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Abstract. In this paper, we investigate the “Hamiltonian” monodromy of the fibration in Liouville tori of certain integ-
rable systems via (real) algebraic geometry. Using Picard-Lefschetz theory in a relative Prym variety, we determine the
Hamiltonian monodromy of the “geodesic flow on SO(4)”. Using a relative generalized Jacobian, we prove that the
Hamiltonian monodromy of the spherical pendulum can also be obtained by Picard-Lefschetz formula.

Introduction

The aim of this paper is to relate the “Hamiltonian” monodromy of the fibration in Liouville tori of certain
integrable systems with the monodromy of the fibration in (real) Abelian variety, via Picard-Lefschetz theory.

Consider an integrable system with n degrees of freedom. Assume the Hamiltonian is a proper map, so
that, according to the Arnold-Liouville theorem (see [2]), the connected components of the regular level sets
of the momentum mapping are n-dimensional compact tori, the Liouville tori. If the set of regular values
of the momentum mapping is not simply connected, the fibration by the Liouville tori can have a non trivial
monodromy.

Assume now that n = 2. When a singular point around which it is possible to turn is a “focus-focus” point
(this is a nondegeneracy assumption), a general theorem of Nguyen Tien Zung [17] asserts that the Hamiltonian
monodromy is non trivial.

This is, very classically, what happens for the spherical pendulum: the Hamiltonian monodromy phe-
nomenon showed us precisely in this example investigated by Cushman to illustrate the possible non existence
of global action-angle coordinates (see Duistermaat’s foundational paper [10] and the book [9]). The case of
the symmetric spinning top is completely similar.

Another example in which there is a component in the set of regular values which is not simply connected
is the case of geodesic flows of invariant metrics on SO(4) (or “4-dimensional free rigid body”) that T will
investigate in this paper.

In these examples as in many others, the phase space is an algebraic submanifold of a space R2Y and the
first integrals are polynomials. It is thus possible to complexify all the data. Very often (and in particular in the
examples mentioned above) the differential system may be written as a Lax equation with a spectral parameter,
the set of singular values of the momentum mapping is the discriminant locus of a family of affine plane curves
and the fibration in Liouville tori appears (sometimes up to a covering map) as the real part of a fibration in
Abelian varieties associated with this family.
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We will use this algebro-geometric framework to describe the “Hamiltonian” monodromy. Of course, there
can be complex monodromy, turning around a branch of the discriminant hypersurface, but this is not what
we are interested in: what we want is to turn around something real, staying in the reals. Thus we must turn
around something having codimension 2, intersection of two branches of the (codimension-1!) discriminant:
the singular spectral curves we will look at will have two double points.

Applying twice the Picard-Lefschetz formula and looking carefully at the real structures of the curves and
their Jacobians, we will get the monodromy.

Here is a description of the results and organization of the paper.

— In § 1, I consider families of (real) algebraic curves and express, according to Picard-Lefschetz theory,
the monodromy around a real point of the discriminant corresponding to two non real double points.

— In § 2, I concentrate on two specific families of elliptic curves. To get non trivial monodromy from the
general considerations of § 1 in these examples, I will replace the relative Jacobian by another family of
algebraic tori:

e cither the family of Pryms of a double branched cover of the elliptic curve
e or the family of generalized Jacobians of a singular genus-2 curve (of which the original elliptic
curve is the normalization).
In both cases, I determine the monodromy of the fibration, for the family of complex tori and for its real
part.

— In § 3, I come to integrable systems. The two families of curves considered abstractly in § 2 turn out to
be the families of spectral curves for Lax equations describing respectively

e the geodesic flow on SO(4)

e the spherical pendulum.
Using the eigenvectors of the Lax matrices, I prove that the fibrations in algebraic tori of § 2 are models
for the fibrations in Liouville tori and deduce the Hamiltonian monodromy from the algebro-geometric
results. As far as I know, the explicit determination of the monodromy for the SO(4) case is new (1. In
the case of the spherical pendulum(2), I recover Cushman’s classical results. As a byproduct, the Picard-
Lefschetz formula shows the Hamiltonian monodromy as given by integrating a (non holomorphic)
meromorphic differential form. This phenomenon was observed, using a direct computation, in [8].

— In §4, I recall a few facts I use on real generalized Jacobians and in § 5, I have grouped a few computa-
tions used or mentioned in the paper.

1. General setting

Consider an n-dimensional family of affine (real) plane curves. Assume that two smooth local branches B
and By of the discriminant intersect transversally in such a way that

BlﬂRn:BgﬂRn:(BlﬂBg)ﬂRn

is a codimension-2 submanifold of R".
To be more specific, we will consider two families of elliptic curves.

Example 1.1. Consider the curves E}, ;. of equations

A(2)y? + Byu(@)y + Cla) = 0

M1t would be a consequence of the results of [17] if the number of critical points and their non degeneracy were determined, but
explicit computations are rather tedious...

(In this case, the connected components of the real part of the Jacobian are indeed compact 2-tori although the Jacobian itself is non
compact. This is something we should expect, since one of the first integrals is a periodic Hamiltonian, inducing an S*-action, which
complexifies into a C*-action.
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where A, By,  and C are real polynomials, the second depending on two real parameters h and k. Assume they
are such that

Apk(2) = Bp(e)® — 4A(2)C(x)
is a degree-4 polynomial. Let (hg, ko) be such that
Ao ko (2) = (az? + bx + ¢)?
for some real numbers a, b and c such that b> — 4ac < 0. Then (ho, ko) is a point in R? at which two non real
branches of the discriminant of the family of curves intersect.
Example 1.2. Consider the curves C}, j, of equations
y2 + Ph,k(a:) =0

where P, ; is a monic degree-4 polynomial, real when the parameters h, k are real. Assume (ho, kg) € R? is
such that
Py ko (%) = (#* 4+ ax + b)? for some real numbers a, b satisfying a* — 4b < 0.

Here again, (ho, ko) is a point in R? at which two non real branches of the discriminant of the family of curves
intersect.

Remark 1.3. Except for the way we have chosen to write the affine curves, the only difference between these
two examples is that, for (h, k) close to (ho, ko), the curve Ej}, j, has a non empty real part (with two connected
components) while C}, ; has no real point.

Back to the general situation, call A2 = By N By and A2R its real part. Let U be a neighbourhood of A% in
C" and Ug its real part. Taking transversal linear subspaces C? and R2, we see that the fundamental group
of the complement of A%{ in R” is an infinite cyclic group while 71 (U — A?) is isomorphic to Z x Z. More
precisely, we have

Lemma 1.4. The natural map w1 (Ur — A%) — m1 (U — A?) 2 Z & Z maps a generator to (1, —1).

By By

c 2

(a) The real part of the discriminant (b) The loop ¢

FIGURE 1. The local fundamental group

Proof. Having taken 2-dimensional transversals, we can assume that n = 2. Then the two branches can be
locally described by an equation

P(x,y)P(x,y) =0
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for some complex linear form P : C? — C. An explicit isomorphism from the fundamental group 71 (C2—A?2)

to Z x Z is given by
<1 /dP 1 /dP>
Yy | =— —_—, — .
2im J, P 2ir 5~ P

Our assumption is that P(x,3)P(z,y) = 0 at (z,y) € R? if and only if (z,y) = (0,0), namely that
|P(z,y)|* = € is the equation of an ellipse in R2. Let ¢ be a generator of 71 (R2 — {(0,0)}) (see Figure 1) and

evaluate ~
([ [y - dIPf _
2im \J. P . P ) 2 C|P]2_

as one can choose a parametrization of |P]2 = ¢ for c. Also

([ [y L [P RIE
2t \J. P . P ) 2ir ), |P|? N

according to the orientation of ¢. Thus +c is, indeed, mapped to (1, —1) € Z x Z. O

Remark 1.5. Notice that a complex transversal to a branch of the complex discriminant has a natural orienta-
tion, but this is not the case for an R? transversal to A%{.

In the family of curves, those corresponding to parameters in A2 have two double points. Choose a smooth
curve nearby and call §,  the vanishing cycles corresponding to the two double points. The Picard-Lefschetz
formula [15] gives, for the monodromy along the real loop ¢

(1) vy +e((y-8)8 — (v-6)d) ¢ = £1 according to the orientation of ¢

(this applies to cycles on the complex curve).

2. Elliptic curves with two double points

In Examples 1.2 and 1.1 above, the curves have genus 1. On a punctured neighbourhood of (hg, k), the
two vanishing cycles corresponding to the two double points at (hg, ko) are in the same homology class, so that
formula (1) gives nothing in the homology of the curve, which is too small. The problem is that (the Jacobian
of) the curve has complex dimension 1.

We are going, for each of these examples, to construct a fibration of complex tori of dimension 2 for which
the Picard-Lefschetz formula (1) will indeed give a non trivial monodromy. We use different approaches in
these different examples.

2.1. Double coverings of elliptic curves—Prym varieties. Let us start with elliptic curves®) E = E}, ; as in
Example 1.1. For (h, k) in a neighbourhood U of (hg, ko), the real part of E has two connected components.
We will choose four real points A; (for 0 < ¢ < 3), two on each component, and look at the double cover of £
branched at these points. To be more specific in the way these points depend on the parameters, I will assume
that, in the equation of E/
A(z)y® + Bug(a)y + C(x) =0,

C'is a constant and the polynomial A has four distinct real roots ag < a; < ay < as, so that A; = (a;,0) is
indeed a real point of F and the A;’s are suitably divided on the real part, Ag and A3 on a component, A; and
A, on the other (see the real part of the affine curve Ej, 1, for (h, k) in U, on the left part of Figure 2).

Look at the covering map = : E — P'. The branch points are the four roots of Ay, (). As Ap k,(z) =
(az? 4 bz + ¢)? with b? — 4ac < 0, for the nearby value (h, k), the polynomial A, . has non real distinct roots.
Call s, t the two roots in the upper half plane, 5 and ¢ their conjugates. The right part of Figure 2 shows the
complex curve E}, ;. with its real part, the vanishing cycles J and & (which are, indeed, conjugate to each other).

®In this §, I will use the same symbol £ = E}, ;, for the affine curve and for its non singular completion.
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Ay Ay Ay

(a) The real part of £/ (b) The complex curve

FIGURE 2. The curve F

The heavy points are the four points A; where y = co. Notice that § U § separates the curve in two connected
components, each of which contains two of the points A;’s.
Let us now look at the curve Dy, ;. (non singular completion of the curve) of equation

A A(z) + 22 By i(2) + C = 0.

This is a real curve, endowed with an involution 7(x,z) = (z, —z) which preserves the real structure and
shows Dy, ;. as a double cover of Ej, i (by y = 2?) branched at the points A;’s. Hence, Dy, i, is a genus-3 curve,
smooth exactly when Fj, ;. is smooth (recall that the points A; are assumed to be distinct).

The projection 7 : D — FE induces an injective map

7t HO(h) —— HO(9))

the image of which is the vector space of holomorphic forms 7 on D such that 7*n = . Dualizing and factoring
the period lattice, this defines a surjective morphism

Jac(D) —— Jac(FE)

the kernel of which is an Abelian dimension-2 subvariety of Jac(D), the Prym variety Prym(D|E). The
relative Prym is a fibration of the complement of (hg, ko) in complex 2-dimensional tori. This is the fibration
for which we are going to compute the monodromy.

What we need to compute is the monodromy of the lattice of anti-invariant (with respect to 7, elements of
H{(D;Z). Let us use our description of D and E to define a basis of this group.

We take two copies of F and identify the corresponding points A; in both. On the i-th copy of F, we have
the curves o, 0; and J; corresponding to c, § and §. Call 3 a curve on D obtained in the following way:

— go from Aj to A; on the path b of Figure 2 on the first copy of F, meeting d; once transversally with
intersection number 1
— then go back from A; to Ag on the second copy of F, meeting 0o once transversally, with intersection
number —1 (see Figure 3).
Then a1, o, 3, 1, 61 and 0o form a basis of Hy(D; Z).
Notice that we have succeeded in the sense that §; # o; in H 1(D;Z). In this group, we also have §; + 3 =
51+ 6 so that g = 09 — (61— 51). The orientations have been chosen so that o;-§; = cj-6; = 1 and 5-6; = 1,
B0y =—1.

The real structure. Notice firstly that the real part of D has two connected components (as the branch points
are real and two on each component of the real part of E). The effect of the real involution S on the cycles
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FIGURE 3. The curve D

defined above is transparent, as S comes from the real structure on E. We have
S(a;) = —ay, S(6;) = ;.
Performing the complex conjugation on the path b, we also get
S(B) =p— a1+ as.
The involution 7. Its effect is also transparent: the cycles with a label 1, 2 are sent to the same cycle with the
other label, and 7(3) = —/3, so that the anti-invariant cycles are generated by
ar—ag, B, 01—01, & — 0.
The real cycles that are anti-invariant are thus generated by

a1 — Qg — 2ﬁ and 51 — 52.

Monodromy. Look now at the monodromy of the relative Prym. Formula (1) gives
vy +e((y - 01)81 + (v - 02)d2 — (v - 01)01 — (7 - 02)d2),
namely
ai%ai—l—s(éi—&), ﬁ'—>ﬁ+5(—51+(§2)

and the others fixed.
If we restrict our attention to the real part, we find

ap —ag — 28— aj — ag — 20 + 2(81 — 52).
Eventually, we have proved:

Theorem 2.1. The relative Prym on the complement of the discriminant in Uc is a fibration in complex 2-
dimensional tori with monodromy matrix conjugated to

Id 0
e —e 0
— & —¢ Id
0 0 €

The real part is a fibration in real tori of the complement of (h, ko) in Ug with monodromy matrix conjugated

1 0
to <2€ 1). Ol
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FIGURE 4. The affine curve C

2.2. Elliptic vs singular genus-2 curves—generalized Jacobians. Let us now investigate the example of
the family y? + Py x(x) = 0 (Example 1.2). The polynomial has degree 4 so that the curve C}, i, (or C) is
the complement of two points in an elliptic curve, with only one point at infinity, which is a singular point
(Figure 4, note that this picture is not real).

Call C‘h7 % (or C) the complete singular curve obtained by adding this point at infinity to the affine curve and
6’h,k (or 6’) the normalized curve, that has two points oo at infinity. In other words, C' can be completed in
two different ways, and I will use both:

— Add a unique point at infinity, completing the affine curve in the completion C? ¢ P?(C). In homo-
geneous coordinates [z, v, Z], this is the point co = [0, 1, 0]. This is the completion C.

— Normalize at infinity, that is, define a complete curve C by separating the two branches. Note that Cis
smooth at infinity (by definition) and has a degree-2 function to P!(C) (extending z), with

27 (o0) = {oo4,00_}.

The curve C is a double cover of P1(C) branched at the four roots of the polynomial Py x and thus,
when these roots are distinct, this is a genus-1 curve.

The simplest way to construct C'is to complete the affine curve, not in P2(C), but in the total space
of the bundle O(2) — P!(C). The affine coordinate = becomes an element of P*(C), the fibration
(z,y) — @ from C? to C becomes the fibration O(2) — P'(C) defined by gluing (P! — {oc}) x C

and (P! — {0}) x C by the map
(z,y) — (l ﬁ)-

x 2
The complete curve Cis naturally embedded in this surface, the two points at infinity are the points
T = o0, % = *1.
x

Figure 5 represents the two completions of C', in a neighborhood of co. The doted lines represent the
projection onto the x-axis (projective line). Notice that C' is smooth if and only if C'is.

Notice that, as we plan to use the Jacobians of the curves in the family (the relative Jacobian) as a model for
the Liouville tori in a 2-degrees of freedom system, we should prefer to use genus-2 curves. The singular curve
C has, indeed, genus 2. When C' is smooth, C has a generalized Jacobian® which is the extension

1 C* Jac(C) —— Jac(C) —— 0

of the Jacobian of the elliptic curve C (the quotient of C by a lattice A) by a multiplicative group C*. Recall
that the period lattice A of the elliptic curve C'is given by the integration of the holomorphic form dz/y on the
cycles in C'. In the same way, the non compact subgroup C* created by the identification of co_ and ooy into

@ See § 4 and the references given there.
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(a) The singular C' C (b) The normalized C
P?(C)

FIGURE 5. The complete curves

a single point co € C can be materialized by the integration of the meromorphic 1-form xdz /y on a small loop
~ around oo.

Look now at the real structure induced by that of C' on the Jacobians. The singular affine curve C}, 1, has
equation 32 + (22 4 ax + b)? = 0 (with a® — 4b < 0), so that it has no real point, and the same is true for the
smooth nearby curves. Then it is known that Jac(C) = Pic?(C) (we must be specific with the degrees, or at
least with their parity, here) is a real hyperelliptic curve whose real part has two connected components. On the
other hand, the map C* — Pic(C') associates to the non zero complex number z the divisor of any function f

on C' such that ;Eij

= z. Let us look at the real structure induced on C*:

flooy) f(®4)  flooo)

Z ! = =

f(oo-) f(o-)  flooy)

so that the real points are, indeed, the points of the unit circle in C*. B
Hence we see that the real part of the (non compact) Jacobian of the curve C'is a compact 2-torus.

1
z

Let us now be more specific on the curves which generate the homology of this torus. Fix a neighbourhood
Ur of the critical point (hg, ko) such that (hg, ko) is the unique critical point in Ugr. Choose a regular point
(h, k) in Ur. The polynomial has two pairs of conjugate (non real) roots. Call as above s, ¢, the two roots in
the upper half plane and let § be a cycle in C' = C'j, ;, above the segment [s, t], let d be the conjugated cycle and

let o be a cycle above the segment [s, §]. Choose orientations so that v - § = 1.

(a) The roots of P (b) The cycles on C'

FIGURE 6. The curve C

Notice that the two double points of C, x, are obtained when s and ¢ come together, so that § and J are
indeed the vanishing cycles considered above.
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The complex curve C is represented on Figure 6 with the cycles a, § and &, which we will use as a basis of
a suitable version of its first homology group, namely of the group H,(C; Z).

Consider now the real structure S defined by complex conjugation of coordinates on C. The holomorphic
1-form dz /y is real in the sense that S*(dz/y) = dx/y. Also, S(6) ~ § and S(«) ~ —a. But the real structure
induced by S on the Jacobian is a little more tricky, as C has no real point while Pic” (C’)R has two connected
components. It turns out that the Abel-Jacobi map “defined” on divisors on C by

Q
P—Q»—w’/ dr
P Y

defines an isomorphism of real curves
(Pico(é),s) L (CJA, 2 —3)

(see e.g. §5.3 for a concrete example). The period lattice A is generated by

/ — and ¢ /
so that the real cycle is a.

Finally, notice that in H1(C, Z), § = & but that this is not the case in H,(C; Z), as § — ¢ is represented by a
small loop ~y around oo and we have

/ acd;vz a:d;v_i d—m—i27r7é0
=5 Y v Y vy W
We have proved:

Proposition 2.2. The relative Jacobian of the family of curves on the complement of the discriminant in Uc is
a fibration in complex tori

1 c* Pic’(C) —— Pic’(C) —— 0

with real structure such that the connected components of the real part of the fiber on the complement of (h, ko)
in Ug are fibrations in compact real tori

1 st T2 R/TZ —— 0.

The homology of the real torus 72 is generated by two elements &, +, such that
— the image of o in H1(R/TZ;Z) is the generator o coming from H,(C'; Z) and satisfying / d =T
— ~ is the image of the generator of H;(S*;Z) coming from H;(C; Z), that is, the difference 3 yS of the
two vanishing cycles and satisfying / vdr _ = +2m. O

Now, apply the Picard-Lefschetz formula (1) to get:
Corollary 2.3. The monodromy of the fibration in tori over Ur — {(ho, ko)} is given by
ar—— a+eyandy —— 7.

U

Remark 2.4. Notice that the fact that there is, indeed, real monodromy in this situation reflects the fact that the
complex monodromy respects the real structure on the Jacobian. This is certainly not the case turning around a
single branch of the discriminant.
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3. Hamiltonian monodromy

The two families of curves C, j, and Dy, ;. used so far are the families of spectral curves for certain Lax
equations. We will apply the previous study to the determination of the Hamiltonian monodromy of the corres-
ponding integrable systems.

Both are integrable systems with two degrees of freedom. The regular levels are (unions of) 2-dimensional
tori. In both cases, the set of regular values of the momentum mapping contains a punctured disk (see Figures
7 and 8).

According to a general theorem of Nguyen Tien Zung [17], if the singular point inside this disk is a “focus-
focus” point, the fibration by Liouville tori should have non trivial monodromy. I will use the previous results

— to prove that this is, indeed, the case for the geodesic flow on SO(4), using Pryms

— and to prove that the well known Hamiltonian monodromy [10, 9] of the spherical pendulum, usually
determined by direct computation, is indeed given by the Picard-Lefschetz formula as above, using
generalized Jacobians.

3.1. Hamiltonian monodromy for geodesic flows on SO(4). The geodesic flow of an invariant metric on
SO(n) gives rise to the differential system (Euler-Arnold equations [2])

M =M, Q)]
where M and (2 are skew-symmetric matrices related by
M=QJ+JQ

for some diagonal constant matrix .J. It also describes the motion of a free rigid body in a three dimensional
space when M and €2 are 3 x 3-matrices. For this reason, the case of 4 x 4-matrices, that we will study now, is
sometimes called the “4-dimensional rigid body”.

A Lax equation. The Euler-Arnold equations have been put in Lax form by Manakov [16]:

%(M + J2N) = [M + T\, Q+ JA.

Call b; (0 < ¢ < 3) the diagonal entries of the matrix J and assume that they are distinct, satisfy b% < b% <
b2 < b3. Without loss of generality, assume by = 0 and write a; = b?. As is usual, write the skew-symmetric
matrix M as

0 —z3 = wn

zg 0 —x1 Yo
—x2 1 0 oy
- —y2 —y3 O
The spectral curve, given by the characteristic polynomial det (M +AJ? = A\ Id) of the Lax matrix Ay =
M+ J?\is

M= (l‘,y) =

3
)\4NH (,U, - ai) + )‘2 (/1'2f1(x7y) - MH($7y) + K($7 y)) + f2(:17,y)2
i=1
where
filz,y) = Zaz? + ny is the norm of M,
folz,y) = Z x;%; is its Pfaffian,
> 1
i=1 {i,5,k}={1,2,3}

1
K@y =5 > i
{Z7j7k}:{17273}
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We fix f; > 0 and f; such that |2f;| < fi. Then the set of skew-symmetric matrices M = (x,y) that have
norm f; and Pfaffian f5 is a coadjoint orbit O of SO(4) diffeomorphic to S? x S2. The two functions H and
K are then in involution on this symplectic manifold, the Euler-Arnold equations being the Hamiltonian system
associated with H.

The algebro-geometric features of this integrable system were investigated in the classical and beautiful
paper of Haine [14] and some of its topological aspects were described by Oshemkov [18].

Asin §2.1, call E the elliptic curve, quotient of D by the involution 7(u, A) = (i, —A). The spectral curve
D and the curve E are of the type considered in §2.1. The points A; are indeed the points (a;,00) (with
ag = 0). The parameters in the equations of £/ and D are all real and satisfy:

— The orbit invariants f; and f» are two fixed real numbers such that fo # 0, f2 — 4f2 = 45% > 0.
— The values h, k of H and K are positive parameters.

Then, it can be shown (see § 5.1 for a justification) that, for (3 in a suitable interval (1, £2), the point

(ho, ko) = <%(f1 +28)(a1 + az) + %(fl - 2ﬁ)a3>

is a point at which
Apo ko (2) = (ax? + bx + ¢)? with b* — dac < 0,

thus two non real branches of the discriminant intersect at this point.

Eigenvector mapping. We consider now the eigenvectors of the Lax matrix
Ay =M+ J2\.

This will give us a very precise dictionary between the topology and the algebraic geometry. Fix a value (h, k)
of (H, K). This fixes a curve D = D}, ;. Consider a point (A, ) € D. The eigenvectors of the Lax matrix
for the eigenvalue Ap form a line bundle on the complement of the branch points of A, sub-bundle of the trivial
bundle D x C*. When the curve D is smooth, there is a unique way to extend this line bundle to the whole of
D as a sub-line bundle of D x C* (an easy exercise, see [13]). Thus, we have a line bundle, the eigenvector
bundle L, on the complete curve D.

Let Tp be the common level set of the first integrals H and K corresponding to the curve D. This is a subset
of the phase space S? x S2. Letting the point (x, %) vary on the level Tp, we get a map (recall we assume D to
be smooth):

¢p : Tp —— Pic(D)

where the group Pic(D) of isomorphism classes of line bundles over D is identified with the set of linear
equivalence classes of divisors on D.

Remark 3.1. Eigenvector mappings turn out to be very useful in the investigation of algebraically integrable
systems as they allow to understand the geometry of the system with the help of the algebraic geometry of a
curve: determination of Liouville tori(®), determination of the regular levels(®), construction of action coordin-
ates(”). Here we will use it to get information on the monodromy.

Proposition 3.2. Assume the elliptic curve FE is smooth. Then the tangent mapping to ¢ p maps the Hamiltonian
vector fields of H and K to independent vectors in H'(Op) = T. Pic(D).

) See [7] for the Kowalevski top.

©)See [3] for the case of geodesics of quadrics, Corollary 3.4 for the geodesic flow on SO(4) and Corollaries 3.10 and 3.13 for the
spherical pendulum.

(M See [5, 6].
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Proof. Assume FE' is smooth. Then, D is smooth. We use the covering
D=U,ulU-

for U, (resp. U_) is the open set where \ # oo (resp. y # 0). The cohomology group H'(Op) is isomorphic
with the first cohomology group of this covering. We are going to express the images of the Hamiltonian vector
fields in H'(Op as cocycles of this covering.

Notice that the Hamiltonian vector fields X ;7 and X i generate the same subspace in T°O; as the Hamilto-
nian vector fields of the functions

H3(M) = 3tr(J2M) and Hy(M) = 6 tr(J*M).
Now these two functions have the form
H,, (M) = Res ()\ (A + 720) d)\)

for £k = 3, 4. Using the standard linearization theorem of [1] and [19], it is seen that the corresponding
Hamiltonian vector fields are mapped to the cocycles

AATTOw) =2k, k=34

(recall our eigenvalue is A\p). It is proved that these two cocycles are independent by a residue computation
(see §5.2). O

Remark 3.3. Notice that these two cocycles are anti-invariant (with respect to 7) so that the eigenvector map-
ping maps Tp to a subvariety of Pic(D) parallel to Prym(D|E).

Notice that this Proposition implies that the eigenvector mapping is a covering of its image, a result of Haine
that we will state more precisely below.

Corollary 3.4. If (h, k) is such that the elliptic curve E is smooth, then this is a regular value of the momentum
mapping.

Proof. If the images of the Hamiltonian vector fields X 7 and X i are independent, the two vectors themselves
are independent. U

A complete picture of the discriminant of this family of curves can be found in Chapter IV of [4]. We will
only need the case, considered in Example 1.1, where €1 < 3 < e (see § 5.1). In this case, the discriminant has
the form depicted on Figure 7, which, thanks to our Corollary 3.4, is coherent with Oshemkov’s pictures [18].

K

FIGURE 7. The regular values

Proposition 3.5 ([14]). If E is smooth, the eigenvector mapping
¢p : Tp — Pic(D)
is a covering of degree 4 of its image. This image is isomorphic to an open subset of Prym(D|FE).
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Proof. We have already mentioned that ¢ p was a covering map and that its image was a subvariety parallel to
Prym(C|E). The pairs (z,y) such that all the corresponding M + .J?) belong to the same conjugacy class
modulo GL(4; C) (and are in the same SO(4)-orbit) are all the

Ex1 €Y1
ney |, | nya | withe? = 772 =1
ENT3 ENY3

O

Hamiltonian monodromy. We now deduce the Hamiltonian monodromy from the algebro-geometric descrip-
tion in Theorem 2.1.

Theorem 3.6. Assume 1 < (3 < 5. Then the set of regular values of the momentum mapping (H, K) for
the geodesic flow on SO(4) has a connected component which is not simply connected. The monodromy of the

fibration in Liouville tori along a loop generating the fundamental group is given by the matrix (i ?)

Proof. We relate the relative Prym and the fibration in Liouville tori by the eigenvector mapping. According
to Oshemkov [18], the regular levels close to the singular point (hg, ko) have two connected components. We
concentrate on the monodromy of the fibration for one of them. According to Haine, the eigenvector mapping
is a 4-fold covering map. This is of course a real map, so that it maps our Liouville tori to the real part of the
Prym variety by a degree 2 covering map. In each fiber, we thus have a map T’ 2,12 inducing, at the level of
fundamental groups
72 —— 72
(a,b) —— (a,2b).

0) on the left. [

The only possibility to have monodromy <21E (1)> on the right is to have monodromy (i 1

3.2. Hamiltonian monodromy for the spherical pendulum. Both the Hamiltonian systems for the spinning

top and the spherical pendulum can be described by Lax equations whose spectral curves are of the type con-

sidered in Example 1.2 and § 2.2. To be more specific, I concentrate here on the case of the spherical pendulum.
The spherical pendulum is the mechanical system described on the unit sphere in R by the Hamiltonian

1

q denoting the position of the ball on the unit sphere, I' the (constant) gravity and p the momentum. The phase
space is

75* = {(¢.,p) € R x R* | g|* = 1and p- ¢ = 0}

and the Hamiltonian system

{q: p ,
p = I'—(q-T'+[pll)g
The system is invariant under the rotations around the vertical (i.e. T") axis, so that the momentum

K=(gxp)-T
is a first integral: the spherical pendulum is a completely integrable system.

Remark 3.7. The S'-action by rotations around the vertical is generated by the flow of K. Considering g, p
as vectors in C3, this action complexifies into a C*-action. This is the reason why, in this example as in the
spinning top case, one should expect to need non compact tori (as are the generalized Jacobians).
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The elliptic curve, down-to-earth approach. It is more or less obvious (and in any case well known) that
there should be an elliptic curve present. Choose an orthonormal basis of R? such that I' = —e3 and eliminate
q1, G2, p1 and py using H and K to get

3 =2(H —q3)(1 —3) — K°,
so that x = g3 satisfies a differential equation
i = f(z)
where f is a degree-3 polynomial. The elliptic curve X of equation
y? =223 — 2H2? — 22 + 2H — K?

plays a role.

It allows to solve the equations, using the Weierstrass gp-function it defines. Even more directly, it shows,
as the polynomial f must have two real roots between —1 and 1®) | that the ball will oscillate between two
horizontal parallel circles on the unit sphere, according to everyday’s experience.

A Lax equation. The best way to understand why there should be elliptic curves around is to re-write the
Hamiltonian system as a Lax equation with a spectral parameter.

A Lax equation for the spherical pendulum involving matrices in the Lie algebra so0(3, 1) appears in [20] as
an example of the beautiful general constructions explained in this very recommendable paper. Here I will use
something simpler®). As usual, identify vectors in R3 with skew-symmetric 3 x 3-matrices (and the vector
cross product with the matrix bracket). The Lax equation

d
E(qJM(pxq}—AQF): [q+A(p x @) — AT, p x ¢ — AT

is equivalent to the Hamiltonian system on T'S2. Then there is a spectral curve given by the characteristic
polynomial of the Lax matrix:

det (g4 A(p x g) = N'T = u1d) = = (42 + g+ Ap x @) = 37T |*)

=—p (u2 + A= 2(p % q) - T+ 22%(lp x ql|* =T q) + HQH2>

... where we recover the first integrals

= —pu | PN 2K +2HN +1

Pr k()

(10)

We will thus use the curve'*”’) of equation

,U2 + Py (X)) =0.

Remark 3.8. It is also possible to replace so(3) by su(2) to avoid the extra factor y as is done in [12] for the
Lagrange top. I have preferred to use real matrices in order to keep an eye on the reality questions, especially
when I will use eigenvectors.

Now we have a family of the type we have discussed in §2.2. T will use the notation C' (affine), C (elliptic,
normalized) and C' (genus 2, singular)(n) as above.

®)1t always has a real root in |1, +-00[; for a real motion it must also have roots in [—1, 1].

() The Lax equation I use here is so simple that it probably belongs to folklore. I learned it from Alexei Reyman.

(19 The curve C defined by this equation is isomorphic to the elliptic curve X defined above. See § 5.3 for a more precise statement.
(D The analogue of the singular curve C is used by Gavrilov and Zhivkov [12] to describe the “complex geometry” of the spinning
top. Here we will use it to describe the “real monodromy”. See also [21], where the monodromy of the top is determined, still by a
direct computation, but using the singular curves.
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Eigenvector mapping (classical). We now come to the eigenvectors of the Lax matrix
Ax=q+ Ap xq) — \°T.

They will give us a very precise dictionary between the topology of the Liouville tori and the geometry of the
relative Jacobian. Fix a value (h, k) of (H, K). This fixes a curve C. Consider a point (A, u) € C. The
eigenvectors of the Lax matrix for the eigenvalue p form a line bundle on the complement of the branch points
of A, sub-bundle of the trivial bundle C ><~C3. As above, when the curve C' is smooth, there is a unique way
to extend this line bundle to the whole of C' as a sub-line bundle of C x C3. Thus, we have a line bundle, the
eigenvector bundle L, on the complete curve C'.

Let T¢ be the common level set of the first integrals H and K corresponding to the curve C. This is a subset
of the phase space T.S2. Letting the point (g, p) vary on the level T, we get a map (recall we assume C' to be
smooth):

v+ To —— Pic(C)
where the group Pic(é) of isomorphism classes of line bundles over C is identified with the set of linear
equivalence classes of divisors on C. This mapping relates the geometry of the spherical pendulum with the

algebraic geometry of C.

Eigenvector mapping (modified). We can also define an eigenvector bundle on the singular curve 2 C. Let
us look at what happens when (A, i) tends to infinity in C. Write

(g+Ap xq) = N°T) -v = po,

The eigenvalue ;. is equivalent to £i\2, so that we are interested in the eigenvectors of the matrix —I" (the
infinitesimal rotation around the vertical axis) with respect to the eigenvalues +%, namely in the two vectors
t(1,44,0)—one for each branch.

We have found a preferred basis of L, and L_, so that we have an isomorphism L., — Lo _, which
allows to define a line bundle over the singular curve C.

Letting the point (g, p) vary on the level T¢, we now get a map (recall we assume C' to be smooth):

ve : To —— Pic(C)

where the group Pic(C) of isomorphism classes of line bundles over C, is identified with the set of linear
equivalence classes of divisors on C'. The neutral component is a generalized Jacobian, a dimension-2 complex
algebraic group. The exact sequence relating it to the usual Picard group of the smooth curve C'

0

allows to relate the two “eigenvector mappings”. We do not need to compute the map ¢ ¢ explicitly. But we
will use its tangent mapping.

(12)See §4 and the references given there for the generalized Jacobian and the Picard group of the singular curve C.



16 MICHELE AUDIN

Tangent map to ¢. The next aim is to show that, under ¢, the flows of H and K are mapped to linear and
independent flows on Pic(C). Here we really need the generalized Jacobian: the level set T is 2-dimensional
while the Jacobian Pic(é ) of the genus-1 curve Cis only 1-dimensional (either over C or over R—but over
the same field for both!). Let us begin by the usual vector mapping ¢ ¢

Proposition 3.9. The eigenvector mapping ¢ is constant on the orbits of the vector field X . Its tangent
mapping maps the Hamiltonian vector field X  to the class in H'(C; Og) of the 1-cocycle A~ of the covering

of C by Uy (where \ # oo) and Us, (where A # 0).

Proof. The flow of K is the flow of rotations around the vertical axis. The first assertion can of course be
checked directly. For further use, [ will prove it in an indirect way. The differential system associated with X g

is
¢ = I'xq
p = I'xp,
a system that has an obvious Lax form using our matrix Aj:
d
7 (a+ AP x @) = NT) = [¢+A(p x q) = X°T, —T].
The matrix B) in this Lax equation is

—T= Mg+ Apxq) —NT)],

(the notation | denotes the polynomial part of a Laurent polynomial). Using as above the linearization theorem
(for this case, see also e.g. [6, theorem IV.2.5]), we get that the image of X i in H(C; 0gz) =T Pic(C) is the
class of the cocycle A\~2 .

In the same way, the matrix B) in the Lax equation describing the Hamiltonian system associated with X g
is

pxq—AL= A" g+ Apx q) — N7T)]
so that the image of X7 is the class of the cocycle A~ 1.

Now, as we have already mentioned it, z is equivalent to +i\? when \ goes to infinity, so that the function
A~2p on Uy N Uy, extends to a holomorphic function on Us,. Thus the cocycle A~24 is a coboundary and its
class is zero. _

On the opposite, the cocycle A~!y is non zero in H'(C; O &)- An easy way to prove this is to compute its

+

residue at 0 (or at oo) against a holomorphic form on C'. We take the form d\ /e and compute

A
Resy=o (A_lu—> = Resy—o (A\7'd)\) = 2.
7

Eventually, the tangent map to ¢ sends Xk to zero and X to a generator of H* (57 0g)- O
Notice that Proposition 3.9 readily has the following consequence:
Corollary 3.10. If the complex curve C' is smooth, the corresponding value of (H, K) in C? or R? is regular.

Proof. Note that the eigenvector mapping ¢ is well-defined as soon as the curve C' is smooth. Assume this is
the case. Then X g is mapped to zero and Xy to a nonzero element. The only way in which X ;7 and X can
be dependent is then to have X = 0. This means that g and p are vertical. As they are orthogonal and ¢ is
nonzero, p must be zero. Thus H = +1 and K = 0, the equation of C' writes

4+ (N+1)2=0

an obviously singular curve (it has two double points)... and a contradiction. Thus X 7 and X i were independ-
ent and the value is regular. U

Let us now look more closely at the map ¢, to get:
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Proposition 3.11. Assume the curve C' is smooth. Then the tangent mapping to the eigenvector map ¢~ maps
Xy and X to independent vectors in H1(C; 0p).

Proof. It is based on the considerations used in the proof of Proposition 3.9. A 1-cocycle of holomorphic
functions on C for the covering
C=UpUUsx
is just a holomorphic function
f07oo :UgNUyx —— C.
We can also consider such an fq o, as a cocycle fom of holomorphic functions on C, now for the covering
C=UyUUs, UUs_

(with an obvious notation, in which Uy, NUx_ = @). On 5, coboundaries are differences fy — foo Of
functions that are holomorphic on Uy, Uy, resp. On C, these are also the differences of functions fo — foo. ON
Up N U, . But now, the functions f.,, must take the same value at the two points at co (see §4).

As soon as we have taken care of the fact that the eigenvector bundle is well-defined on C, the proof of the
linearization theorem works to give us, as in the proof of Proposition 3.9, that

TqpPc (Xu(g,p)) is the class of Ay

and that
Tiqp)Pe (XK (q,p)) is the class of A2

The big difference now is that these two cocycles give independent classes in H L(C;0¢). For this, consider
the two holomorphic forms d\/u and AdA/p on C' and compute the residues,

— for Xg: N
Res)—o <)\‘1p7> = Resy—o (A\7'dA) =2

as above and i\
Resy—o <>\‘1u7> = Res)—o (A72d)) =0,
— and for Xg:
o dA -2
Resy—o [ A™“u— ) = Resy—g ()\ d)\) =0
7
once again, as now
_o AdA 1
Resy—o [ A™“pp—— ) = Resy—o ()\ d)\) = 2.
u
Thus the two cocycles give independent cohomology classes. U

Remark 3.12. Let us show that the fact that spectral curve has no real point is related to the periodicity of the
flow of K. Look at the diagram

St Cc*

|, 1

To —% Pic(C)

| ]

C ~

To/S" 2% Pie(C)
where, on the left, we factor out the regular real level T by the flow of K (rotations around the vertical
axis) and on the right, we look at the generalized Jacobian as above. As T¢ is compact, the map ¢, whose

differential is always injective, according to Proposition 3.11, is a covering of its image. This re-proves that the
real part of the right side should also be an S'-fibration (see §2.2).
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Critical values vs discriminant. We have shown that, if the value (H, K') corresponds to a smooth curve C,
it is a regular value. Of course, non-smooth curves C correspond to polynomials with double roots

MA2KN +2HN? +1= (X —u)’!(A—0v)(\ —w)

that is ! 5
H = —u?-—
2% T2
ue C*.
1
K = —u+—3
A
K
(1,0) H

FIGURE 8. The regular values for the spherical pendulum

The real part of the discriminant curve (meaning that H and K are real, which does not mean that  is real)
is shown on Figure 8. The point (1,0) is part of the discriminant (a real double point with imaginary branches).
Obviously, for real (¢, p), H must be greater than or equal to —1, so that the only connected component of the
complement of the discriminant that are actual values for real (g, p) is the one containing the positive H-axis.
These points must be regular values (according to Corollary 3.13) except for the point (1,0) which we have
seen to correspond to a singular level. The boundary points of the image of (H, K) must be critical values.
Thus we have proved the converse of Corollary 3.13 for real (H, K'), namely:

Corollary 3.13. The value of (H, K) in R? is regular if and only if the corresponding complex curve C is
smooth. H

The points of the discriminant curve actually correspond to the trajectories of the pendulum on horizontal
circles, namely are the images of points

1
(¢,p) = (—2F +q',uq’ x P> with g’ L T
u
for which X (q,p) = —uXxk (g, p)—critical points indeed, a result of Huygens (see [10]).

Hamiltonian monodromy. We have seen that the eigenvector mapping is a covering of its image, so that
Hy(T¢; Z) is a sublattice of Hq(Pic?(Cr);Z). We have more precisely:

Proposition 3.14. The eigenvector mapping T — Pic?(C) embeds H; ((T¢)r; Z) as the sublattice
2H; (Pic*(C)r; Z)) C Hi(Pic*(C)r; Z).

Thus, we have a basis in H;(T¢; Z) which is sent to (2&,2y) € H;(Pic?(C); Z) so that the monodromy of
the fibration in Liouville tori is the same as that of the fibration by the relative Jacobian.

Corollary 3.15 (Cushman [10]). The monodromy of the fibration in Liouville tori for the spherical pendulum

is given by the matrix (i (1)> O
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Remark 3.16. According to Proposition 2.2, the Hamiltonian monodromy for the spherical pendulum is thus,
eventually, given by the integration of a meromorphic 1-form. See [8] for a proof of this fact by a direct
computation.

Proof of the proposition. Let us now compute the degree of the eigenvector mapping ¢ ~. We have seen that
the classical eigenvector mapping ¢ defines a covering map

vo : Te/C* —— Pic%(0).

It is well known (see €.g. [4] or [12]) that ¢ maps the real level set T /S 1 to one of the two components of

Pic2(5 )R = XRr by a degree-2 map. To compute the degree of =, we just need to understand what happens
in the direction of the field X g .

Lemma 3.17. The restriction of ¢~ to the orbits of X is a covering of degree 2. It maps a real orbit to a
circle via a degree-2 map.

Proof. It obviously suffices to show this for one (well chosen) orbit in a well chosen level set. Fix ¢ = T', then
p is horizontal (p3 = 0), K = 0 and ||p|| is determined by

1 ,
3 Ip|> = IT|* = H, thatis [|p||* = 2(H +1).

Fix H (not equal to £1) and look at the orbit of X i through (T, p) in the level (H,0).
The Lax matrix A) has the form

Ay=q+ (px A —TN
= (1= M) + (p x D)A,
this is the skew-symmetric matrix corresponding to the vector t(—)\pg, Ap1, A2 — 1). The vector
(1= 52)p2— $2m1
V=|-(1-5)p— &p

(p1 +p3)3
is an eigenvector of A for the eigenvalue p, that never vanishes and has neither a zero nor a pole at infinity.
Let us look at the pole divisor of V in Pic(C). There is a pole when a component of V' tends to infinity.
This happens only for A = 0. The divisor obtained does not depend on p. This is no surprise, since we know
(Proposition 3.9) that the classical eigenvector mapping ¢ ¢ is constant on the orbits of X .
We must thus concentrate on what happens at infinity.

A .
— at ooy, we have — =7 and

112
P2 —ip1 1
V(cog)=|-p1—ip2 | =@2—ip1) | =0 |,
0 0
. A .
— at co_, similarly, — = and
7
P2 +ip1 1

V(coo)= | -p1+ip2 | =(p2+ip1) | ¢
0 0
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The vectors t(1,44,0) are the reference vectors we have used to define the eigenvector bundle as a bundle over
C'. The mapping ¢~ thus sends the point (I, p) to the ratio V' (co4)/V (co_ ), namely to

p2—ip1 _ (p2—ip1)® _ (p2—ip1)?

patips  pl4pi  20HA+1)
Thus ¢ is a degree-2 map, as the solutions of

{ (p2 —ip1)®> = 2a(H+1)

p? + p3 H+1

for a = o® € C* are the two points

evH +1 evH+1 (1
pr=—p—|=--a|, p=—©p— (= +a
2 « 2 «a
for e = 41. Notice that they are real when |a| = 1. O

4. The generalized Jacobian, a few words

Let me recall very briefly a few notions related to the geometry of the singular curve C that I have used in
this paper. See [11] for detail.

The curves. Consider a smooth?) curve C of genus g — 1. Choose two distinct points oo and co_ on C,
call C' their complement in C' and C' the curve obtained by the identification of oo and oo to a single point,
that we call co € C. Notice that the natural map

H\(C;Z) —— Hy(C;Z)

is surjective, its kernel being the infinite cyclic group generated by the homology class of a small loop turning
once around oo (0or co_).

Functions, vector fields, forms. We start from germs of holomorphic functions on C': these are germs of
holomorphic functions on C which take the same value at oo, and co_. Note that a germ at co on C'is a germ
at both co and co_ on C. Then, vector fields must be derivations, we must thus have

(X - f)(oog) = (X - f)(o0-)
for all functions f, which forces X (co;) = X(co_) = 0, thus the holomorphic vector fields on C' are the
holomorphic vector fields on C satisfying this condition.

Now, the holomorphic 1-forms are obtained by duality: a holomorphic form on C' is a meromorphic form
on C with at worst simple poles at oot and co_ (with opposite residues). According to the Riemann-Roch
theorem, the complex vector space of meromorphic forms on C that have a simple pole at co, a simple pole
at co_ and no other pole, has dimension 1. Hence the cokernel of the natural injection H O(Qlé) — H O(Qlé)

has dimension 1. The dimension of H O(Qlc) is g, that is, C has arithmetic genus g.

Examples 4.1
— Consider, on the curve C' = P1(C) = CU{oc}, the two points 0oy = 00, co_ = 0. Then C' = C—{0}
and C is a sphere with two points identified (or a pinched torus). The meromorphic form dz/z over C
can be considered as a holomorphic form on C.
— On the curve C considered in this paper, the form xdx /y is equivalent to +idx/x near co, so that it
defines a holomorphic form on C.

(13) Starting from a curve with double points, we see that there is no difficulty to make, by induction, more complicated examples.
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Divisors, line bundles, Picard group. In order to be able to integrate “holomorphic” forms over paths, it is
necessary that the paths do not go through the points oo and co_. Hence divisors on C' must be divisors on C
not involving ooy or co_. Linear equivalence of divisors on C'is defined by D ~ D’ if and only if there exists
a meromorphic function f on C, which has neither a zero nor a pole at co and such that D — D’ = (f). We
can then assume that f(co) = 1.

Consider now a line bundle over C.. In order that it defines a line bundle on C, there should be an isomorph-
ism between the fibers of co and oo_. This can be achieved if a meromorphic section with neither a zero nor
a pole at oo and at oo_ is given. This way, we get the generalized version of the equivalence between line
bundles and divisors we need.

The Picard group Pic(C) is defined either as the group of isomorphism classes of line bundles over C' or

as the group of linear equivalence classes of divisors. There is a projection Pic(C) — Pic(C), the forgetful

map which sends the class of D as a divisor on C' to its class as a divisor on C. The kernel is a set of
divisors of functions, isomorphic to C* under the map z — (f) where f is any function on C such that

fooy)/f(o0-) = z.
Generalized Jacobian. The Jacobian can be defined by holomorphic forms. The map
H\(C3Z) —— H°(Qg)"
a — (v )

is an embedding Z29~! C C9, the Jacobian is the quotient, a non compact g-dimensional complex torus. More
precisely, there is a commutative diagram

0 — C — H(QL)" —— H0<Qlé)* 0
Tuoo Iu Ifi
0O — Z —— H(C;Z) — Hl(é;Z) — 0

in which the usual Abel-Jacobi map & embeds H,(C;Z) = Z*~2 as a lattice A into the complex (g — 1)-
*
dimensional vector space H° (Qlé) . The integration map ., sends Z to 2irZ C C so that H1(C;Z) is

mapped to a “lattice”") A. The exact sequence of quotients
0 —— C/2inZ —— JacC JacC 0
is isomorphic to the exact sequence
0 C* Pic’ ¢ —— Pic’C —— 0

of Picard groups.

Example 4.2. Consider again the case of the sphere with two points identified. This is a curve of arithmetic
genus 1 (and it is easy to embed it in the plane as a rational cubic with a double point). The Jacobian of P(C)
is trivial, so that the sequences above reduce to the inclusion H;(C — {0} ; Z) — C given by integration of the
form dz/z. The generalized Jacobian is C/2inZ = C*.

5. Complements

5.1. The family of curves E}, ;.. In this §, we prove the assertions on the family F}, ;, that we have used in § 3.1.

Recall the equation
3

y%H(m—ai) +y(fir? —hx +k)+ f2=0
i=1

(9] use the quotation marks because this is a Z29~! in CY, and thus not quite a lattice.
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and the assumptions we have made on the a;’s
0<a <ag < as,
on the f;’s:
0, fi—4ff=48*>0
fo#0, fi fa =457 >

and that A, k are positive parameters. Write

3
Az) = (fiz? —he + k) —4fiz H(a: —a;)

i=1

and define o1, 09, o3 for the elementary symmetric functions of the a;’s.
We are looking for values of the parameters such that

A(z) = (az® + bz + ¢)* with b? — 4ac < 0.

Identifying terms,

— using constant terms, we get k% = 2, we choose ¢ = k,

— using coefficients of x4, we get f12 — 4fl2 = a?, sothat a = 3. As ¢ = k > 0, we must take a = 2.3,
— from the first and third degree terms, we get h and b as functions of k:

1 o3 1 03
h 2(f1+ B) (o1 — 28 - b 2(f1+ B) (01— f1 -
Replacing in the z-? term gives an equation in :

8k3 — 4(f1 + 28)09k? + 2(f1 + 28)%0103k — (f1 + 28)%0% = 0.

This is easy to solve: as the roots of

ad — 02a2 + o301 — 032, =0

are the a;a; (i < j), we get
1 1
k= §(f1 + 25)@1'&]' and h = —2ﬂak + §(f1 + 25)0’1

(in these formulas, ¢ < j and {i, 7, k} = {1, 2,3}). Moreover, in terms of u = %(fl +20),
a=2u— fi, b= —fiar + uoq, ¢ = ua;a;
so that
b? — dac = (0% — 8a;a;)u* + 2f1(2a;a; — ora)u + fia}.

Notice that this is positive at © = 0. In order that there exists values of u for which this expression is negative,
we must have

fi((2a;a; — aray)? — ai(o% — 8a;a;) > 0,
that is
da;a;fi(ax — a;)(ax — aj) > 0.

Thus we must have ¢ = 1 and j = 2 or ¢ = 2 and 5 = 3. In the second case, there are no values of 3 such that
b?> —4ac < 0and 0 < 3 < 2|f1]. The first case gives the desired interval (g1, 2).
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5.2. Holomorphic forms and cocycles on D. The equation of the elliptic curve £ of Example 1.1 and § 2.1
can be put in the form
1
t2 + 2a(z)t +b(z) = 0, witht = —.
Y

Hence the form
dr —2dt

YT Y alr) | 2d(x)t + V()
is holomorphic (and has no zero!). Let 1 be its pull back to D, thus

dz —4udu ith 02 1 ;
= = A% = — =
- a(z)  2d(z)u+b(x)’ 22 7
is a holomorphic form on D. Its divisor is
3
() = (Wo = (2o = 3 A;
1=0

The divisor of the meromorphic form z7 is

3 3
(zm) = Ai+(2)0— D A= (2)o
i=0 i=0

thus z7 is also holomorphic. Now, on D, z and = both have degree 4 and the zeroes of z are the poles of = so
that (2)p = (7)o and
(zzn) = (2)o — (¥)oo + (2)o = Zo-
Thus we have exhibited three holomorphic forms on the genus-3 curve (1)
that the first is 7-invariant while the two others are anti-invariant.
Consider now, as in the proof of Proposition 3.2, the cocycles zx* of the covering D = U, UU_ and let us
prove the lemma that ends the proof of this proposition.

D, the forms 7, zn and xzn. Notice

Lemma5.1. The cocycles zz3 and zz* define independent elements of H'(Op).

Proof. We show that the images of these cocycles under the linear map
HY(Op) —— C?
f—— (Res;=cc(f2n), Res,=co(f2n)

are independent vectors. Let us thus compute

—Aduz™du
(2d/ (z)u? + V' (x)

2z™dt

t(2a’ (z)t + b (z)
The points of E at which ¢ = 0 are the four points A;’s. Near such a point, ¢ is a local coordinate on E and x
can be expressed as a function of £,

R = Res,—oo(222™1) = Resy—o 3

= —2Res;—g

r=a; + O(t),
hence
3 am
R,, = -2 v
2w

(notice that the residue at Ag is zero as m > 3). Now

3
' o(z—ay ,
M, so that b'(a;) = ——5——— and
f3 P

(15)The computation below will show that they are independent in H°(24).

b(x) =
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B 2
Hl§i<j§3(ai — aj)
To prove that zz:3 and zz* are independent, we only need to check that

Rs Ry
R4 R5 7& 07

which is true. U

R,

(a7 "(ag — a3) + a5 (a3 — a1) + a§' " (a1 — a2)) .

5.3. An equivalence of elliptic curves. Let us investigate the relations between the two elliptic curves that
appeared in the spherical pendulum problem:
— the curve X
y? =223 —2H2? — 20 4+ 2H — K?
obtained by the “naive” method
— and the genus-1 spectral curve C

p2 XN 2N +2HN2 +1=0.
P(\)

Let us check firstly that they are isomorphic as complex curves. The method is classical and can be found e.g.
in [22, page 453]. We send a root A\g of P to oo to transform it into a degree-3 polynomial. Expand P by the
Taylor formula
P(X\) = 4A3(X — Xg) + 645N — Xo)2 + 441N — Xo)3 + (A — Xo)?
1
and put u = PRV so that
P(A) = (A= Xo)* [443u® + 6Aou® + 4A1u + 1]
Q(u)

24 P(\) = (A= Ao)? (Lf +Qu)p.
: ‘ (A= X0)?

Let us now transform @ (u) to eliminate the u? term. Write s = Agu + 3 A5 to get

and

Qu) = — | 457 — (342 — 44, Ag) s — (241 Ay Ay — A2 — A3)

ar )
g2 93
= i(483 — 925 — g3)
A2 '
Putting v = ZAi‘W we get a complex isomorphism
(A —Xo)?’

c £,
(A ) —— (s,v)
from C' to the elliptic curve Y of equation
v =45 — gos — g3.
The whole point of the computation now is that go and g3 do not depend on A\g. Using
443 = P'(\), 1245 = P"(\), 24A; = P"(\o)
we get after a few computation

1 1 1 1
=14+-H? andg3 = -H — —H3 - ZK?
g2 =1+ gt andgs = g = o7 4



HAMILTONIAN MONODROMY 25

The next step is to put the equation of X in the same form, which is (more) easily done, putting
iy
22
a change of variable which gives an isomorphism between X and Y. The reason why I have given such explicit
formulas is that they allow to give a more precise result.

1
s:—2<x—§H> and v =

Proposition 5.2. As complex curves, X and C are isomorphic. As real curves, X and Pic?*(C) are isomorphic
for any integer k.

Proof. The “complex” statement has already been proved. Let us look at the reality questions. Firstly, we use
the Abel-Jacobi mapping to identify Y with C/A:

vy —“. c/A
P
P — @
o U

Look at X and at the composition:

where 1) is the change of variable above

b(z,y) = <s=—z <x—§>:27y§>

v as /P da
o UV V2Je Y
so that, calling S the real structure on X (S(z,y) = (z,¥)), we have

Hence we have

uo(S(P)) = —uoy(P).

Thus, the real curve (X, S) is isomorphic with the real curve (C/A, z — —Z).
Let us now look at Pic®(C) (recall that C' has no real point, so that there is no natural base point to identify
the real curve C' with C/A, we must use the parity of the degree here) and at the composition

Pic’(C) —2— v —% ., C/A.
Here I call ¢ the change of variables

N . A3 1 N iAg,u

and for the map it defines on Pic?(C'), so that:

o(P;) ©(Qi)

oL r-Ye =Y [ -y 8
e(Pi) dg
v

:Z/SD(Qi)
_ LAY
=%, %

Thus, the real curve (Pic®(C), S) is—also—isomorphic with (C/A, z — —Z). O
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