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Abstract

Homogeneous semiconductors under spacially periodic external magnetic �elds exhibit spin-band split-

ting and displacements, more clearly de�ned than in diluted magnetic semiconductor superlattices. We

study the inuence of the geometrical parameters and the spin-�eld interaction on the electronic transport

properties. We show that by varying the external magnetic �eld, one can easily block the transmission

of either the spin-up or the spin-down electrons.
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The theoretical and the experimental research on multilayer and heterostructures of meso and

nanoscopic dimensions have been profuse since the pioneering work of Tsu and Esaki [1,2]. In the last

years, the transport properties of spin-polarized electrons through magnetic multilayer structures have

become of great interest [3,4], and a rapid transition from basic research of Giant Magnetic Resonance

e�ects [5{7] to applied research followed. Di�erent types of systems are currently in use [8{10]. One of

the major obstacles in producing these systems has been the low solubility of magnetic elements. It is

then appealing to study alternative systems possessing the desired properties but still easier to produce

and control. For this purpose, a system in which the spin-�eld interaction and the phase coherence are

present is needed. These requirements, responsible for the Giant Magneto Resistance and the underlying

band structure, are convened if a charged spin-1=2 particle moves in a spacially periodic magnetic �eld.

In this communication we consider a homogeneous 2D transport media transformed in a homogeneous

magnetic superlattice when the external magnetic �eld is assumed partially or totally blocked on alter-

nating stripes. We study the transport properties within the transfer matrix approach. We solve the

Schr�odinger equation for the spin-up and spin-down uncoupled channels, and evaluate the superlattice

scattering amplitudes. Using compact formulas of the theory of �nite periodic systems [11], the char-

acteristic transport properties and the spin band displacements are easily studied in terms of standard

special functions. A simple analysis of the physical quantities, as functions of the magnetic �eld and the

geometrical parameters, leads to interesting features that may be of practical importance.

Let us consider an electron moving along a 2D wave guide of transversal width w and alternating stripes

WSWSWSW::: along the z-axis. In this superlattice we denote by W a region exposed to a "weaker" or

zero magnetic �eld and by S a region under a comparatively "stronger" magnetic �eld Bs {̂. As shown

in �gure 1, the lengths of these regions are lw and ls, respectively. A single-cell, with length lc = lw + l s,

can be chosen in di�erent ways but we prefer the structure W1=2SW1=2, where W1=2 means half stripe

of W.

For each of the homogeneous regions of the superlattice, W and S, the Schr�odinger equationh
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Hs is the single mode Hamiltonian
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and

I (s; r) =

�
0 for r + s even

4sr
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for r + s odd
: (7)

Important physical information can be obtained even if we restrict our analysis to energies below the

second channel threshold E < E2 = 2�h2�2

m�w2 , and neglect the contribution from the evanescent modes

contributions. Since, experimentally, it is not easy to completely block the magnetic �elds, we consider

non-zero the magnetic �elds in general. As usual, it is convenient to introduce the function

' (z) = e
�z

2
=2l2B� (z) (8)

which leads us to the conuent hypergeometric equation 
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?1. Notice that for each propagating mode we have

the spin-up and the spin-down physical channels.

Inside a stripe, under a stronger or weaker magnetic �eld, the solution of the hypergeometric equation

is given by
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which is clearly invariant under the gauge transformation A� ! A� + (0; B�lc; 0). To calculate the

superlattice physical quantities, we now work within the transfer matrix approach where as shown in

reference [11], it is suÆcient to �nd the solution of a single cell. In the one channel limit and for

uncoupled spin-channels the time reversal violating term vanishes. The two channel transfer matrix M�

connecting wave vectors between two points z1 and z2 inside or at the border of any region � has the

structure

M� (l�) =

�
�� ��
��� ���

�
(11)

with

�� =
1
2
[f + g0 � i (f 0=k � gk)] ;
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[f � g0 � i (f 0=k + gk)] :

Here
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and f 0, g0 are the corresponding derivatives with respect to z.

With the multiplicative property of the transfer matrices, the single-cell W1=2SW1=2 transfer matrix

M1 is given by

M1 =Mw (zi+1; zs)Ms (zs; zw)Mw (zw; zi) =

�
�1 �1
��1 ��1

�
(12)

with zw = zi + lw=2, zs = zi + lw=2 + ls. Using the transmission amplitude formula [11]

tn =
t�1

t�1pn � pn�1
; (13)

where pn is the Chebyshev polynomial of the second kind of order n evaluated at TrM1=2, a variety

of interesting transport properties, implicit in the band structure behavior, can be found if we vary the

relevant superlattice parameters and the magnetic �elds.

Although we want to emphasize the spin-�eld interaction e�ects on the spin band structure, we shall

also analyze the total transmission coeÆcient behavior as a function of the geometrical parameters lw, ls

and w. In all of the �gures shown below, the n-cell transmission coeÆcients are plotted with solid lines

while broken lines represent the single-cell transmission coeÆcients and. In all cases, only the indicated

parameter that is modi�ed whilst the others are kept �xed. Since the evolution of the band structure

associated with the changes in the geometrical parameters is the same for spin-up and spin-down electrons,

and because of lack of space, we shall only show the e�ects on the spin-down bands.

In �gure 2, the geometrical parameters are kept �xed while the magnetic length lBs
is varied. As

expected from the Zeeman term in the Hamiltonian, a blue shift results by increasing the magnetic �eld

(or decreasing the magnetic length). Since the phase coherence responsible for the gap formation (which

is related to the Giant Magneto Resistance e�ect) depends on the di�erence Bs � Bw, a corresponding

increase or decrease of the gap widths is observed, with an opposite behavior for the band width.

In �gures 3a)-c), the e�ects of the geometrical-lengths on the band structure are shown. In 3a),

it is evident that the only e�ect that results by varying the wave-guide width w is an overall energy

displacement of the band structure. On the other hand, when the length ls or lw is changed, a di�erent

behavior is found. In these cases (see �gures 3b) and 3c)), the band and the energy level densities

increase by increasing the lengths. In the limit ls=w, lw=w � 1 the band widths tend to zero and become

equidistant, with a separation of the order of �h!c, where !c =
eB

cm
is the cyclotronic frequency. This can,

after some algebra, be analytically shown.

Spin-�eld interaction e�ects on the electron transport properties can be summarized as follows. The

spin bands for spin-up and spin-down electrons, in �gure 4, are nearly the same but displaced in energy

one from the other. This is the band splitting e�ect. A careful observation of the bands exhibits also

di�erences in the peak-valley. The displacement of the spin bands is sensitive to small changes in the

physical parameters and in the external magnetic �eld. This is an important property that should be
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explored experimentally. In general, when the magnetic �eld is increased, the evolution of the spin-up

band structure is toward lower energies while for spin-down electrons is toward higher energies, similar

to the energy level behavior in atomic and 0-D systems. This behavior is apparent in the transmission

coeÆcients shown in �gure 4. As found for diluted magnetic semiconductors, the energy bands for both

spin-up and spin-down electrons can be brought into coincidence or be displaced one from the other

when the magnetic �eld is varied. Hence, for a �xed electron energy we pass from a magnetic superlattice

where spin-down electrons are transmitted, to a magnetic superlattice where the transmission is for spin-

up electrons (see �gures 3a,c) at E1), which is the well known spin polarization e�ect. Similarly, one can

�nd conditions where both types of electrons can pass through with the same energy (see for example

3b) at E2).

In this work we have studied the e�ects of spin on the transport properties of spin-half particles

when some of the magnetic superlattice parameters and external �eld are changed. We found that

choosing appropriately the values of the external magnetic �eld, the blocking fraction (de�ned by the

relative di�erence (Bs �Bw) =Bs) and the geometrical extension on which the �elds act, one can induce

important blue or red shifts of the band structure. These evolutions have also been shown to depend

on the spin-projections. Working out the uncoupled two channel case, analytical solutions in terms of

standard special functions were obtained and the numerical calculations became rather simple.

We conclude that the homogeneous magnetic superlattices are well-suited candidates to test quantum

coherence phenomena and the spin-dependent transport properties.
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FIGURE CAPTIONS

FIG. 1. A 2-D homogeneous magnetic superlattice. Regions under a weak tranverse magnetic �eld Bw alternate

with regions under a stronger magnetic �eld Bs.

FIG. 2. Band structure shifts induced by changing the magnetic �eld Bs, as indicated, while Bw is kept �xed

(equal to 0mT ).

FIG. 3. E�ects of the geometrical parameters on the band structure of spin-down electrons. In 3a) an almost

rigid displacement is produced when only the tranverse width w is changed and the remaining parameters kept

�xed. In 3b) and 3c) the lengths ls and lw are, respectively, varied. In the limit ls=w, lw=w� 1 the band widths

tend to zero and become equidistant, with a separation of the order of �h!c, where !c =
eB

cm
is the cyclotronic

frequency.

FIG. 4. The transmission coeÆcients and the relative positions of the bands and gaps induced by varying the

magnetic �eld Bw on a superlattice with 9 cells and Bs = 2T , for spin-up and spin-down electrons. The spin-up

and spin-down bands move in oposite directions. Under certain conditions the bands may be made to coincide. At

E1 and magnetic �elds as in a) and c), respectively, either the spin-up or the spin-down electrons are transmitted.

In b) and for an energy E2) both types of electrons can pass through.
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