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Abstract

At a formal level, there appears to be no difficulty involved in introducing a chemi-
cal potential for a globally conserved quantum number into the partition function for
space-time including a black hole. Were this possible, however, it would provide a form
of black hole hair, and contradict the idea that global quantum numbers are violated
in black hole evaporation. We demonstrate dynamical mechanisms that negate the for-
mal procedure, both for topological charge (Skyrmions) and complex scalar-field charge.
Skyrmions collapse to the horizon; scalar-field charge fluctuates uncontrollably.



1 Introduction

The classic no-hair theorems of black hole physics [1] are commonly interpreted as im-
plying that (non-gauge) global conservation laws are inevitably violated in the process
of black hole evaporation [2], even in the absence of any explicit microscopic mechanism
for such violation [3, 4, 5, 6, 7, 8]. If black hole evaporation, and more generally quantum
gravity does violate global conservation laws then this has many implications for the use
of global symmetries in fundamental physics, including baryon and lepton-number vio-
lation, axion physics, the use of very light scalars in cosmology, and models of low-scale
quantum gravity [3, 4, 6, 7, 9]. But since the no-hair theorems are essentially classical,
and they are derived strictly only for stationary geometries, which contain unresolved
singularities, perhaps some doubt remains possible.

An interesting alternative perspective is afforded by passing to imaginary time, and
considering Euclidean black holes. The Euclidean Schwarzschild metric

ds2 =
(
1− 2M

r

)
dτ 2 +

(
1− 2M

r

)−1

dr2 + r2dΩ2 (1)

appears to have a singularity at r = 2M , but upon substituting v =
√

8M
√

r − 2M one
finds that near this limit

ds2 → 1

16M2
v2dτ 2 + dv2 + (2M)2dΩ2, (2)

and by enforcing the periodicity τ/4M = τ/4M + 2π we match non-singular polar coor-
dinates. Two consequences of this construction are that the region behind the horizon,
r < 2M , does not appear; and that we are describing an appropriate, non-singular back-
ground for quantum field theory at temperature T = (8πM)−1 [10].

Indeed, if one considers formally the thermal partition function

Z =
∫
DgDϕe−Sβ (3)

including gravity and generic matter fields ϕ, and integrating over fields periodic in the
imaginary time period β, the Euclidean Schwarzschild solution appears as a stationary
point.

Superficially it appears innocuous to add a chemical potential term, for any micro-
scopically conserved global charge, into this definition. But if by doing so we found a
meaningful partition function, depending on the chemical potential, we would be able to
define a conserved charge on the black hole, and contravene the above-mentioned con-
ventional wisdom [5]. In the remainder of this note we shall consider two different sorts
of global charge, topological and ordinary, and demonstrate that in both cases something
goes wrong with this attempt – quite different things in the two cases.

2 Skyrmion Collapse

Let us briefly recall the construction of Skyrmions[11]. Consider the non-linear σ model
defined by the four-component scalar field ϕa, a = 0, . . . , 3 with ϕ2 = 1; this defines
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a target space S3. At spatial infinity the field approaches a uniform value, say ϕ0 =
1, defining the normal vacuum. Field configurations approaching a constant at spatial
infinity define maps S3 → S3. There is a topological current density

jµ =
1

3π
εµαβγεdabcϕ

d∂αϕa∂βϕb∂γϕ
c (4)

which is identically conserved. The charge obtained by integrating the zero component
of this current over space is the degree of the associated mapping. The static Skyrme
textures

ϕ0(~r) = cos f(r),
~ϕ(~r) = sin f(r) r̂, (5)

define a class of symmetrical mappings with

j0(r) =
2

π
f ′(sin f)2 = ∂r

1

π

(
f − 1

2
sin(2f)

)
. (6)

Regularity at the origin implies f(0) = nπ. If f(r)→ 0 at spatial infinity, arriving at the
normal vacuum, then the charge is −n.

Now let us consider the energetics, first with reference to flat space. If we use the
standard non-linear σ model Lagrangian L =

√
g 1

2
gµν∂µϕa∂νϕ

a then the energy Eλ

of a re-scaled Skyrme texture fλ(r) = f(λr) transforms as E(λ) = λE(1). Thus we
have charged configurations with arbitrarily small energy, using singular maps whose
structure is concentrated near the origin (Derrick’s theorem). The standard remedy is to
supplement the Lagrangian with the higher-derivative Skyrme term

LSkyrme ∝ −√ggµρgνσF ab
µνF

ab
ρσ (7)

with F ab
µν ≡ ∂µϕa∂νϕ

b − ∂νϕ
a∂µϕb. A special property of this term is that it contains no

higher than two powers of the time derivative, so that the action including it continues
to define a normal dynamical system. The energy associated with this term scales as
ESkyrme(λ) = λ−1ESkyrme(1), oppositely to the minimal term. Thus it is no longer fa-
vorable for field configurations to collapse. Indeed, in flat space one finds a non-trivial
function f with n = 1 that satisfies the equation of motion and minimizes the energy.

In the Euclidean Schwarzschild background, both the topology and the energetics
of the situation are altered. The topology of spatial sections (constant τ) is S2 × R+ (a
sphere times a half-line), and of the entire space-time is S2×R2; in neither case is there
a quantized degree defined. Indeed, in the Skyrme texture, the restriction f(0) = nπ
is no longer required by continuity nor (for physical purposes, decisive) by demanding
finite energy. This is because the factor multiplying the angular part of the metric does
not degenerate at the origin, which is effectively the horizon r = 2M .

In more detail, the energy near the horizon for a Skyrme texture parametrized by
f(r) = h(v) behaves as

E ∼
∫
0
dv v

(
c1(h

′)2 + c2(sin h)2 + c3(sin h)2(h′)2 + c4(sin h)4
)

, (8)
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with numerical constants ci. (Here and below we refer to the energy conjugate to
Schwarzschild time, i.e. the action per unit τ .) The first two terms arise from the minimal
σ-model Lagrangian, the second two from the Skyrme term, for radial and angular deriva-
tives respectively. To analyze this, it is convenient to switch to the tortoise coordinate
s ≡ log 1/v, so

E ∼
∫ ∞

ds
(
c1(h

′)2 + c2e
−2s(sin h)2 + c3(sin h)2(h′)2 + c4e

−2s(sin h)4
)

. (9)

No divergence arises when h approaches an arbitrary constant value at s → ∞, so
requiring finite energy does not quantize the charge [12]. Much more is true. Consider a
configuration with h varying uniformly from 0 to ζ over the interval [a, b]. The energy
behaves as

E ≤ c1
ζ2

b− a
+ c2e

−2a + c3
ζ2

b− a
+ c4e

−2a. (10)

Since this can be made arbitrarily small by taking a and b suitably to infinity, the
mass/charge ratio for Skyrmion charge is minimized at zero, by collapsing charge toward
the horizon. Equivalently, defining u = r − 2M , and taking h(u) ∼ (log u)p then gives a
most singular contribution of the form

E ∼
∫

du
(log u)2p−2

u
(11)

which is convergent for p < 1/2. Thus a logarithmic divergence in the ansatz function
h(r) is can occur with finite action. This implies that the mass/charge ratio for Skyrmion
charge is minimized at zero.

By way of contrast, in flat space the behavior of the energy near the origin is

E ∼
∫
0
dr r2

(
κ1(f

′)2 + κ2
1

r2
(sin f)2 + κ3

1

r2
(f ′)2(sin f)2 + κ4

1

r4
(sin f)4

)
. (12)

Quantization of the charge and non-triviality of the mass/charge ratio are implicit in this
form. Indeed, finiteness of the κ4 term requires sin f(0) = 0; and some simple arguments
using Schwarz’s inequality with the κ3 term for small r and the κ1 term for large r allow
us to bound the charge in terms of the energy. It seems worth recording that without
the Skyrme term there would be no physical quantization of charge, since the κ1 and κ2

terms permit non-zero sin f(0) at finite energy.

The possible accumulation of charge with zero energy near the horizon reminds us
of the increasingly red-shifted image that remains, in real space-time, as a record of
whatever has fallen into the hole. On the other hand, such charge leaves no long-time
residue at any finite distance from the horizon, and in this sense it does not provide hair.

3 Scalar Field – Limiting Mass/Charge Ratio

Now let us consider the conserved charge associated with the phase symmetry of a
complex scalar field ϕ. For simplicity we specialize to factorized s-wave configurations
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ϕ(~r, τ) = η(v)e−inτ/4M , taking account of the periodicity in imaginary time. Near the
horizon the charge behaves as

Q =
∫ √

ggττ Im(ϕ∗∂τϕ)

= (4π(2M)2)
n

4M

∫
0
dv

1

v
(η(v))2

= (4π(2M)2)
n

4M

∫ ∞
ds (η(s))2. (13)

Near the horizon the energy (≡ action/unit τ) behaves as

E =
∫ √

g(gττ∂τϕ
∗∂τϕ + gvv∂vϕ

∗∂vϕ + m2ϕ∗ϕ)

= (4π(2M)2)
∫
0
dv

(
1

v
η2
(

n

4M

)2

+ v(η′)2 + vm2η2

)

= (4π(2M)2)
∫ ∞

ds

((
n

4M

)2

η2 + (η′)2 + e−2sm2η2

)
. (14)

By taking η → const.s−
1
2
+ε as s → ∞, with small ε, we can enhance the first term

in the integrand relative to the other two. In the limit, the energy and charge become
proportional, in the form

E

Q
=

1

4M
, (15)

using n = 1 (the most favorable). The peculiar appearance of this equation arises from
the fact that we have put the Planck mass MPl = 1. Restoring units, we have E/Q =
M2

Pl/4M . For large black holes, this becomes small. Indeed, the ratio is of order the
Hawking temperature. Thus E/Q is equal to the electron mass for M ∼ 2 × 1017 gm;
for a solar-mass black hole, the ratio is E/Q ≈ 6 × 10−16me. So for macroscopic holes
it becomes energetically favorable to hide quantum numbers in a singular manner near
the horizon, similar to what we found in the Skyrme model. In any case, the charge near
the horizon undergoes significant fluctuations due to the Hawking temperature. Without
further analysis, however, it is not clear how this phenomenon addresses our problem of
principle for small holes and heavy charge quanta.

4 Scalar Field – Charge Veto

Referring again to the energy (or action) expression, we see that there is a qualitative
difference between the behavior of the n = 0 and the n = 1 (or higher) sectors near
the horizon. In both cases the mass terms become negligible, and we are left to compare
actions of the form

∫∞ dsκ2(η
′)2 versus

∫∞ ds(κ1η
2 + κ2(η

′)2). The first form permits

asymptotics η → s+ 1
2
−ε while the second requires the much more stringent condition

η → s−
1
2
−ε, so we might expect that the class of configurations it supports has relatively

small measure. To quantify this, consider the functional determinants accompanying
integration over these sectors, concentrating on the contribution to the action from an
interval [a, a + L] in s. For simplicity, take κ1 = κ2 = 1, remove the constant mode,
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and assume periodic boundary conditions. This is only a reasonable approximation to
the contribution for short-wavelength modes, which decouple from other intervals. The
relevant determinants involve the product of inverse square roots of the eigenvalues, so
for their ratio r we have the infinite product

r =
∞∏
1

(2πn
L

)2

1 + (2πn
L

)2
. (16)

This evaluates to L
2π

(sinh( L
2π

))−1. The low eigenvalues are not to be taken seriously, as
already mentioned. But the exponential falloff in L arises from the high eigenvalues,
and it indicates that the n 6= 0 sectors have zero measure relative to the n = 0 sector.
As we have seen in the previous section, the charge operator itself contains a term
of the same asymptotic form as the κ1 contribution. Thus a chemical potential can
decrease the net numerical value of κ1, or even reverse its sign. Therefore we arrive at
two simple possibilities. If the chemical potential is less than the critical value 1/4M ,
it has no effect. If it is greater than this value, the action becomes unbounded below.
Neither of these possibilities yields a clear realization of a hairy black hole. Projection
on charge eigenstates goes through the intermediary of partition functions with chemical
potential [5], and so encounters the same singularity. We cannot, from this analysis,
entirely preclude the possibility of some more delicate construction, somehow working
with chemical potentials infinitesimally near the critical value, but it would require some
additional ideas.

5 Conclusion

Straightforward attempts find thermal hair in canonical realizations of topological and
non-topological global charges appear to go awry, for different and perhaps not entirely
straightforward reasons. In both cases, special properties of the Euclidean black hole
metric allow one to store charge in a singular fashion near the horizon of a large hole,
with small cost in energy.

Throughout our discussion we have treated the background geometry as fixed, thus
neglecting possibility of “back-reaction”. The crucial configurations for our arguments,
in the Skyrmion case, involved fields varying rapidly near the horizon. Although their
integrated action is small, they induce large local values of the energy-momentum tensor.
Thus there is no guarantee that they will correspond to valid configurations of the full
quantum gravity theory. Indeed, if they did we would appear to be in danger of providing
an infinite entropy for the black hole, since there is at least one low-energy state for each
value of the charge. (This is related to the phenomena discussed by ’t Hooft [13].)

Finally, let us venture a heuristic interpretation of the charge veto. The Schwarzschild
temperature (8πM)−1 is appropriate for static frames far from the hole, but at finite
distances the effective local temperature is

√
gττ larger, which diverges near the horizon.

Thus the chemical potential becomes negligible compared to the local temperature, and
loses its influence upon configurations concentrated near the horizon, unless it triggers
an instability.
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