-vacuo-dispersion analysis discussed in the preceding subsec-
tion applies both to Lorentz-symmetry breaking and Lorentz-symmetry deformation scenarios adopt-
ing (13). When (13) is adopted in a Lorentz-symmetry deformation scenario it is necessary [58] to con-
sistently modify the laws of energy-momentum conservation. Therefore the analysis of Planck-scale-
modified thresholds discussed in this subsection, which assumes unmodified laws of energy-momentum
conservation, does not apply to the scenario in which (13) is adopted in a Lorentz-symmetry defor-
mation scenario. Planck-scale-modified thresholds are present also in the case of Lorentz-symmetry
deformation, but there are significant quantitative differences [58].
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Notice that in going from (14) to (15), using the ordinary dispersion relation, the
leading-order terms of the type E2,P 2 have cancelled out, leaving behind the much
smaller (if ε � E) term of order Eε. This cancellation provides the “amplifier” needed
in quantum-gravity phenomenology, which in this case can be identified as E/ε. In
presence of the Planck-scale departures from Lorentz symmetry the threshold will be
significantly modified if Ln

pEnp2 is comparable to (or greater than) Eε. While we nor-
mally expect Lp-related effects to become significant when the particles involved have
energy 1/Lp, here for n = 1 the effect is already significant when E ∼ (ε/Lp)

1/2, which
can be considerably smaller than 1/Lp if ε is small. Analogously for n = 2 the effect
starts being significant at E ∼ (ε/L2

p)
1/3. In fact, adopting the modified dispersion

relation (13) and imposing ordinary (unmodified) energy-momentum conservation one
finds [25] the modified threshold relation

Ethε− ηLn
pE2+n

th

2n − 1

22+n
' m2

e (16)

(which again is valid when E � m and E � ε).
Analogous modifications of threshold relations are found for other processes. In

particular, the case of photopion production, p+γ → p+π, also leads to an analogous
result in the case in which the incoming proton has high energy E while the incoming
photon has energy ε such that ε � E. In fact, adopting the modified dispersion relation
(13) and imposing ordinary (unmodified) energy-momentum conservation one finds [25]
the modified threshold relation

Eth '
(mp + mπ)2 −m2

p

4ε
− η

Ln
pE2+n

th

4ε

(
m1+n

p + m1+n
π

(mp + mπ)1+n
− 1

)
. (17)

This result on the photopion-production threshold is relevant for the analysis of
UHE (ultra-high-energy) cosmic rays. A characteristic feature of the expected cosmic-
ray spectrum, the so-called “GZK limit”, depends on the evaluation of the minimum
energy required of a cosmic ray in order to produce pions in collisions with cosmic-
microwave-background photons. According to ordinary Lorentz symmetry this thresh-
old energy is Eth'5·1019eV and cosmic rays with energy in excess of this value should
loose the excess energy through pion production. Strong interest was generated by the
observation [22, 23, 24, 25, 26, 92] that the Planck-scale-modified threshold relation
(17) leads, for positive η, to a significantly higher estimate of the threshold energy, an
upward shift of the GZK limit. This would provide a description of the observations
of the high-energy cosmic-ray spectrum reported by AGASA [93], which can be inter-
preted as an indication of a sizeable upward shift of the GZK limit. Both for the case
n = 1 and for the case n = 2 the Planck-scale-induced upward shift would be large
enough [22, 23, 24, 25, 26, 85, 92] for quantitative agreement with the UHE cosmic-ray
observations reported by AGASA.

There are other plausible theory explanations for the AGASA “cosmic-ray puz-
zle”, and the experimental side must be further explored, since another cosmic-ray
observatory, HIRES, has not confirmed the AGASA results. The situation will be-
come clearer with planned more powerful cosmic-ray observatories, such as the Pierre
Auger Observatory, which will soon start taking data. Still, the possibility that in
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these cosmic-ray studies we might be witnessing the first manifestation of a quantum
property of spacetime is of course very exciting; moreover, whether or not they end up
being successful in describing cosmic-ray observations, these analyses provide another
explicit example of a minute Planck-scale effect that can leave observable traces in ac-
tual data. If Auger ends up establishing that UHE cosmic-ray data are fully consistent
with ordinary Lorentz symmetry this would result in very significant (Planck-scale) ex-
perimental bounds on quantum-spacetime-induced breakup of Lorentz symmetry not
only for the case n = 1 but also for the case n = 2.

In addition to the process p + γ → p + π (and its implications for UHE cosmic
rays), also the process γ + γ → e+ + e− has been considered from the point of view
of experimental tests. From the result (16) it follows that, if n = 1, for E ∼ 10TeV
and ε ∼ 0.01eV the modification of the threshold is significant. These values of E and
ε are relevant for the observation of multi-TeV photons from certain Blazars [24, 25].
This high-energy photons travel to us from very far and they travel in an environ-
ment populated by soft photons, some with energies suitable for acting as targets for
the disappearance of the hard photon into an electron-positron pair. Depending on
some still-poorly-known properties (such as the density) of the far-infrared soft-photon
background the spectrum of multi-TeV photons from certain Blazars carries informa-
tion that can be used to test the result (16), if η is positive. For n = 1 we are very
close [26, 94, 95] to the sensitivity necessary to test the Planck-scale effects, but for
n = 2 the effects are too small for testing in the foreseeable future.

5.3 Planck-scale modified decay amplitudes

The study of certain particle decays provides yet another possibility to test the idea of
broken Lorentz symmetry at the Planck scale in the way codified by the model I am us-
ing in this section as illustrative example (the phenomenological model that adopts the
modified dispersion relation (13), with unmodified laws of energy-momentum conserva-
tion). For negative η some particles which are stable at low energies become unstable
above a certain energy scale, while for positive η some particles which are unstable at
low energies become (nearly) stable at high energies.

Let me start by considering the case of positive η, which is the choice of sign needed
in order to push upward the GZK limit for cosmic rays. I consider the simple example
of the decay of a pion into two photons, and I focus on the case n = 1. Again it is
useful to first review the relevant derivation within ordinary relativistic kinematics.
One can optimize the calculation by starting with the observation that the photon-
photon invariant in the lab frame should be equal to the pion invariant:

(E + E ′)2 − (~p + ~p′)2 = m2
π . (18)

Using the conventional relativistic dispersion relation this can be easily turned into a
relation between the energy Eπ of the incoming pion, the opening angle φ between the
outgoing photons, and the energy E of one of the photons (the energy E ′ of the second
photon is of course not independent; it is given by the difference between the energy
of the pion and the energy of the first photon):

cos(φ) =
2EE ′ −m2

π

2EE ′ , (19)
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where indeed E ′ = Eπ − E. Of course, cos(φ) must be ≤ 1, since φ must be a
real physical angle for all values of E. Note however that typically (unless E ' 0
or E ' Eπ) m2

π � 2EE ′ ∼ E2
π/2 and the equation for cos(φ) has the form cos(φ) =

(2EE ′−∆)/2EE ′, with ∆ = m2
π. So the fact that cos(φ) ≤ 1 for all values of E depends

only on the fact that ∆ > 0, which is automatically satisfied within ordinary relativistic
kinematics through the prediction ∆ = m2

π. A new kinematics predicting that ∆ < 0
for some values of E would have significant implications. In order to have a negative
∆ it is sufficient to introduce a relatively small correction, a correction of order m2

π.
This is what happens in the scheme I am considering. The modified dispersion relation
(13) when combined with unmodified energy-momentum conservation, assuming n = 1,
modifies the relation between φ, Eπ and E according to the formula [27]

cos(φ) ' 2EE ′ −m2
π + 3LpEπEE ′

2EE ′ + LpEπEE ′ . (20)

This relation shows that at high energies the phase space available to the decay is
reduced by the Planck-scale correction: for given value of Eπ certain values of E that
would normally be accessible to the decay are no longer accessible (they would require
cosθ > 1). This effect starts to be noticeable at pion energies of order (m2

π/Lp)
1/3 ∼

1015eV , but only very gradually (at first only a small portion of the available phase
space is excluded).

As observed in Refs. [96, 27] this prediction can be tested through its implications
for the longitudinal development of the air showers produced by interaction of high-
energy cosmic-rays with the atmosphere. The pion lifetime is in fact a key factor in
determining the longitudinal development of these air showers. Remarkably, certain
puzzling features have been reported in analyses [96] of the longitudinal development
of these air showers, and a possible explanation could be provided [27] by the type
of high-energy pion stability that the Planck-scale effects can induce. Independently
of whether or not this preliminary experimental encouragement is confirmed by more
refined data on pion decay, it is important for the line of argument here presented that
this scheme for the analysis of pion stability is another example of a Planck-scale effect
that can become significant in processes involving particles with energies well below
the Planck scale.

A interesting result is found also in the case of negative η: some particles which
are stable at low energies become unstable at high energies. A much studied example
is “photon instability”: the process γ → e+ + e− would be allowed at high energies
if one adopts the modified dispersion relation (13) and unmodified laws of energy-
momentum conservation. The process γ → e+ + e− can be analyzed in close analogy
with the previously discussed process γ + γ → e+ + e−. Assuming n = 1, one finds
that the process γ → e+ + e− is allowed when the photon energy is higher than
(m2

e/Lp)
1/3 ∼ 1013eV . Observations in astrophysics appear to be in conflict [26, 97]

with this prediction, and therefore the case with n = 1 and negative η is ruled out
experimentally. More evidence that Planck-scale effects can be tested (so much so that
some possibilities are being ruled out).
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5.4 Interferometry and Planck-scale-induced in-vacuo disper-
sion

In discussions of possible experimental tests of Planck-scale (quantum-gravity) mod-
ifications of Lorentz symmetry it is commonly assumed that such tests should rely
exclusively on astrophysics, as in the examples discussed so far in this section. How-
ever, Lämmerzahl and I recently observed [29] that in the foreseeable future (perhaps a
not-so-distant future) Planck-scale modifications of Lorentz symmetry could be tested
in the controlled laboratory setup of modern laser interferometers (LIGO/VIRGO-type
ground interferometers or LISA-type space interferometers). Our observation is based
on the idea of operating such an interferometer with two different frequenciesx, perhaps
obtained from a single laser beam by use of a “frequency doubler” (see e.g. [98]).

I here just want to discuss a rough and simple-minded estimate of the magnitude
of the effect, within a specific interferometric setup. The interested reader can find
a more realistic analysis, and descriptions of other interferometric setups in Ref. [29].
Once again I will adopt as illustrative example of Planck-scale departures from Lorentz
symmetry the one codified in the modified dispersion relation (13). I will only consider
the case n = 1, i.e. departures from the standard dispersion relation that are only
linearly suppressed by the Planck length. The even smaller effects that one encounters
in the case n = 2 are clearly beyond the reach of the interferometric studies considered
in Ref. [29].

Let me start by considering an interferometer with two orthogonal arms, respec-
tively of length L and L′. L and L′ are kept distinct because the signal turns out
to be proportional to |L − L′|. Before entering the interferometer, a monochromatic
wave with frequency ω goes through a frequency doubler. Both emerging beams, of
frequencies ω and 2ω, are then split into a part that goes through the arm of length L
and a part that goes through the arm of length L′. When the beams are finally back
(after reflection by mirrors) at the point where the interference patterns are formed,
one then has access to two interference patterns: one interference pattern combines
two waves of frequency ω and the other interference pattern is formed combining anal-
ogously two waves of frequencies 2ω. In an idealized setup (ignoring for example a
possible wavelength dependence in beam-mirror interactions) the observed intensities
would be governed by

Iω ∝ 1

2
(1 + cosφω) , φω = k(L′ − L) , (21)

I2ω ∝ 1

2
(1 + cosφ2ω) , φ2ω = k′(L′ − L) , (22)

where k′ is the wavelength associated with the doubled frequency 2ω.

xModern interferometers achieve remarkable accuracies also thanks to an optimization of all ex-
perimental devices for response to light of a single frequency. The requirement of operating with light
at two different frequencies is certainly a challenge for the realization of interferometric setups of the
type proposed in Ref. [29]. This and other practical concerns are not discussed here. The interested
reader can find a preliminary discussion of these challenges in Ref. [29].
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With the ordinary unmodified dispersion relation, one has that k′ = 2k, but in the
case of our Planck-scale-deformed dispersion relation

k′ ' 2k + η
k2

ωp
, (23)

where ωp is the Planck frequency (ωp ∼ Ep).
One can then rewrite φ2ω − φω, from (21) and (22), using again the Planck-scale-

deformed dispersion relation

φ2ω − φω = ω

(
1 +

3

2
η

ω

ωp

)
(L′ − L) . (24)

This phase-difference relation characterizes a key difference between the standard
dispersion relation and the Planck-scale-deformed dispersion relation in the interfero-
metric setup here considered. In the case of the standard classical-spacetime dispersion
relation one expects a specific type of correlations, which follow straightforwardly from
k′ = 2k, between the values of Iω and I2ω for given values of L′ − L. For example,
clearly one expects that the intensity I2ω of the wave at frequency 2ω has a maximum
whenever L′ − L = 2jπ/ω (with j any integer number), and that correspondingly the
intensity Iω of the wave at frequency ω has either a maximum or a minimum. One
therefore predicts, without any need to establish the value of j, that the configurations
in which there is a maximum of I2ω must also be configurations in which there is a
maximum or a minimum of Iω. The Planck-scale-modified dispersion relation modifies
this prediction: for example, as codified by Eq. (24), the modified dispersion relation
predicts that configurations in which there is a maximum of I2ω should be such that Iω

is in the neighborhood but not exactly at one of its maximum/minimum values. More
precisely, when L′ − L is such that I2ω(L′ − L) is at a maximum value the quantum-
gravity effect in (24) predicts that Iω(L′−L) should differ from a maximum/minimum
value of Iω as if for being out-of-phase by an amount (3η/2) · (L′ − L)ω2/ωp.

This type of characteristic feature could be looked for by, for example, taking data
at values of L′ − L that differ from one another by small (smaller than 1/ω) amounts
in the neighborhood of a value of L′ − L that corresponds, say, to a maximum of
I2ω. Perhaps, techniques for the active control of mirrors which are already being
used in modern interferometers might be adapted for this task, and the development
of dedicated techniques does not appear beyond our reach. In Ref. [29] we reported
a simple-minded comparison of the magnitude of the Planck-scale-induced phase dif-
ference to the phase sensitivity of LIGO/VIRGO-type or LISA-type interferometers.
That comparison provided some encouragement for the idea of performing these tests
in the not-so-distant future, although several technical challenges are to be overcome
before any attempt of an actual realization of this type of interferometric setup.

6 Closing remarks

There is perhaps something to be learned from looking at quantum-gravity research in
the way I here advocated: exploring the connection between a given quantum-gravity
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approach and the perspective that generated it. This exercise appears to suggest that
what one finds in a given quantum-gravity approach might be more directly connected
with the perspective which has been adopted, rather than with something intrinsic
in the quantum-gravity problem. Many features of quantum-gravity approaches that
originate from the particle-physics perspective, such a String Theory, simply reflect
the intuition that one develops working with the Standard Model of particle physics.
Analogously quantum-gravity approaches that originate from the general-relativity per-
spective or from the condensed-matter perspective carry a strong trace of intuition
developed in working in those fields.

The expectations concerning the fate of Lorentz symmetry in quantum gravity
appear to be a natural way to discriminate between the different perspectives. As I
stressed here, it is rather obvious that a particle-physics perspective should lead to
quantum-gravity approaches in which there is no a priori reason for departures from
ordinary Lorentz symmetry. And it is equally obvious that instead from the condensed-
matter perspective Lorenz symmetry should only emerge as an approximate symmetry.
Somewhat more subtle are the indications of the general-relativity perspective for the
fate of Lorentz symmetry, and therefore I devoted a significant portion of these notes
to the general-relativity perspective. Results obtained in recent years, some of which I
reviewed here, suggest that also from the general-relativity perspective some departures
from Lorentz symmetry might naturally emerge. If one adopts a description based
fundamentally on noncommutative geometry (as some aspects of the general-relativity
perspective could invite us to do) departures from Lorentz symmetry are really very
natural, perhaps inevitable. And there is now growing evidence that also when the
general-relativity perspective leads to discretized-spacetime approaches, as in Loop
Quantum Gravity, departures from Lorentz symmetry are naturally encountered. I
here also presented additional observations, of more general validity, that favour the
presence of departures from Lorentz symmetry in approaches based on the general-
relativity perspective.

Tests of possible Planck-scale departures from Lorentz symmetry, besides giving
us a chance of finding the first experimental facts about the quantum-gravity realm,
are therefore also a way to check which one of these three perspectives should be
favoured. Remarkably, as discussed in Section 6, there will be several opportunities in
these coming years for experimental searches of Planck-scale departures from Lorentz
symmetry.

In choosing a title for these notes I ended up adopting one suggesting that there
are only three possible perspectives on the quantum-gravity problem (“The three per-
spectives on the quantum-gravity problem”), but it is not unlikely that what we really
need is the discovery of a novel fourth perspective, which may or may not be based on
a combination of the three perspectives here considered.

References

[1] C. Rovelli, gr-qc/9710008, Living Rev. Rel. 1 (1998) 1.

[2] L. Smolin, hep-th/0303185; L. Smolin, “Three Roads to Quantum Gravity” (Wei-
denfeld and Nicolson, London, 2000).

[3] S. Doplicher, K. Fredenhagen and J.E. Roberts, Phys. Lett. B331 (1994) 39.

42



[4] D.V. Ahluwalia, Phys. Lett. B339 (1994) 301.

[5] Y.J. Ng and H. Van Dam, Mod. Phys. Lett. A9 (1994) 335.

[6] G. Amelino-Camelia, gr-qc/9603014, Mod. Phys. Lett. A9 (1994) 3415; gr-
qc/9603013; Mod. Phys. Lett. A11 (1996) 1411.

[7] L.J. Garay, Int. J. Mod. Phys. A10 (1995) 145.

[8] G. Amelino-Camelia and S. Majid, hep-th/9907110, Int. J. Mod. Phys. A15 (2000)
4301.

[9] S. Minwalla, M. Van Raamsdonk and N. Seiberg, hep-th/9912072, JHEP 0002
(2000) 020 .

[10] A. Matusis, L. Susskind and N. Toumbas, hep-th/0002075, JHEP 0012 (2000) 002.

[11] A. Anisimov, T. Banks, M. Dine and M. Graesser hep-ph/0106356.

[12] G. Amelino-Camelia, L. Doplicher, S. Nam and Y.-S. Seo, hep-th/0109191,
Phys. Rev. D67 (2003) 085008; G. Amelino-Camelia, G. Mandanici and
K. Yoshida, hep-th/0209254.

[13] G.E. Volovik, gr-qc/0301043, Found. Phys. 33 (2003) 349; The Universe in a
Helium Droplet (Clarendon Press, Oxford, 2003).

[14] G. Chapline, E. Hohlfeld, R.B. Laughlin and D.I. Santiago, Phil. Mag. 81 (2001)
235; gr-qc/0012094; R.B. Laughlin, gr-qc/0302028, Int. J. Mod. Phys. A18 (2003)
831.

[15] N.R. Douglas and N.A. Nekrasov, Rev. Mod. Phys. 73 (2001) 977.

[16] J. Stachel, “Early History of Quantum Gravity”, in “Black Holes, Gravitational
Radiation and the Universe”, B.R. Iyer and B. Bhawal eds. (Kluwer Academic
Publisher, Netherlands, 1999).

[17] N. Arkani-Hamed, S. Dimopoulos and G. Dvali, Phys. Lett. B429 (1998) 263.

[18] ) C.J. Isham, Structural issues in quantum gravity, in Proceedings of General rel-
ativity and gravitation (Florence 1995).

[19] G. Amelino-Camelia, “Are we at the dawn of quantum-gravity phenomenology?”,
gr-qc/9910089, Lect. Notes Phys. 541 (2000) 1; “Quantum-gravity phenomenol-
ogy: status and prospects”, gr-qc/0204051, Mod. Phys. Lett. A17 (2002) 899.

[20] G. Amelino-Camelia, J. Ellis, N.E. Mavromatos and D.V. Nanopoulos, hep-
th/9605211, Int. J. Mod. Phys. A12 (1997) 607; G. Amelino-Camelia, J. Ellis,
N.E. Mavromatos, D.V. Nanopoulos and S. Sarkar, astro-ph/9712103, Nature 393
(1998) 763.

[21] S.D. Biller et al, Phys. Rev. Lett. 83 (1999) 2108.

43



[22] T. Kifune, Astrophys. J. Lett. 518 (1999) L21.

[23] R. Aloisio, P. Blasi, P.L. Ghia and A.F. Grillo, Phys. Rev. D62 (2000) 053010.

[24] R.J. Protheroe and H. Meyer, Phys. Lett. B493 (2000) 1.

[25] G. Amelino-Camelia and T. Piran, astro-ph/0008107, Phys. Rev. D64 (2001)
036005; G. Amelino-Camelia, gr-qc/0012049, Nature 408 (200) 661.

[26] T. Jacobson, S. Liberati and D. Mattingly, hep-ph/0112207.

[27] G. Amelino-Camelia, gr-qc/0107086, Phys. Lett. B528 (2002) 181; G. Amelino-
Camelia, M. Arzano, Y.J. Ng, T. Piran, H. Van Dam, hep-ph/0307027.

[28] O. Bertolami, hep-ph/0301191.

[29] G. Amelino-Camelia and C. Lämmerzahl, gr-qc/0306019.

[30] G. Amelino-Camelia, gr-qc/9808029, Nature 398 (1999) 216; gr-qc/9903080,
Phys. Rev. D62 (2000) 024015; gr-qc/0104086, Nature 410 (2001) 1065; gr-
qc/0104005.

[31] D.V. Ahluwalia, gr-qc/9903074, Nature 398 (1999) 199.

[32] Y.J. Ng and H. van Dam, gr-qc/9906003, Found. Phys. 30 (2000) 795.

[33] J. Ellis, J.S. Hagelin, D.V. Nanopoulos and M. Srednicki, Nucl. Phys. B241 (1984)
381.

[34] P. Huet and M.E. Peskin, Nucl. Phys. B434 (1995) 3.

[35] V.A. Kostelecky and R. Potting, Phys. Rev. D51 (1995) 3923; O. Bertolami,
D. Colladay, V.A. Kostelecky and R. Potting, Phys.Lett. B395 (1997) 178.

[36] J. Ellis, J. Lopez, N.E. Mavromatos and D.V. Nanopoulos, Phys. Rev. D53 (1996)
3846.

[37] F. Benatti and R. Floreanini, Nucl. Phys. B488 (1997) 335.

[38] I.C. Perival and W.T. Strunz, Proc. R. Soc. A453 (1997) 431.

[39] L.J. Garay, Phys. Rev. Lett. 80 (1998) 2508.

[40] G. Amelino-Camelia and F. Buccella, hep-ph/0001305, Mod. Phys. Lett. A15
(2000) 2119.

[41] J. Anandan, Phys. Lett. A105 (1984) 280; Class. Quant. Grav. 1 (1984) 151.

[42] D.V. Ahluwalia, gr-qc/0202098.

[43] M. Gasperini, Phys. Rev. D38 (1988) 2635.

44



[44] G.Z. Adunas, E. Rodriguez-Milla and D.V. Ahluwalia, Gen. Rel. Grav. 33 (2001)
183.

[45] D.V. Ahluwalia, gr-qc/0009033.

[46] R. Brustein, M. Gasperini, M. Giovannini and G. Veneziano, Phys. Lett. B361
(1995) 45; R. Brustein, gr-qc/9810063; G. Veneziano, hep-th/9902097;
M. Gasperini, hep-th/9907067.
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