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Abstract
The effects of the first nonlinear corrections to the DGLAP equations are
studied in light of the HERA data. Saturation limits are determined in the
DGLAP+GLRMQ approach for the free proton and for the Pb nucleus.

1. Introduction

Parton distribution functions (PDF) of the free proton,fi(x,Q2), are needed for the calculation of the
cross sections of hard processes in hadronic collisions. Once they are determined at certain initial scale
Q2

0, the DGLAP equations [1] describe well their scale evolution at large scales. Based on the global
fits to the available data several different parametrizations of PDF have been obtained [2, 3, 4]. The
older PDF sets do not describe adequately the recent HERA data [5] on the structure functionF2 at the
perturbative scalesQ2 at smallx. In the analysis of newer PDF sets, such as CTEQ6 [4] and MRST2001
[2], these data have been taken into account. However, difficulties arise when fitting both small and large
scale data simultaneously. In the MRST set, the entire H1 data set [5] has been used in the analysis,
leading to a good average fit at all scales, but at the expense of allowing for a negative NLO gluon
distribution at smallx andQ2 <

∼
1 GeV2. In the CTEQ6 set only the large scale (Q2 > 4 GeV2) data

have been included, giving a good fit at largeQ2, but leaving the fit at small-x and smallQ2 (Q2 < 4
GeV2) region worse. Moreover, the gluon distribution at the values of smallx andQ2 <

∼
1.69 GeV2 has

been set to zero.

These problems are interesting as they can be signs of a new QCD phenomenon: at small values
of momentum fractionx and scalesQ2, gluon recombination terms, which lead to nonlinear corrections
to the evolution equations, can become significant. First ofthese nonlinear terms have been calculated
by Gribov, Levin and Ryskin [6], and, Mueller and Qiu [7]. In the following these correction terms shall
be referred to as GLRMQ terms for short. With the modifications, the evolution equations become [7]
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where the two-gluon density can be modelled asx2G(2)(x,Q2) = 1
πR2 [xg(x,Q2)]2, with the radius of

the protonR = 1 fm. The higher dimensional gluon termGHT [7] is here assumed to be zero. The
effects of the nonlinear corrections to the DGLAP evolutionof the PDF of the free proton were studied
in [8] in view of the recent H1 data; the results are discussedbelow.

2. The analysis

The goal of the analysis in [8] was (1) to possibly improve the(LO) fit of the calculatedF2(x,Q2) to the
H1 data [5] at smallQ2, while (2) at the same time maintain the good fit at largeQ2, and finally (3) to
study the interdependence between the initial distributions and the evolution.

∗Contribution to CERN Yellow Report on Hard Probes in Heavy Ion Collisions at the LHC.

http://arxiv.org/abs/hep-ph/0302185v1


5 10
0

2 5 10
1

2 5 10
2

2

Q
2

1

2

3

4

5

6

7

8

9

F 2
(x

,Q
2 )+

c(
x)

5 10
0

2 5 10
1

2 5 10
2

2

Q
2

1

2

3

4

5

6

7

8

9

5 10
0

2 5 10
1

2 5 10
2

2

Q
2

1

2

3

4

5

6

7

8

9

5 10
0

2 5 10
1

2 5 10
2

2

Q
2

1

2

3

4

5

6

7

8

9

.

. . .

. . . .

. . .
. .

. . .
. . .

. . . . . .
. .

. . . . . .
. . . .

. . . . . . . . .
.

.
. . . . . . . . . .

. . . . . . . . . .
.

.
.

. . . . . . . . .

. .

5 10
0

2 5 10
1

2 5 10
2

2

Q
2

1

2

3

4

5

6

7

8

9

.
. . . . . . . .

. .

.
. . . . . .

. .

. .
. . . . .

.
. .

. . . .
. .

. . . .
. .

. . .
. .

. .
. .

0.000032

0.00005

0.00008

0.00013

0.0002

0.00032

0.0005

0.0008

0.001

0.0013
0.00158
0.002
0.00251
0.0032
0.00398
0.005
0.00631
0.008
0.01
0.013
0.0158
0.02
0.0251
0.032
0.0398
0.05
0.0631
0.08
0.13
0.2

CTEQ6L
DGLAP+GLRMQ, set 2a
DGLAP+GLRMQ, set 1

. H1 data

5 10
0

2 5 10
1

2 5 10
2

2

Q
2

5

10
1

2

5

10
2

2

xg
(x

,Q
2 )

10
-5

10
-4

10
-3

10
-2

CTEQ6L
DGLAP+GRLMQ, set 1

Fig. 1: Left: F2(x, Q2) calculated using CTEQ6L [4] (dotted-dashed) and the DGLAP+GLRMQ results with set
1 (solid) and set 2a (double dashed) [8], compared with the H1data [5].Right: TheQ2 dependence of the gluon
distribution function at fixedx, from set 1 evolved with DGLAP+GLRMQ (solid), and directly from CTEQ6L
(dotted-dashed).

In CTEQ6L a good fit to the H1 data is obtained (see Fig. 1) with aflat small-x gluon distribution at
Q2 ∼ 1.4 GeV2. As can be seen from Eqs. (1-2), the GLRMQ corrections slow down the scale evolution.
Now one may ask whether the H1 data can be reproduced equally well with different initial conditions
(i.e. assuming larger initial gluon distributions) and theGLRMQ corrections included in the evolution.
This question has been studied in [8] by generating three newsets of initial distributions using DGLAP
+ GLRMQ evolved CTEQ5 [3] and CTEQ6 distributions as guidelines. The initial scale was chosen to
beQ2

0 = 1.4 GeV2, slightly below the smallest scale of the data points. The modified distributions atQ2
0

were constructed piecewise from CTEQ5L and CTEQ6L distributions evolved down fromQ2 = 3 and
10 GeV2 (CTEQ5L) andQ2 = 5 GeV2 (CTEQ6L). A power law form was used in the small-x region to
tune the initial distributions until a good agreement with the H1 data was found.

The difference between the three sets in [8] is that in set 1 there is still a nonzero charm distribution
at Q2

0 = 1.4 GeV2, which is slightly below the charm mass treshold, taken to bemc = 1.3 GeV in
CTEQ6. In sets 2 the charm distribution has been removed at the initial scale and the resulting deficit in
F2 has been compensated by slightly increasing the other sea quarks at smallx. Moreover, the effect of
the charm was studied by using different mass tresholds:mc = 1.3 GeV in set 2a whereas in set 2b it is
mc =

√
1.4 GeV, i.e. charm begins to evolve immediately from the initial scale.

The results from the DGLAP+GLRMQ evolution with the new initial distributions are shown in
Figs. 1. The left panel shows the comparison between the H1 data and the (LO) structure function
F2(x,Q2) =

∑

i e2
i x[qi(x,Q2) + q̄i(x,Q2)] calculated from set 1 (solid lines), set 2a (double dashed)

and the CTEQ6L parametrization (dotted-dashed lines). As can be seen, the results are very similar,



which shows that with modified initial conditions and DGLAP+GLRMQ evolution, one obtains as good
or even a better fit to the HERA data (χ/N = 1.13, 1.17, 0.88 for the sets 1, 2a, 2b, correspondingly) as
with the CTEQ6L distributions (χ/N = 1.32).

The evolution of the gluon distribution functions in the DGLAP+GLRMQ and DGLAP cases is
illustrated more explicitly in the right panel of Fig. 1, in which the absolute distributions for fixedx are
plotted as a function ofQ2 for set 1 and for CTEQ6L. The figure shows how the differences which are
large at initial scale vanish during the evolution due to theGLRMQ effects. At scalesQ2 >

∼
4 GeV2 the

GLRMQ corrections fade out rapidly and the DGLAP terms dominate the evolution.

3. Saturation

The DGLAP+GLRMQ approach also offers a way to study the gluonsaturation limits. For eachx in the
small-x region, the saturation scaleQ2

sat can be defined as the value of the scaleQ2 where the DGLAP

and GLRMQ terms in the nonlinear evolution equation become equal, ∂xg(x,Q2)
∂ log Q2 |Q2=Q2

sat
(x) = 0. The

region of applicability of the DGLAP+GLRMQ is atQ2 > Q2
sat(x) where the linear DGLAP part

dominates the evolution. In the saturation region, atQ2 < Q2
sat(x), the GLRMQ terms dominate, and all

nonlinear terms become important.

In order to find the saturation scalesQ2
sat(x) for the free proton, the obtained initial distributions

(set 1) atQ2
0 = 1.4 GeV2 have to be evolved downwards in scale using the DGLAP+GLRMQ equations.

As discussed in [8], since only the first correction term has been taken into account, the gluon distribution
near the saturation region should be considered as an upper limit. Consequently, the obtained saturation
scale is an upper limit as well. The result is shown in Fig. 2 (asterisks). The saturation line for the free
proton from the geometric saturation model by Golec-Biernat and Wüsthoff (G-BW) [11] is also plotted
(dashed line) for comparison. It is interesting to note thatalthough the DGLAP+GLRMQ and G-BW
approaches are very different, the slopes of the curves are very similar at the smallest values ofx.

Saturation scales for nuclei can also be determined in a similar manner. For a nucleusA, the two-
gluon density can be modelled asx2G(2)(x,Q2) = A

πR2

A

[xg(x,Q2)]2, i.e. the effect of the correction is

enhanced by a factor ofA1/3. Now a first estimate for the saturation limit can be obtainedby starting the
downwards evolution at high enough scales,Q2 = 100 . . . 200 GeV2, where the GLRMQ terms are neg-
ligible. The result, which similarly to the proton case is anupper limit, is shown for Pb in Fig. 2 (dots).
The effect of the nuclear modifications was also studied by applying the EKS98 [10] parametrization at
the high starting scale. As a result, the saturation scalesQ2

sat(x) are somewhat reduced, as shown in
Fig. 2 (crosses). The saturation limit obtained for a Pb nucleus by Armesto in a Glauberized geomet-
ric saturation model [12] is shown (dotted-dashed) for comparison. Again, despite of the differences
between the approaches, the slopes of the curves are strikingly similar.

For further studies and for more accurate estimates ofQ2
sat(x) in the DGLAP+GLRMQ approach,

a full global fit analysis for the nuclear parton distribution functions should be performed, along the same
lines as in EKRS [13, 10] and in HKM [14].
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Fig. 2: The gluon saturation limits in the DGLAP+GLRMQ approach forproton (asterisks) and Pb (A = 208),
with (crosses) and without (dots) nuclear modifications [8]. The saturation line for the proton from the geometric
saturation model [11] (dashed line), and for Pb from [12] (dotted-dashed) are also plotted.
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