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1 Introduction

High energy electrons, positrons and photons traversing matter loose quickly energy by bremsstrahlung
(e+, e− particles radiating aγ) and pair-production (γ → e+e− ). High energye+, e− particles in
the pairs produced will again radiate photons which produce further pairs. This results in electro-
magnetic showers involving a cascade of many electrons and photons. The energy loss will typically
reach a maximum within 5-10 radiation length (χ0) and generally be contained within 20-30 radia-
tion length (whereχ0 = 0.56 cm for lead andχ0 = 0.35 cm for tungsten).
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Figure 1: Diagrams for Bremsstrahlung (left) and lepton-pair production (right) in the presence of a
nucleus N.

The diagrams for the two processes discussed are shown in Fig. 1. They are not restricted to
electrons and apply more generally to the interaction between photons and charged leptons (e, µ, τ).
The cross sections are of the order of 4Z2αr2

c , where Z is the charge of the nucleus, the electro-
magnetic coupling constant α ≈ 1/137 and rc = e2/(4πε0mc2) the classical radius of the charged
particle involved. Compared to electron-pair production, the muon-pair production is suppressed by
the square of the mass ratio, with (me/mµ)

2 = 2.34 × 10−5. Once produced however, the muons
do also loose their energy much slower and become the dominant component as far as leakage from
thick targets is concerned.

Monte Carlo simulation packages for electromagnetic showers like EGS [1, 2] and GEANT [3]
have been available for many years and are widely used. The pair production in these programs is
restricted to electrons. This is adequate for predictions of the energy loss in calorimeters, but not for
leakage through shielding and collimators.

Estimates for muon background from linear colliders relied on dedicated programs [4] based on
cross sections from Tsai [5,6] or a combination of dedicated muon-pair production and follow up of
the muons by GEANT3 [7].

First estimates for CLIC indicate background rates of about 1 muon in the detector for 105 elec-
trons hitting a collimator [8]. Assuming a fraction of 10−3 tail particles to collimate and nominal
bunch intensities, this could result into thousands of muons per bunch train in the detector. A good
simulation of muon production and energy loss is therefore rather essential both for the CLIC beam
delivery and detector design.

This report describes the algorithms for the dominant process of muon production in electromag-
netic showers, which is γ conversion into a muon-pair. The algorithms are based on the work of
Kelner, Kokoulin and Petrukhin [9–11] and closely related to Bremsstrahlung from muons. A more
complete survey of processes leading to muons and in particular the implementation of positron
annihilation with atomic electrons into muons e+e− → µ+µ− in Geant4 is planned. With the inte-
gration into GEANT4, secondary muon production in the cascade and the simulation of the energy
loss of the muons in matter are also taken into account. There is a world wide collaboration on
GEANT4 [12] with up-to-date code and documentation available from the web [13].
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2 Cross section and energy sharing

We consider pair production of muons in the field of the nucleus. Pair production on atomic electrons
γ + e → e + µ+ + µ− has a threshold of 2mµ(mµ + me)/me ≈ 43.9 GeV and a much lower cross
section than the process on the nucleus up to several hundred GeV. At higher energies, the cross
section on atomic electrons represents a correction of ∼ 1/Z to the total cross section.

For the approximately elastic scattering considered here, there is only momentum but no energy
transferred to the nucleon. The photon energy is fully shared by the two muons according to

Eγ = E+
µ + E−

µ (1)

or in terms of energy fractions

x+ =
E+

µ

Eγ
x− =

E−
µ

Eγ
x+ + x− = 1 .

The differential cross section for electromagnetic pair creation of muons in terms of the energy
fractions of the muons is

dσ

dx+

= 4αZ2 r2
c

(
1 − 4

3
x+x−

)
log(W ) , (2)

where Z is the charge of the nucleus, rc the classical radius of the particles which are pair produced
(here muons) and

W = W∞
1 + (Dn

√
e− 2) δ /mµ

1 + B Z−1/3
√
e δ /me

(3)

where

W∞ =
B Z−1/3

Dn

mµ

me
δ =

m2
µ

2Eγ x+x−

√
e = 1.6487 . . .

and

B = 202.4 Dn = 1.49 for Hydrogen and

B = 183 Dn = 1.54A0.27 otherwise. (4)

These formulas are obtained from the differential cross section for muon bremsstrahlung [10] by
means of crossing relations. The formulas take the screening of the field of the nucleus by the atomic
electrons in the Thomas-Fermi model into account, and also the finite size of the nucleus which is
essential for the problem under consideration. The formulas give good results for Eγ � mµ. The
fact that they are approximate close to threshold is of little practical importance. Close to threshold,
the cross section is small and the few low energy muons produced will not travel too far. The cross
section calculated from Eq. (2) is positive for Eγ > 4mµ and

xmin ≤ x ≤ xmax with xmin =
1

2
−

√
1

4
− mµ

Eγ

xmax =
1

2
+

√
1

4
− mµ

Eγ

, (5)

except for very asymmetric pair-production, close to threshold, which can easily be taken care of by
setting explicitly σ = 0 whenever σ < 0.

Note that the differential cross section is symmetric in x+, x− and that

x+x− = x− x2
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where x stands for both x+ and x−. Defining a constant

σ0 = 4αZ2 r2
c log(W∞) . (6)

we can rewrite the differential cross section Eq. (2) normalized and symmetric as function of x as

1

σ0

dσ

dx
=

[
1 − 4

3
(x− x2)

]
logW

logW∞
. (7)

This is shown in Fig. 2 for several elements and a wide range of photon energies. The asymptotic
differential cross section for Eγ → ∞

1

σ0

dσ∞
dx

= 1 − 4

3
(x− x2)

is also shown.

3 Parametrization of the total cross section

The total cross section is obtained by integration of the differential cross section Eq. (2), that is

σtot(Eγ) =

∫ xmax

xmin

dσ

dx+
dx+ = 4αZ2 r2

c

∫ xmax

xmin

(
1 − 4

3
x+x−

)
log(W ) dx+ . (8)

W is a function of x+, Eγ and Z,A of the element, see Eq. (3). Table 1 gives numerical values.

Table 1: Numerical values of W fo x+ = 0.5 for different elements.

Eγ W for H W for Be W for Cu W for Pb
GeV

1 2.11 1.594 1.3505 5.212
10 19.4 10.85 6.803 43.53
100 191.5 102.3 60.10 332.7

1000 1803 919.3 493.3 1476.1
10000 11427 4671 1824 1028.1
∞ 28087 8549 2607 1339.8

Values of the total cross section obtained by numerical integration are listed in Table 2 for 4 different
elements. Units are µbarn, where 1µbarn = 10−34 m2.

Table 2: Numerical values for the total cross section
Eγ σtot, H σtot, Be σtot, Cu σtot, Pb

GeV µbarn µbarn µbarn µbarn
1 0.01559 0.1515 5.047 30.22

10 0.09720 1.209 49.56 334.6
100 0.1921 2.660 121.7 886.4

1000 0.2873 4.155 197.6 1476
10000 0.3715 5.392 253.7 1880
∞ 0.4319 6.108 279.0 2042
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Figure 2: Normalized differential cross section for pair production as function of x, the energy
fraction of the photon energy carried by one of the leptons in the pair. The function is shown for 3
different elements, Hydrogen, Beryllium and Lead and for a wide range of photon energies.

Well above threshold, the total cross section rises about linearly in log(Eγ) with the slope

WM =
1

4Dn

√
emµ

(9)

until it saturates by screening at σ∞, see Fig. 3, where

σ∞ =
7

9
σ0 and σ0 = 4αZ2 r2

c log(W∞) . (10)

Table 3 gives numerical values of WM .
The total cross section is parametrized as

σpar =
28αZ2 r2

c

9
log(1 + WMCfEg) . (11)
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Figure 3: Total cross section for the Bethe Heitler process γ → µ+µ− as function of the photon
energy Eγ in Hydrogen and Lead, normalized to the asymptotic cross section σ∞.

Table 3: Numerical values of WM .
Element WM

1/GeV
H 0.963169
Be 0.514712
Cu 0.303763
Pb 0.220771

The threshold behaviour in the cross section was found to be well approximated by the power t =
1.479 + 0.00799Dn and the saturation with power s = −0.88, both included in

Eg =

(
1 − 4mµ

Eγ

)t (
W s

sat + Es
γ

)1/s
, (12)

where

Wsat =
W∞
WM

= BZ−1/3
4
√
em2

µ

me

.

The agreement at lower energies is improved using an empirical correction factor, applied to the
slope WM of the form

Cf =

[
1 + 0.04 log

(
1 +

Ec

Eγ

)]
,

where

Ec =

[
−18. +

4347.

B Z−1/3

]
GeV .

Comparison with the numerical integration of the exact cross section shows, that the accuracy of the
parametrization is better than 2%, see Fig. 4.
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Figure 4: Ratio of numerically integrated and parametrized total cross sections as function of Eγ for
Hydrogen, Beryllium, Copper and Lead.

4 Multi-differential cross section and angular variables

The angular distributions are based on the multi-differential cross section for lepton pair production
in the field of the Coulomb centre

dσ

dx+ du+ du− dϕ
=

4Z2α3

π

m2
µ

q4
u+ u−{

u2
+ + u2

−
(1 + u2

+) (1 + u2−)
− 2x+x−

[
u2

+

(1 + u2
+)2

+
u2
−

(1 + u2−)2

]
− 2u+u−(1 − 2x+x−) cosϕ

(1 + u2
+) (1 + u2−)

}
.

(13)

Here

u± = γ±θ± , γ± =
E±

µ

mµ

, q2 = q2
‖ + q2

⊥ , (14)

where

q2
‖ = q2

min (1 + x−u2
+ + x+u2

−)2 , q2
⊥ = m2

µ

[
(u+ − u−)2 + 2 u+u−(1 − cosϕ)

]
. (15)

q2 is the square of the momentum q transferred to the target and q2
‖ , q2

⊥ the squares of the components
of the vector q, which are parallel and perpendicular to the initial photon momentum, respectively.
The minimum momentum transfer is qmin = m2

µ/(2Eγ x+x−).
The muon vectors have the components

p+ = p+ ( sin θ+ cos(ϕ0 + ϕ/2) , sin θ+ sin(ϕ0 + ϕ/2) , cos θ+) ,
p− = p− (− sin θ− cos(ϕ0 − ϕ/2) , − sin θ− sin(ϕ0 − ϕ/2) , cos θ−) ,

(16)

where p± =
√

E2± −m2
µ. The initial photon direction is taken as the z-axis. The cross section

Eq. (13) does not depend on ϕ0. Since we have azimuthal symmetry, ϕ0 can simply be sampled at
random in the interval (0, 2 π).

Eq. (13) is too complicated for efficient Monte Carlo generation. To simplify, the cross section
is rewritten in a u+, u− symmetric way using a new variable u and small parameters ξ, β, where
u± = u ± ξ/2 and β = uϕ. When higher powers in small parameters are dropped, the differential
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cross section in terms of u, ξ, β becomes

dσ

dx+ dξ dβ udu
=

4Z2α3

π

m2
µ(

q2
‖ + m2

µ(ξ2 + β2)
)2

{
ξ2

[
1

(1 + u2)2
− 2 x+x−

(1 − u2)2

(1 + u2)4

]
+

β2(1 − 2x+x−)

(1 + u2)2

}
,

(17)

where, in this approximation,
q2
‖ = q2

min (1 + u2)2 .

For Monte Carlo generation, it will be convenient to replace ξ, β by polar coordinates ρ, ψ with ξ =
ρ cosψ and β = ρ sinψ. From integration over ψ and using symbolically du2 where du2 = 2u du,
we have

dσ

dx+ dρ du2
=

4Z2α3

m2
µ

ρ3

(q2
‖/m

2
µ + ρ2)2

{
1 − x+x−
(1 + u2)2

− x+x−(1 − u2)2

(1 + u2)4

}
. (18)

Integration with logarithmic accuracy over ρ gives

∫
ρ3 dρ

(q2
‖/m

2
µ + ρ2)2

≈
1∫

q‖/mµ

dρ

ρ
= log

(
mµ

q‖

)
. (19)

Within the logarithmic accuracy, one can replace log(mµ/q‖) by log(mµ/qmin), so that

dσ

dx+ du2
=

4Z2α3

m2
µ

{
1 − x+x−
(1 + u2)2

− x+x−(1 − u2)2

(1 + u2)4

}
log

(
mµ

qmin

)
. (20)

With the substitution u2 = 1/t− 1, du2 = −dt /t2 we get

dσ

dx+ dt
=

4Z2α3

m2
µ

[1 − 2 x+x− + 4 x+x−t (1 − t)] log

(
mµ

qmin

)
. (21)

Atomic screening and the finite nuclear radius may be taken into account by multiplying the differ-
ential cross section determined by Eq. (17) with the factor (please note that after integration over ρ,
the q-dependence is lost)

(Fa(q) − Fn(q) )2 , (22)

where Fa and Fn are atomic and nucleus form factors.

5 Steps in the Monte Carlo generation of γ → µ+µ−

Given is the photon energy Eγ and Z,A of the material in which the γ converts. The probability for
the conversions to take place is calculated according to the parametrized total cross section Eq. (11).
The next step is to determine how the photon energy is shared between the µ+ and µ−, that is
to generate x+ according to Eq. (2). The directions of the muons are then generated via auxiliary
variables t, ρ, ψ.

Now a detailed description of the algorithms employed in every step. R1,2,3,4,... are random num-
bers with a flat distribution in the interval (0,1). The generation proceeds as follows.
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1) Sampling of the positive muon energy E+
µ = x+ Eγ .

This is done using the rejection technique. x+ is first sampled flat within kinematic limits using

x+ = xmin + R1(xmax − xmin)

and then brought to the shape of Eq. (2) by keeping all x+ which satisfy(
1 − 4

3
x+x−

)
log(W )

log(Wmax)
< R2 ,

where Wmax = W (x+ = 1/2) is the maximum value of W , obtained for symmetric pair-production
at x+ = 1/2. About 60% of the events are kept in this step. Results of a Monte Carlo generation
of x+ are illustrated in Fig. 5. The shape of the histograms agrees with the differential cross section
illustrated in Fig. 2.
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Figure 5: Histogram of generated x+ distributions for Beryllium at three different photon energies.
The total number of entries at each energy is 106.

2) Generate t.
The distribution in t is obtained from Eq.(21) as

f1(t) dt =
1 − 2 x+x− + 4 x+x−t (1 − t)

1 + C1/t2
dt , 0 < t ≤ 1 . (23)

with form factors taken into account by

C1 =
(0.35A0.27)2

x+x− Eγ/mµ
. (24)

In the interval considered, the function f1(t) will always remain below

max[f1(t)] =
1 − x+x−
1 + C1

.

For small x+ and high Eγ , f1(t) approaches a value of 1, see Fig. 6.
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Figure 6: The function f1(t) at Eγ = 10 GeV (left) and Eγ = 1 TeV (right) in Beryllium for different
values of x+.
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The Monte Carlo generation is done using the rejection technique. About 70% of the generated
numbers are kept in this step. Generated t-distributions are shown in Fig. 7.

3) Generate ψ by the rejection technique using t generated in the previous step for the frequency
distribution

f2(ψ) =
[
1 − 2 x+x− + 4 x+x−t (1 − t) (1 + cos(2ψ))

]
, 0 ≤ ψ ≤ 2π . (25)

The maximum of f2(ψ) is

max[f2(ψ)] = 1 − 2 x+x− [1 − 4 t (1 − t)] . (26)
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Generated distributions in ψ are shown in Fig. 8.

4) Generate ρ.
The distribution in ρ has the form

f3(ρ) dρ =
ρ3 dρ

ρ4 + C2
, 0 ≤ ρ ≤ ρmax , (27)

where

ρ2
max =

1.9

A0.27

(
1

t
− 1

)
, (28)

and

C2 =
4√

x+x−

[(
mµ

2Eγx+x− t

)2

+

(
me

183Z−1/3 mµ

)2
]2

. (29)

The ρ distribution is obtained by direct transformation applied to uniform random numbers R i ac-
cording to

ρ = [C2(exp(β Ri) − 1)]1/4 , (30)

where

β = log

(
C2 + ρ4

max

C2

)
. (31)

Generated distributions of ρ are shown in Fig. 9
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Figure 9: Histograms of generated ρ distri-
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Figure 10: Histogram of generated θ+ distri-
butions at different photon energies.

5) Calculate θ+, θ− and ϕ from t, ρ, ψ with

γ± =
E±

µ

mµ
and u =

√
1

t
− 1 . (32)
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according to

θ+ =
1

γ+

(
u +

ρ

2
cosψ

)
, θ− =

1

γ−

(
u− ρ

2
cosψ

)
and ϕ =

ρ

u
sinψ . (33)

The muon vectors can now be constructed from Eq. (16), where ϕ0 is chosen randomly between 0
and 2π. Fig. 10 shows distributions of θ+ at different photon energies (in Beryllium). The spectra
peak around 1/γ as expected.

The most probable values are θ+ ∼ mµ/E
+
µ = 1/γ+. In the small angle approximation used

here, the values of θ+ and θ− can in principle be any positive value from 0 to ∞. This may lead in
the simulation (with a very small probability, of the order of mµ/Eγ) to un-physical events in which
θ+ or θ− is greater than π. To avoid this, a limiting angle θcut = π is introduced, and the angular
sampling repeated, whenever max(θ+, θ−) > θcut.
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Figure 11: Angular distribution of positive (or negative) muons. The solid curve represents the
results of the exact calculations. The histogram is the simulated distribution. The angular distribution
for pairs created in the field of the Coulomb centre (point-like target) is shown as dashed curve for
comparison.

Figs. 11,12 and 13 show distributions of the simulated angular characteristics of muon pairs in
comparison with results of exact calculations. The latter were obtained by means of numerical
integration of the squared matrix elements with respective nucleus and atomic form factors. All
these calculations were made for iron, Eγ = 10 GeV and x+ = 0.3. As it is seen from Fig. 11,
wide angle pairs (at low values of the argument in the figure) are suppressed in comparison with
the Coulomb centre approximation, which is explained by the influence of the finite nuclear size
(comparable to the inverse mass of the muon). Typical angles of particle emission are of the order
of 1/γ± = mµ/E

±
µ (Fig. 12). Fig. 13 illustrates the influence of the momentum transferred to the

target on the angular characteristics of the produced pair; in the frame of the often used model which
neglects target recoil, the pair particles would be symmetric in transverse momenta (and coplanar
with the initial photon).
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