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Techniques for NNLO Higgs production in the Standard Model and the MSSM
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New techniques developed in connection with the NNLO corrections to the Higgs production
rate at hadron colliders and some recent applications are reviewed.

1 Introduction

The NLO corrections for the dominant Higgs production mechanism at hadron colliders, gg → H,
amount to about 70% and suffer from rather large scale uncertainties.1,2,3 The need for the
evaluation of the NNLO cross section has resulted in promising new calculational techniques.
The first part of this talk will briefly review these techniques. In the second part, we will discuss
a recent application, namely the NNLO cross section for MSSM Higgs production in bottom
quark fusion.

2 Techniques for Higgs production at NNLO

The first calculation of the NNLO prediction for the cross section σ(pp → H + X) used the
classic approach of computing the amplitudes for virtual and real corrections, squaring them,
and integrating over the final state phase space. The two-loop virtual amplitude for gg → H
was evaluated4 using the method of Baikov and Smirnov5 that maps the occuring integrals to
the well-known class of three-loop propagator-type integrals.6 The phase space integration for
the two-loop virtual terms is trivial, resulting in δ(1−x), where x = M2

H/ŝ and ŝ is the partonic
center of mass (c.m.) energy.

The one-loop amplitude for the radiation of a single massless parton has to be interfered
with the corresponding tree-level expression, and integrated over the two-particle phase space.
Both loop and phase space integration can be performed analytically.

This leaves us with the tree-level contributions for the radiation of two massless partons.
The squared amplitude can be obtained straightforwardly with the help of FORM.7 In the first
approach that we are going to describe, the phase space integrals were evaluated in terms of
an expansion in (1 − x). The leading term is called the soft approximation8,9 and is formally
of order (1 − x)−1, where the associated divergence as x → 1 is parameterized in terms of the
distributions δ(1 − x) and [lnn(1 − x)/(1 − x)]+. The higher orders in (1 − x) can be obtained
by a systematic expansion of the squared amplitude and the phase space measure.10 The crucial
point is that, independent of the degree of this expansion, one always ends up with the same
type of integrals. This classifies the procedure as an algorithm, which can be fully automated.



Integrating the resulting expansion of the partonic cross section over the parton densities,
one observes that higher orders in (1− x) are numerically irrelevant, and the resulting hadronic
cross section is phenomenologically equivalent to the result derived from the exact partonic cross
section.10 On the other hand, one can make an ansatz of a sum of polylogarithms with unknown
coefficients, expand it in (1 − x), and compare the result with the expansion obtained for the
partonic cross section.11 Given that this expansion is known to sufficiently high (but finite!)
orders, this determines the coefficients of the polylogarithms and thus the exact result for the
partonic cross section.11,12

Clearly, the method of phase-space expansion is a bottom-up approach: starting at the
soft approximation, one can successively improve the accuracy of the result by including higher
orders in (1 − x), until a sufficient number of terms is known to invert the series and arrive at
the exact result.

A second method to obtain the NNLO result for the Higgs production rate has been developed
by Anastasiou and Melnikov13. According to the Cutkosky rules, one can write, for example,

∫
dPS

∣∣∣∣ H

∣∣∣∣
2

= H
(1)

where the initial and final states of the diagram on the r.h.s. are identical. Without cuts, this
diagram would be a double-box diagram with two external scales, ŝ and MH . Such diagrams
can be evaluated with the help of the general algorithms that have been developed within
the last few years in the context of 2 → 2 scattering amplitudes at NNLO (see, e.g., a recent
review14). The crucial observation of Anastasiou and Melnikov13 was that these algorithms are
directly applicable to cut diagrams of the kind shown on the r.h.s. of Eq. (1).a In this way,
the partonic cross section for Higgs production was derived in closed form13. Needless to say
that a re-expansion of this closed expression recovered the expressions derived through phase-
space expansion10. In turn, the result obtained by inverting the expansion11,12 confirmed the
closed expression. The NNLO results for the production of a pseudo-scalar Higgs were obtained
independently and simultaneously in both approaches12,16. Meanwhile, the NNLO results for
both scalar and pseudo-scalar Higgs production have been re-confirmed using the analoguous
approach that was applied to the NNLO Drell-Yan calculation.17

The phenomenological implications of the NNLO are significant and have been discussed
extensively in the literature.10,13,17 They shall not be repeated here due to space limitations.

3 Higgs production in bottom quark fusion

The production rate for a SM Higgs boson being under good theoretical control, one may ask
to which extent these results are applicable also for Higgs boson production in supersymmetric
models. For simplicity, we will restrict ourselves to the Minimal Supersymmetric Standard
Model (MSSM) in this talk.

The answer is that the NNLO production rate of a neutral scalar Higgs boson in the MSSM
can be inferred directly from the known MSSM prediction in only a rather restricted parameter
space, in particular for small tan β and large squark masses. Also the production of a pseudo-
scalar Higgs boson has been evaluated at NNLO12,16,17 within these restrictions.

In other regions of parameter space, virtual contributions of sypersymmetric particles such as
squarks may become important.18 On the other hand, large values of tan β enhance the Yukawa

aLet us remark that the meaning of “cut” in this context is not restricted to Cutkosky-cuts. For example, the
cut lines can be initial rather than final states (which leads to the method used to originally derive the virtual
terms5,4), or they can be restricted to a particular kinematic configuration.15



coupling of bottom quarks. Thus, the ggφ coupling may have a significant contribution from
virtual bottom quarks (φ denotes any of the neutral Higgs bosons in the MSSM). In this case,
the NNLO corrections are much harder to evaluate, because the effective-Lagrangian approach
of the top quark case is not expected to work.

The main focus here shall be another effect of an enhanced bottom Yukawa coupling,
namely the increased rate of associated production of a Higgs boson with a bottom–anti-bottom
quark pair. There has been an on-going discussion concerning the proper description of this
process.19,20,21,22 A priori, the leading order contribution is, of course, the tree-level process
gg → φbb̄, where φ denotes any of the MSSM Higgs bosons h,H,A. However, when evaluating
the total rate for this process, the integration over small bottom-pT leads to collinear logarithms
of the form lb ≡ ln(m2

b/M
2), where M is a scale of the order of the Higgs boson mass. Since

mb �Mφ ∼M , these logarithms should be resummed. This is achieved by introducing bottom
quark densities and making the process bb̄ → φ the leading order contribution. Schematically,
one can write the total cross section in the bottom density approach as follows:

σ(pp→ H + X) =
∞∑

n=0

(αslb)n+2

[
cn0 + cn1

1
lb

+
1
l2b

(
cn2 + αsdn3 + α2

s dn4 + . . .
)]

. (2)

This equation is to be understood as follows: First of all, one should note that the cni and dni are
not obtained individually for each n, because the sum over n is implicit in the parton densities.
Including only the leading order process bb̄→ φ, one obtains the contribution from the cn0. The
NLO diagrams contribute terms of order 1/lb (e.g., gb→ bφ) and of order αs (bb̄→ φ at 1-loop)
with respect to the leading term. Both are contained in the cn1. At NnLO, for n ≥ 2, we have
terms of order αn−k

s /lkb w.r.t. LO, where k = 0, 1, 2. The reason why there can be only two
inverse powers of lb comes from the fact that there are only two initial state partons. Looking at
Eq. (2), it becomes clear why the NNLO plays an exceptional role in this process: It comprises
all terms at leading order in αs.

The calculation of the processb pp → (bb̄)φ in the bottom density approach proceeds in
complete analogy to, say, Drell-Yan production of virtual photons. Technical details of the
calculation can be found elsewhere.23

Fig. 1 (a) shows the factorization scale dependence of the cross section at LO, NLO, and
NNLO at the LHC, for a Higgs mass of MH = 120 GeV at the LHC. We notice several intriguing
features: First, in contrast to the LO and NLO result, the NNLO curve has a clearly distinguished
point where the derivative is zero, i.e. where the sensitivity to µF is minimal. Second, the NNLO
corrections are zero at a point where the NLO corrections are small. Third, this point is close
to the point of least sensitivity. And fourth, all these points are compatible with a previous
estimate20,22,21 of the “natural” factorization scale for this process of around µF = MH/4. For
the Tevatron, the overall picture is essentially the same23. These features nicely demonstrate
the self-consistency of the bottom density approach and support the general considerations
concerning the proper choice of the factorization scale for heavy quark partons.20,22,21

Fig. 1 (b) shows the total cross section for pp→ (bb̄)H + X as a function of the Higgs boson
mass up to NNLO, for two different values of the factorization scale, indicating the theoretical
uncertainty (the renormalization scale dependence can be neglected).

Conclusions. Recent progress in the evaluation of radiative corrections has led to NNLO
predictions for Higgs production at hadron colliders, both in the SM and the MSSM. The results
are very stable with respect to scale variations and indicate a well-behaved perturbative series.
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Figure 1:

(a) Factorization scale dependence of the cross section for pp→ (bb̄)H +X (tan β = 1); (b) Total
cross section for pp→ (bb̄)H + X — upper/lower line: µF = 0.7MH/µF = 0.1MH [µR = MH ].
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