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Abstract

The measurement of Standard Model processes tests the
validity of the model at a given scale and is simultaneously
sensitive to new physics through loop effects or interfer-
ence with the Standard Model amplitudes. A variety of
studies has been done to see what a linear collider in the
energy rangemZ <

√
s < 1 TeV can offer. The work that

has been done within the ECFA/DESY workshop on linear
colliders is reviewed, especially what was not included in
the TESLA TDR.

INTRODUCTION

It is a common belief that the Standard Model of elec-
troweak interactions is not the final theory valid up to very
high scales. Nevertheless the model is able to describe all
experimental data up to now with a typical precision around
one per mille [1]. At a lineare+e− collider that can run
at centre of mass energies,

√
s, between the Z-pole and

around1 TeV one expects to see finally deviations from
the Standard Model predictions. These deviations in pre-
cision measurements occur typically for two reasons. If
the new physics occurs in loop diagrams their effect is usu-
ally suppressed by a loop factorα/4π and very high pre-
cision is required to see it. If the new physics occurs al-
ready on the Born level but at very high masses, the effects
are suppressed by a propagator factor s

(s−m2
NP

)+imNP Γ
so

that it is important to work at the highest possible ener-
gies. Both effects have already been used successfully in
the past. PEP, PETRA and TRISTAN have been able to
measure the fermion couplings to the Z although they were
running at energies roughly a factor two below the reso-
nance pole [2]. Ten years ago LEP could predict the mass
of the top from its loop effects [3], exactly where it was
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found at the TEVATRON later [4]. Today we are able to
limit the Higgs mass to roughly200 GeV from loop effects
at LEP, SLD and the TEVATRON (figure 1) or to set limits
of about500 GeV on the mass of a hypothetical Z’ boson
from two fermion production at LEP II (figure 2) [5]. In
the same way we expect that in ten years from now a linear
collider will estimate, depending on the physics scenario
nature has chosen, model parameters in a supersymmetric
theory from high statistics running at the Z resonance or
the mass of a techni-ρ resonance from W-pair production
at high energies [6].
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Figure 1: Prediction of the Higgs mass from the elec-
troweak precision data.

There are several types of reactions to test the Stan-
dard Model or to investigate alternative theories. With two
fermion or four fermion production on the Z-pole or close
to the W-pair production threshold one can improve on the
measurements done at LEP and SLD by an order of magni-
tude. Two fermion production at high energies is sensitive
to contact interactions in general or more specific to heavy
Z’-bosons or models with extra space dimensions. Four or
six fermion production at high energy has a large contribu-
tion from multi gauge boson production which is sensitive
to gauge boson couplings. This is especially interesting
if no elementary Higgs boson exists and the electroweak
symmetry is broken by a new strong interaction at a high
scale.

In the following sections the results of the “Electroweak
Gauge Theories and Alternative Theories” group of the
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Figure 2: Exclusion of Z’ within E(6) models from LEP.

ECFA/DESY linear collider workshop will be discussed
with particular emphasis on the progress since the TESLA
TDR [6] in March 2001.

An essential ingredient for all precision measurements
are accurate Standard Model calculations which are needed
to one or two loop precision. Quite some progress has been
made in the last years and many more calculations are still
under way. This work is summarised in a special contribu-
tion to these proceedings [7].

THE GIGA-Z SCENARIO

The main physics goals of the Giga-Z scenario are a
measurement of the effective leptonic weak mixing angle
with a precision of∆sin2 θleff = 0.000013 from the left-
right asymmetry, which would be an improvement of a fac-
tor 13 from LEP/SLD and a measurement of the W-mass
with an experimental accuracy of∆mW = 6 MeV, im-
proving the present LEP/TEVATRON result by a factor six
[6]. While the sin2 θleff measurement has no competition
at any other machine the LHC has the goal to measure the
W-mass with a precision of15 MeV [8]. The anticipated
Giga-Z accuracy is shown in figure 3 [9] compared to the
present and LHC precision and to the predictions of the
Standard Model and the MSSM.

The experimental requirements for this measurement are
a luminosity ofL ≈ 5 · 1033cm−2s−1 at

√
s ∼ mZ which

allows to record109 Z-decays in less than a year, electron
and positron polarisation to measure polarisation mainly
from data, a beam energy measurement of∆

√
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Figure 3: Expected precision formW andsin2 θleff at Giga-
Z compared to the present situation and to the LHC expec-
tation. LHC/LC denotes LC high energy running only.

relative tomZ close to the Z-peak and an extrapolation
from mZ to 2mW with ∆

√
s/
√
s < 5 · 10−5 and con-

trol of the beamstrahlung on the few % level. If also the
Z-partial width measurements shall be improved, an ab-
solute measurement of the luminosity with a precision of
∆L/L = 10−4 is needed [10, 11, 12].

Excellent polarimeters are needed for relative measure-
ments like time dependencies or the polarisation difference
between positive and negative helicities of the beam parti-
cles. Detailed design studies for polarimetry, beam energy
measurement, measurement of the beamstrahlung and of
the luminosity are currently under way [13, 14].

Significant progress was achieved on the theoretical side.
The largest parametric uncertainty for the measurement of
sin2 θleff is the uncertainty in the hadronic contribution to
the running of the fine structure constant up to the Z-mass,
α(m2

Z). Not to be limited too much by the knowledge of
α(m2

Z) the hadronic cross sectionσ(e+e− → qq̄) needs to
be known with 1% precision up to theΥ region [15]. CMD
II basically achieved this goal in theρ region [16, 17], how-
ever there are some discrepancies with theτ spectral func-
tions [18, 19]. In the region2 GeV <

√
s < 5 GeV BES II

improved the data recently from 20% to 7% accuracy [20]
and further progress is possible. In addition precise results
from radiative return experiments at DAΦNE, CESR and
the b-factories can be expected in the near future.

Significant progress has been achieved also in the pre-
diction of the W-mass. The calculation ofmW from the
Fermi constant andmZ is now complete to second order
plus themt dependent 3-loop corrections [7]. This re-
sults in an uncertainty in themW prediction of around
3 − 4 MeV. For sin2 θleff some 2-loop contributions are
still missing and the theoretical uncertainty is estimated to

2



be∆sin2 θleff = 0.00006 much larger than the experimen-
tal goal [21]. Also some other complicated calculations
that are necessary for Giga-Z are not yet done and there is
still a long way to go.

e+e− → ff AT HIGH ENERGY

The most general parameterisation for new physics at
high scales are contact interactions. For very large masses
of the exchange particles the propagator goes like

∣∣∣∣ 1
s−M2

∣∣∣∣ ≈
∣∣∣∣ 1
t−M2

∣∣∣∣ ≈ 1
M2

so that the new interaction can be parameterised in a con-
tact term 1

Λ2 which is equal to g2

16πM2 in gauge theories.
Since the experimental sensitivity to the contact term

comes mostly from the interference with the Standard
Model amplitude the helicity structure is important. TDR
studies at

√
s = 800 GeV gave typical limits around

50 TeV for e+e− → µ+µ− ande+e− → bb̄. The LHC
reaches similar limits, however mainly for the coupling be-
tween leptons and light quarks. Figure 4 shows the linear
collider reach inΛ for e+e− → µ+µ−,

√
s = 500 GeV

andPe = 0.8 as a function of the integrated luminosity
[22]. In a recent study the sensitivity of Bhabha and Moller
scattering to contact interactions has been studied [23]. It
was found that the limits can be improved by typically 20%
compared to muons. Due to the lower luminosity ine−e−

running compared toe+e− the sensitivities in Bhabha and
Moller scattering are about the same.
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Figure 4: Contact interaction reach of the linear collider
for e+e− → µ+µ−,

√
s = 500 GeV andPe = 0.8 as a

function of the integrated luminosity.

Models with Z’

There are two approaches to study models with a Z’ at
a linear collider. In a model dependent study one assumes

that one knows the model so that the Z’-mass is the only
free parameter. In this case all couplings are fixed and any
deviation of a measurement from the Standard Model value
translates directly into a value of the Z’-mass. All final
states can be used in this case. As for the contact terms
there is a large difference between the models since the
main sensitivity comes from the interference term. Figure
5 compares the reachable Z’ masses for different models
at the linear collider and the LHC [24]. On average the
reachable masses are similar for both machines and around
4 TeV.

0 2 4 6 8 10 12

P−=0.8

P+=0.6

LC
0.5TeV

1ab−1

LHC
1ab−1

14TeV

SSM

LR

η
ψ
χ

LHC
100fb−1

14TeV

2σ

P−=0.8
P+=0.6

LC
0.8TeV

1ab−1

Z’m TeV][

Figure 5: Mass reach for a Z’ in different models for LHC
and LC. The solid bars correspond to a5σ discovery, while
the dashed ones correspond to a2σ exclusion.

In a model independent approach the Z’ mass and the
Z’ couplings are considered simultaneously as free param-
eters. Any observable is given as the product of initial state
and final state couplings, so that a Z’ remains invisible
in e+e− if it does not couple to leptons. For this reason
hadronic events can be used only when non-zero Z’-lepton
couplings are already established. At a given centre of mass
energy a linear collider is sensitive to the normalised cou-
plings

aNf = a′f

√
s

m2
Z′ − s

vNf = v′f

√
s

m2
Z′ − s
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which can be measured for leptons in a model independent
way using cross sections and asymmetries. A Z’ model is
then defined as a line in theaNf −vNf plane where the exact
position is given by the Z’ mass. Figure 6 shows the sen-
sitivity of the linear collider assuming for the central value
a χ-model withmZ′ = 6 TeV, which is outside the LHC
sensitivity [24]. Also shown is the prediction for several
E(6) models, whereχ, ψ, η stands for different mixing an-
gles between the gauge bosons from theU(1)χ andU(1)ψ
gauge group [25]. The different models can be clearly sep-
arated with high luminosity.

In the ideal case the LHC finds a Z’ and measures its
mass so the linear collider can measure the couplings. Fig-
ure 7 shows the LC sensitivity in this case for different
models and different assumptions on

√
s andmZ′ [6]. In

general the couplings can be measured with a precision of
a few percent.

-0.2

-0.1

0

0.1

0.2

-0.2 -0.1 0 0.1 0.2
aN

l

vN l

χ

ψ

η

√s = 0.8 TeV

L=1ab-1

L=50fb-1

SM

m
Z

,[T
eV

]

←

20
10

6
4

Figure 6: Measurement of normalised Z’ couplings at
TESLA. Theχ-model withmZ′ = 6 TeV is assumed for
the central value.

For the left-right symmetric model an analysis on the
one loop level has been performed [26]. In this model the
quadratic top mass dependence of∆ρ is suppressed by a

term
M2

W1
M2

W2
−M2

W1

whereW1 is the observed W-boson and

MW2 > 500 GeV. The successful prediction ofmt at
LEP was therefore a pure accident and the heavy Higgs
and right handed neutrino masses need to be fine tuned to
fit the LEP/SLD precision data.

Another study analysed the sensitivity to Z–Z’ mixing
one can get from the Z-data and the W mass [27]. As an
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Figure 7: Measurement of the Z’ couplings at a linear col-
lider for different Z’ masses and centre of mass energies.

example figure 8 shows the current measurements and the
Giga-Z expectation compared to several Z’ models assum-
ing that a115 GeV Higgs has been found. It can be seen
that apart fromsin2 θleff andmW an accurate measurement
of the leptonic decay width of the Z,Γl, is useful as well.

Extra space dimensions

The linear collider and the LHC are sensitive to the pres-
ence of extra space dimensions via effects from Kaluza
Klein tower graviton (G∗) exchange. In the TDR it has
been shown that there are visible effects frome+e− →
γG∗ ande+e− → G∗ → ff for an extra dimension scale
of MH < 8 TeV and

√
s = 800 GeV. The reach of LHC

is similar. Recently the emphasis has been put on the ques-
tion how one can distinguish an extra dimensions signal
from a Z’ in case a deviation from the Standard Model is
seen. Here one can use the fact that the Graviton is a tensor
particle.

If one defines the moments〈Pn〉 =
∫
dz 1

σ
dσ
dzPn(z),

where thePn are the Legendre polynomials andz = cos θ
is the cosine of the polar angle, one can show that for vec-
tor or scalar particle s-channel exchange〈Pn〉 = 0 for
n > 2 while for tensor particle exchange〈P3,4〉 6= 0
[28]. A unique identification of tensor particle exchange
can be achieved up to around5 TeV with

√
s = 800 GeV,

L = 1 ab−1 and electron (positron) polarisation of 80%
(60%). Similar results can be obtained with specially con-
structed asymmetries [29].
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Figure 8: Predictions of several models with a Z’ compared
to the present and predicted Giga-Z precision data. The
ellipse around the crossing point indicates the uncertainty
from the present day error onmt andα(mZ).

If transverse beam polarisation is available for both
beams one can measure the azimuthal asymmetry as a func-
tion of the polar angle [30]. Figure 9 shows this asym-
metry for leptons b- and c-quarks for the Standard Model
and forMH = 1.5 TeV. Using this asymmetry extra di-
mensions can be excluded up toMH < 10(22)TeV for√
s = 0.5(1)TeV, which is the highest reach at a next gen-

eration collider. For vector and scalar particle exchange
the azimuthal asymmetry is symmetric incos θ, while it is
asymmetric if also tensor particle exchange is present. This
allows to distinguish extra dimensions from Z’ exchange up
toMH < 10

√
s.

CP violation inτ production

In the Standard Model the CP-violating dipole moment
of the τ lepton is extremely small (∼ 10−34 e cm). How-
ever for example in models with Majorana neutrinos or in
CP violating two Higgs doublet models these moments can
be of order10−19 e cm.

It has been studied how well the electric and weak dipole
moment can be measured inτ pair production at TESLA
using spin correlations and polarised beams [31]. For this
analysisτ → πν andτ → ρν decays have been used and
CP-odd vector correlations between the twoτs have been
constructed. At

√
s = 800 GeV the real parts of the weak

and the electromagnetic dipole moment can be measured
with a precision of3 − 4 · 10−19 e cm which touches the
interesting region. For the imaginary parts the precision is

θcos

θcos

θcos

SM

m  =1.5TeVH
s = 500GeV

c−quarks

b−quarks

µ,τ

Figure 9: Azimuthal asymmetry with transverse beam po-
larisation as a function of the polar angle for leptons b- and
c-quarks for the Standard Model and forMH = 1.5 TeV.

about three orders of magnitude worse.

GAUGE BOSON PRODUCTION

High precision measurements of gauge boson production
are interesting in several aspects. The interactions amongst
gauge bosons are directly given by the structure of the
gauge group. The longitudinal gauge bosons are connected
to the mechanism of electroweak symmetry breaking so
that their interactions can teach us about this mechanism
in case no elementary Higgs boson exists. In a strongly in-
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teracting theory the longitudinal components of the gauge
bosons are expected to have similar interactions at very
high energies as the pions in QCD at low energy.

In a weakly interacting theory including an elementary
Higgs boson gauge boson self-interactions should receive
loop corrections ofO( g2

16π2 ) ∼ 3 · 10−3. If the experimen-
tal precision is larger than this number gauge boson inter-
actions should be able to test the then Standard Model in
the same way assin2 θleff andmW do it now.

For the TDR a detailed study including full detector sim-
ulation has been done fore+e− → W+W− [32]. It has
been found than the C, P conserving couplings can be mea-
sured with a precision of3−15·10−4 at

√
s = 500 GeV and

around a factor two better at
√
s = 800 GeV. This is much

better than the expected effects from radiative corrections
so that W-pair production will become a new precision ob-
servable. In a strongly interacting scenario this precision
translates into a new physics scale ofΛ > 10 TeV which
is also significantly above theΛ ≤ 3 TeV limit from uni-
tarity. The C or P violating couplings can be measured
roughly one order of magnitude worse than the C, P con-
serving ones.

Recently a study using optimal observables has been
done [33]. This work is on parton level only up to now,
but it has shown that the imaginary parts of the couplings
can be measured simultaneously with the real parts with
about the same precision and without degrading the preci-
sion of the real parts. Only one combination of couplings
(Im(gR1 +κR)) cannot be measured with longitudinal beam
polarisation. If transverse beam polarisation is available
this coupling can be measured. In this case, however, the
precision of the other coupling is degraded by roughly a
factor of two [34].

Also the measurement of the triple gauge couplings at a
photon collider inγγ → WW andeγ → Wν has been
studied, using hadronic W decays only. The study ofeγ →
Wν is reasonably complete [35], while inγγ → WW the
azimuthal decay angle,φ, which is sensitive to the inter-
ference of the different helicity amplitudes is still missing
[36]. Both reactions can be selected cleanly with an over-
all efficiency around 80%. Figure 10 shows the polar angle
distribution foreγ → Wν and the background after cuts
on the visible energy and the invariant mass. In the realeγ
mode, where only one beam is converted, only some back-
ground in the extreme forward and backward regions is left
from eγ → Ze and fromγγ induced hadron production
which can easily be rejected by an angular cut. In the par-
asitic mode, where theeγ luminosity duringγγ running is
used, some additional background fromγγ →WW where
one W decays leptonically is left.

The cross sections in these two channels are much larger
than ine+e−. However there are no large gauge cancella-
tions so that the final precision is comparable in all cases.
Figure 11 compares the expected precision forκγ andλγ
at the different machines. Forγγ andeγ a 0.1% error on
the luminosity is assumed. It should be noted thatκγ is
very sensitive to the luminosity error and to uncertainties

[deg]θ

a)

[deg]θ

b)

Figure 10: Signal and background foreγ →Wν in the real
eγ mode (a) and from the parasiticγγ running (b). The
white area represents the signal. In a) the hatched contri-
bution on the left is fromγγ induced processes and the one
on the right fromeγ → eZ. The additional cross-hatched
(green) contribution in b) is fromγγ → qq̄ and the singly
hatched (red) fromγγ →WW .

in the polarisation whileλγ is basically insensitive to these
effects. Foreγ the improvement using theφ angle in the
fit is a factor seven forλγ , a similar factor can be expected
for γγ as well. In summaryκγ will be measured signifi-
cantly worse ineγ andγγ than ine+e−, however still good
enough for cross checks in case deviations from the Stan-
dard Model are found. Forλγ the photon collider could
give the best result.

In an alternative study the leptonic W decays ineγ →
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Figure 11: The expected precision forκγ andλγ at differ-
ent machines.

Wν have been considered [37]. In these events only a
single lepton is seen in the detector. The couplings have
been measured from the cross section in an optimised phase
space region where background and the variable photon en-
ergy has been taken into account. Assuming no error on the
normalisation, the error inκγ is similar for the two analy-
ses taking the lower leptonic branching ratio of the W into
account. Forλγ the error in the leptonic analysis is signifi-
cantly larger because of the missing information due to the
second missing neutrino.

It is known since long thate+e− → W+W− is sensitive
to technicolour vector resonances in the same way as the

ρ is seen ine+e− → π+π− [38]. It has been shown now,
thatγγ → W+W− is sensitive to rescattering effects from
a scalar or a tensor resonance [39]. Figure 12 compares the
cross section for longitudinal gauge boson production in
the central region for the Standard Model and for a tensor
resonance with a mass of2.5 TeV. An experimental study,
if these effects are measurable at TESLA, is planned.

These studies underline the importance to measure the
gauge couplings in several different channels. For example
a vector resonance would result in anomalous gauges cou-
plings ine+e− while in γγ andeγ one might still measure
the Standard Model values.
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Figure 12: Cross section for longitudinal W-pair produc-
tion in γγ scattering for the Standard Model and in pres-
ence of a tensor resonance with2.5 TeV mass.Jz denotes
the spin of theγγ system.

The reactionγγ → W+W− is also the ideal place to
test for anomalousγγW+W− quartic couplings. These
couplings have been first studied ine+e− → W+W−γ
and limits of the coupling parameters ofO(1) at

√
s =

500 GeV have been found [40, 41]. The cross section de-
pendence ofγγ → W+W− on these couplings has been
studied and limits on these couplings have been derived
[42]. Figure 13 shows the cross section dependence on
these couplings for

√
s = 1 TeV. Without systematic un-

certainties limits between10−4 and10−2 can be achieved.
This is about three orders of magnitude better than the
e+e− result.

CONCLUSIONS

It has been shown that electroweak precision tests con-
tribute significantly to the physics of a linear collider. Pre-
cision measurements on the Z pole can test model param-
eters inside or beyond the Standard Model. Two-fermion
production at high energy tests a wide class of models like
those containing additional Z’ bosons or extra space dimen-
sions. The limits are often comparable or better than those
at the LHC. W-pair production provides new precision ob-
servables on the same level assin2 θleff ormW. If no light
Higgs exists, gauge boson production offers a window to
strong electroweak symmetry breaking.
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In summary it is the combination of the direct studies of
the probable extensions of the Standard Model, like Higgs
and SUSY, with the potential of the precision tests that
makes the Linear Collider a unique tool to understand the
physics of electroweak symmetry breaking.
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