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Introduction

What can we learn about the dynamics of particle production in e+e−collision by just looking
at the number of particles produced in the final state ?

This is the main question which is addressed in this thesis.

It is remarkable that the study of a static variable, such as the number of particles found
in the final state, might reveal anything about the chain of processes which have occurred in
the early stage of the reaction.

By analogy, one can imagine an extra-terrestrial being wanting to understand Humanity
from outside the Earth by using a giant telescope and looking at the distribution of light
density at the surface of the Earth, from the behavior of this light density trying to access
information about Humanity and its evolution.

What he would see is that the light density is not uniform, that in some areas there is
practically nothing, while at other places huge clusters of light density occur. He might also
see that large light density areas are connected to middle range light density areas by thin light
density lines. He would then find an obvious hierarchy in the distribution of these lights. In
order to understand the mechanism which governs the apparition and the evolution of the light
density, he would try to understand how all these lights are connected to each other. Therefore,
he would study the correlations between these light densities.

He would certainly not understand the human spirit, but he might be able to understand
some important points, both about the present and the past of Humanity and also about
its evolution. Quickly, he would understand that these areas of high light densities have a
“capital” importance for the whole light density distribution and that they, somehow, govern
the evolution of smaller light density areas. He may argue that this importance dates back
to some early stage in Humanity evolution when the light population was smaller and that
by some iterative migration waves, the light population has increased. He may even argue
about the reason why these areas have been favored above the others. He may decompose the
dynamics of this light density evolution in this area into two stages, a first stage dating back
to the origin of the apparition of the light in this area and a second one coming from the fact
that the growing importance of this area itself might have led this area to grow in importance
(and in light density) even faster. He may not realize that Humanity (at least what he thinks
Humanity is) has anything to do with some living creatures crawling at the surface of Earth.
However, he will always be able to manage some understanding concerning the main points in
the evolution of Humanity.

Luckily, particle physics is rather well understood (so we think). Main stream theories
collected under the common name of Standard Model of particle physics describe in great
detail many aspects of particle physics. Therefore, we should be able to learn more about the
dynamics of particle production than our E.T. scientist can about Humanity.

The main-stream theory of primary concern in this thesis is is Quantum ChromoDynamics
(QCD), the theory of the strong interaction which insures at its smallest scale the cohesion of
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matter, explaining the way in which quarks and gluons are bound together within protons and
neutrons, which are themselves held within the atomic nucleus. QCD was born in the 1970’s.
So it is still a rather young theory and many questions have yet to be answered. One of them
concerns the evolution of partons into hadrons. Currently, no theory is able to describe the
entire process.

This thesis describes research that takes place at the interface between soft and hard QCD
(the sector of QCD which describes hadrons and that which describes partons, respectively)
and it is intended to help to understand the general picture of the evolution of partons to
hadrons.

By studying the charged-particle multiplicity distribution, we are able to access the dynam-
ics of the process. The way partons evolve into hadrons leaves footprints in the charged-particle
multiplicity distribution of the final state. These footprints are the correlations which exist be-
tween the particles. By studying these correlations, one might be able to pinpoint the various
processes responsible for the particles we record in our detector.

Therefore, to give a short answer to the question asked at the beginning of this introduction,
the study of the charged-particle multiplicity distribution will help us to better understand the
chain of processes and their hierarchical importance in the production of final state particles.

The layout of the thesis is organized as follows: In Chapter 1, a short theoretical introduction
to multiparticle production is given. LEP and the L3 detector, the source of the data used in
our analysis, are described in Chapter 2. In Chapter 3, the selection, i.e., the necessary step to
isolate a pure sample of hadronic Z0 decays, is described. The measurement of our main variable,
the charged-particle multiplicity, is described in Chapter 4. The inclusive charged-particle
spectrum is measured in Chapter 5. Chapter 6 is the first chapter dedicated to the study of the
shape of the charged-particle multiplicity distribution. In this chapter the study is limited to
the full event sample and to a comparison with theoretical predictions. In Chapter 7, the shape
of the jet multiplicity distribution is studied in order to enable direct comparison with QCD
and jets obtained at perturbative energy scales. In Chapter 8, the charged-particle multiplicity
distribution of the full sample is subdivided into that of 2-jet and 3-jet samples in order to
compare to phenomenological models. The charged-particle multiplicity distribution is also
studied in restricted rapidity intervals in Chapter 9. Finally, the conclusions are summarized.



Chapter 1

Theory

We present in this chapter a short introduction to the theoretical knowledge and understand-
ing of the processes occurring during an e+e− collision and responsible for the properties of
the observables such as the charged-particle multiplicity distribution and reduced momentum
distribution studied in this thesis.

1.1 Multiparticle production in e+e− collisions

Multiparticle production is studied in a wide range of processes, from heavy-ion to e+e− inter-
actions. Unlike other types of collisions, the e+e− interaction has the advantage of offering a
clean framework for this study. Only one collision per bunch crossing occurs, furthermore all
the available center-of-mass energy is used in the interaction. Electrons and positrons being
point-like and massless particles, and interacting only via the Electroweak interaction, their
interaction is well understood and described by the Standard Model.

At the center-of-mass energy of
√

s = 91.2 GeV, i.e. at the Z0 resonance, the e+e− inter-
action is dominated by the production of a quark and anti-quark pair (and hence of hadrons)
via the formation of a Z0 boson. The cross section of this process is about 69.9% [1] of the
total e+e− cross section. From a theoretical point of view, the process e+e− −→ hadrons is
understood as a succession of phases, each of them being described by a different theory. The
main phases in the evolution of an e+e− multi-hadronic event are shown in Fig. 1.1 together
with its structure.

The electroweak phase

The first phase of the process concerns the collision itself. The electron-positron pair annihilates
into a virtual photon or a Z0 boson. This phenomenon may be accompanied by the emission
of photons (initial-state radiation) prior to the annihilation. Following its creation, the vector
boson decays into a quark-antiquark (qq̄) pair. As for the annihilation, the creation of the
fermion pair may be accompanied by the emission of one or more photons (final-state radiation).
Both initial- and final-state radiation affect the system by reducing the energy available for
hadron production. However, both initial- and final-state radiations are not very common at
the energy of the Z0. All these phenomena are described in the framework of the very successful
electroweak model.
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The perturbative QCD phase

From the qq̄ pair created in the previous phase, a large number of particles are produced in
the final-state in a very characteristic jet structure, as seen in Fig. 1.2 for a 3-jet event as it
appears in the L3 detector. Quantum ChromoDynamics (QCD) gives, in principle, a description
and explanation for both the large number of particles produced in the final-state and its jet
structure.
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91.2 GeV 10 GeV ≈ 1 GeV ≈ 0.1 GeV

Electroweak Perturbative QCD Non-perturbative QCD
M.E. Parton Shower

DECAY

Figure 1.1: Schematic representation of a hadronic e+e− event.

In Quantum ChromoDynamics, multiparticle production arises from the interactions of
quarks and gluons [2]. Because of their properties, these interactions are responsible for the
creation of additional quark-antiquark pairs and gluons (i.e. partons) in a cascade process near
the direction of the primary partons (i.e. the initial quarks and gluons), thus giving this typical
jet structure to the events. Ultimately, hadronization gives birth to a large number of hadrons
arranged into jets.

Two approaches may be used to described the production of partons.

The first one, known as the matrix element method (M.E.), consists of performing the
exact calculation perturbatively at each order of the strong coupling constant αs, taking into
account all Feynman diagrams. Unfortunately, the difficulty increases sharply with the order
considered and such a calculation has not yet been performed to more than the second order
in αs. Therefore, this method cannot account for more than 4 partons in the final-state.

Instead of using the exact calculation, the second approach, known as the parton shower
approach, attempts to reproduce the cascade process responsible for the jet structure of the
event. This is achieved by making iterative use of the three basic branchings allowed by QCD,
q → qg, g → qq̄ and g → gg. The probabilities governing the occurrence of these branchings are
obtained from the Dokshitzer-Gribov-Lipatov-Altarelli-Parisi (DGLAP) evolution equations [3]
as a function of the transverse momentum of the partons. These equations are calculated using
perturbative theory, in the Leading-Logarithm Approximation (LLA) by taking into account in



Figure 1.2: A hadronic event as seen in the L3 detector.

the expansion only the leading terms in (αs ln2(s))n, the so-called leading logarithms. Exten-
sions to this model such as Double LLA (DLLA), Modified LLA (MLLA), Next to LLA (NLLA)
and even Next to Next to LLA (NNLLA) have been investigated. These approximations take
into account subleading terms ignored in the LLA, which allows them to account for effects such
as gluon coherence (responsible for angular ordering which causes each subsequent gluon to be
radiated within a smaller cone than its parent) and which better incorporate energy-momentum
conservation.

The parton shower approach makes use of the running property of αs, which decreases to
0 at large energy scales (asymptotic freedom), enabling perturbative calculations to be carried
out. On the other hand, at small energy scales αs becomes large, thus forbidding the use a of
power expansion in αs. This imposes a limit on the perturbative calculation of the development
in the cascade process to energy scales larger than about 1 GeV, defining what is often called
the perturbative region (illustrated in Fig 1.1) of QCD.

The non-perturbative phase

At small energy scales, where αs is large, the use of perturbation theory can not be justified.
Therefore, this phase is called the non-perturbative phase.

This third phase may itself be decomposed into two parts. In the first part, the hadroniza-
tion, colored partons fragment into colorless hadrons. In the second part, these hadrons, which
are for the most part unstable, decay into the stable particles which constitute the final-state
particles observed in the detector (Fig. 1.2).

In order to make final-state particles accessible to theoretical predictions, two approaches
are often used:



The Analytical Perturbative Approach widely used to extrapolate analytical QCD predic-
tions to final-state particles assumes Local Parton-Hadron Duality (LPHD) [4]. The LPHD
hypothesis relies on the idea of pre-confinement [5], which implies that before hadronization
colored partons are locally (in phase space) grouped into colorless clusters keeping the main
properties of the partonic final-state. Consequently, the hadronic final state can be directly
compared to the analytical QCD predictions for partons. The use of this method is limited to
infrared safe variables, which are, in principle, not distorted by the hadronization phase. For
such variables, partons and hadrons differ by only a proportionality factor,

qhadron ∝ qparton. (1.1)

This method does not describe the final-state particles, but offers a rather good description
of the behavior of some of the quantities characterizing the final-state particles, such as the
energy evolution of the average number of charged particles and of their momentum.

Since the description of the final-state particles cannot be accessed analytically, a second
approach is to use phenomenological models. Such models can provide a more complete de-
scription of the final-state. The various models available to describe the hadronization are
Monte Carlo based models. They are described in the following section.

For completeness, we also mention lattice QCD [6], which has enjoyed large success in
describing non-perturbative effects, but which has not yet been applied to hadronization.

1.2 QCD generators

Monte Carlo generators are essential for our study. They are able to generate a complete
particle final-state which can then be compared to the final-state particles resulting from the
e+e− interaction, from which the quantities relevant to our analysis are extracted.

Each event is generated independently of the others. For each event, the whole chain of
processes leading to the hadronic final-state is generated. Each property, such as quark flavor,
particle directions, energy they carry, the way they decay, is randomly generated according to
its probability of occurrence determined by the physics of the process. The generator also takes
into account all the constraints and limitations imposed by the dynamics and the kinematics
imposed by the whole chain of processes.

The main Monte Carlo models used to simulate hadronic Z decays in this thesis are the
JETSET 7.4 [7], HERWIG 5.9 [8] and ARIADNE 4.08 [9, 10] Monte Carlo programs.

The generation of hadronic events proceeds in two main stages. The parton generation,
which implements perturbative QCD to produce partons, and the fragmentation, which treats
in a phenomenological way the hadronization as well as the decay of the particles. The main
approaches used in the Monte Carlo generators to describe these stages and their specification
are reviewed in the following two sub-sections. Furthermore, these models incorporate special
treatment to take into account the weak decay of heavy quarks.

1.2.1 Parton generation

Both Matrix Element and Parton Shower QCD approaches to parton generation have been
implemented in Monte Carlo generators.



The Matrix Element approach

The Matrix Element approach is found as an option in JETSET. It implements matrix element
calculations up to O(α2

s ) allowing to choose between a maximum of 2, 3 or 4 partons in the
final-state.

The parton shower approach

Parton shower models are implemented in JETSET, HERWIG, and ARIADNE. An important
advantage over the analytical perturbative QCD calculations is that full energy-momentum
conservation is imposed at each branching in the Monte Carlo models. Thus, Monte Carlo
parton shower models implement, intrinsically, some higher-order corrections ignored by their
analytical counterparts.

The JETSET parton shower implementation generates partons according to the LLA frame-
work. This model does not take into account subleading effects responsible for gluon interfer-
ence, but an option exists to force it by requiring angular ordering explicitly. This makes the
parton shower equivalent to an MLLA parton shower.

HERWIG and ARIADNE with its color dipole cascade [11] use different approaches for their
parton shower. Both of them take intrinsically into account coherence effects, which also makes
them equivalent to a MLLA parton shower.

1.2.2 Fragmentation models

Since hadronization cannot be described analytically, phenomenological models are used. There
are mainly three different models, the Lund string model [12] implemented in JETSET, which
is the most popular (and also the most successful in describing the data), the cluster model [13]
implemented in the HERWIG generator, and the independent fragmentation model [14,15], an
older model still implemented in JETSET as an option.

Independent fragmentation model

In the independent fragmentation model, each final-state parton fragments independently from
the others. It fragments into a mesonic cascade until no energy is left to allow further splitting.

This model, whose origin dates back to the beginning of the seventies, gives only a poor
description of the data. It has been supplanted by more recent models, such as the string and
cluster models discussed below. Therefore, it is practically not used anymore. Nevertheless,
since all partons fragment independently, we will find it useful as a toy model to investigate
the origin of certain correlations. It may help understanding part of the effects brought in by
the hadronization. But, because of the very approximative description of the hadronization,
we cannot make detailed comparisons of this model to the data.

Cluster fragmentation model

The cluster fragmentation model is an implementation of the pre-confinement property, from
which originates the LPHD hypothesis. It assumes that after the parton shower, partons
are locally aggregated into colorless hadrons. Therefore, in the cluster model, all the gluons
resulting from the parton shower are split into light (u or d) quark-antiquark or diquark-
antidiquark pairs. These clusters are then fragmented into hadrons.



The Lund string model

The Lund string model is certainly the most popular and successful fragmentation model. In
the string model, a color string is stretched between quark and anti-quark. The quark and
antiquark moving apart along this string lose energy. This causes the string to break into two
new quark-antiquark systems, resulting in two new strings which will break up similarly. The
breaking process eventually stops when the mass of the string pieces has fallen to the hadron
mass. These string pieces form the hadrons. In this model, gluons are treated as kinks on the
string.

This model appears to give a good description of the data in the final-state.

1.2.3 Final-state particles

Most of the hadrons produced by the fragmentation models described above are unstable and
must decay into stable particles. The quantitative knowledge we have about decays is mainly
experimental. Therefore, at this stage, most of the masses and branching ratios governing the
decays of these particles are taken from experimental results, with subsequent tuning in order
to optimize the description of the data by the Monte Carlo models.

Furthermore, all these Monte Carlo models have adjustable parameters and switches, whose
values are chosen in order to ensure a good description of the experimental data.

1.3 ξ spectrum

The single-particle inclusive momentum spectrum in ξ = − ln(x), where x is the scaled momen-
tum (i.e. x = 2p/

√
s, where p is the particle momentum and

√
s the center of mass energy),

is very sensitive to soft gluon radiation. Its description, therefore, constitutes an important
test of perturbative QCD, in particular of the MLLA, which takes into account subleading
terms introducing soft gluon radiation corrections. These corrections take into account color
coherence, which leads to soft gluon suppression at large angles and hence to hadron deple-
tion at low momentum. This effect is also characterized by a strong angular ordering of gluon
production, each gluon being emitted with a smaller angle than its parent. The effect of color
coherence can be seen in the ξ distribution, where it results in the so-called MLLA hump-backed
plateau [16, 17] shape of the ξ distribution.

In the DLLA approximation which contains the premise of the color coherence effect [18]
(and only a rough estimate of the angular ordering), the ξ spectrum is described by a Gaussian.
Applying a next to leading order correction to the DLLA prediction, corresponding to MLLA,
causes the ξ distribution to deviate from the Gaussian shape, becoming a platykurtic shape [19],
which has the appearance of a skewed and flattened Gaussian. This is also characterized by a
shift to lower momentum of the peak position, ξ⋆, of the ξ distribution.

Under the LPHD assumption, this behavior is not distorted by hadronization and is therefore
identical for partons and hadrons.

Furthermore, as a confirmation of the MLLA (or as a need to take into account angular
ordering), the evolution of the peak position ξ with the center-of-mass energy has been found
to be described by the MLLA, while the DLA has failed to describe it [20, 21, 22, 23, 24].



1.4 The charged-particle multiplicity distribution

One of the most fundamental observables in any high-energy collision process is the total number
of particles produced in the final-state and by extension the number of charged particles which
detection are easier. Even if this is only a global measure of the characteristics of the final-
state, it is an important parameter in the understanding of hadron production. Independent
emission of single particles leads to a Poissonian multiplicity distribution. Deviations from the
Poissonian shape reveal correlations [25]. Therefore, these correlations are the signatures of the
mechanisms involved from the early stage of the interaction with the appearance of the primary
partons to the production of the particles in the final-state.

Using appropriate tools, it is, therefore, possible to extract information about the dynamics
of particle production from the shape of the charged-particle multiplicity distribution.

The usual way of studying the charged-particle multiplicity distribution and its shape, is to
calculate its moments. General characteristics of the charged-particle multiplicity distribution
are obtained using low-order moments, such as the mean, µ1, the dispersion, D, which estimates
the width of the distribution, the skewness, S, which measures how symmetric the distribution
is, and the kurtosis, K, which measures how sharply peaked the distribution is. With P (n)
the charged-particle multiplicity distribution and 〈q〉 symbolizing the average of a quantity q,
these moments are defined by

µ1 = 〈n〉 =

∞
∑

n=1

nP (n) , D =
√

〈(n − µ1)2〉 , S =
〈(n − µ1)

3〉
D3

, K =
〈(n − µ1)

4〉
D4

− 3. (1.2)

However, these moments only give information about the main properties of the distribution.
A more detailed study of the charged-particle multiplicity distribution and of its shape, and
in particular the study of correlations (and hence, the study of particle production) requires
high-order moments [25]. A way, often used, of studying the correlations between particles in
the charged-particle multiplicity distribution is to measure the normalized factorial moments
of order q,

Fq =

∞
∑

n=q

n(n − 1)....(n − q + 1)P (n)

(

∞
∑

n=1

nP (n)

)q . (1.3)

The factorial moment of order q corresponds to an integral over the q-particle density
and reflects correlations in particle production. If particles are produced independently the
multiplicity distribution is Poissonian (see Fig. 1.3(a)), and all the Fq are equal to unity. If
the particles are correlated, the distribution is broader than Poisson and the Fq are larger
than unity (see example of the negative binomial distribution in Fig. 1.3(a)). In the opposite
case, if the particles are anti-correlated, the distribution is narrower than Poisson, and the Fq

are smaller than unity. Two examples of Fq plotted as a function of the order q are shown in
Fig. 1.3(b), for distributions such as the Poisson distribution (no correlation) and for a negative
binomial distribution (positive correlation).

However, with the Fq we only access the sum of all correlations existing among q or fewer
particles. It is a combination which takes into account all possible correlations between any
number of particles, smaller or equal to the order q. Therefore, one can access the genuine



q-particle correlation by the use the normalized cumulant factorial moments, Kq, which are
obtained from the normalized factorial moments by

Kq = Fq −
q−1
∑

m=1

(q − 1)!

m!(q − m − 1)!
Kq−mFm. (1.4)

These Kq correspond to the phase-space integral over the genuine q-particle correlation. If
the particles result from independent emission (Poissonian behavior), the Kq are equal to
0. The Kq are positive if the particles are correlated and negative if the particles are anti-
correlated. As examples, the Kq plotted versus the order q are given in Fig. 1.4(a), for the
Poisson (no correlation) and for the negative binomial distribution (positive correlation) and
also for the experimental charged-particle multiplicity distribution, which will be studied in
details in chapter 4.

Since Fq and |Kq| both increase with the order q, it is useful to define the ratio Hq:

Hq =
Kq

Fq

= 1 −
q−1
∑

m=1

(q − 1)!

m!(q − m − 1)!
Hq−m

FmFq−m

Fq

. (1.5)

The Hq moments reflect the genuine q-particle correlation integrals relative to the density
integrals. They characterize the weight of the genuine q-particle correlations with respect to
the whole spectrum of correlations between q particles. Furthermore, the Hq moments have
the advantage over the Fq and Kq of being of the same order of magnitude for a large range
of q. Examples of Hq plotted versus the order q are given in Fig. 1.4(b), for the Poisson
and the negative binomial distribution, together with the one measured from the experimental
charged-particle multiplicity distribution.

More astonishing than from Poisson and negative binomial are the Hq moments obtained
from the experimental charged-particle multiplicity distributions (Fig. 1.4(b)), exhibiting an
oscillatory behavior when plotted versus the order q. Furthermore, the same qualitative os-
cillatory behavior has been observed not only in e+e− collisions, but also in hadron-hadron,
hadron-ion and even ion-ion collisions [26, 27].

The usual way to interpret this oscillatory behavior is to refer to perturbative QCD, which
provides us with calculations for the Hq of the parton multiplicity distribution [28, 26]. Under
the local parton-hadron duality hypothesis, which assumes that the shape of the parton mul-
tiplicity distribution is not distorted by hadronization, perturbative QCD prediction may be
valid for hadrons, thereby allowing the extension of perturbative QCD predictions to the shape
of the charged-particle multiplicity distribution.

However, this result can also be interpreted in a more phenomenological way by viewing
the shape of the charged-particle multiplicity distribution as the result of the fact that different
types of events, such as 2-jet or 3-jets events, compose the total charged-particle multiplicity
distribution [29].

1.4.1 Hq moments and analytical QCD predictions

Since the evolution equations of QCD can be described in probabilistic terms using generating
functions, it is, in principle, possible to describe analytically the parton multiplicity distribution.
Nevertheless, even an approximate solution to this equation cannot be obtained easily. However,
it has turned out to be a relatively easy problem to solve for the moments of the multiplicity
distribution. Therefore, the Hq moments have been calculated up to the next-to-next-to-leading
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logarithm approximation [28]. The expected behavior of Hq for various approximations is
qualitatively plotted as a function of q in Fig. 1.5.
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Figure 1.5: Qualitative behavior of Hq vs. q for various perturbative QCD approximations.

• For the Double Leading Logarithm Approximation (DLLA), Hq decreases to 0 as q−2.

• For the Modified Leading Logarithm Approximation (MLLA), Hq decreases to a negative
minimum at q = 5, and then rises to approach 0 asymptotically.

• For the Next-to-Leading Logarithm Approximation (NLLA), Hq decreases to a positive
minimum at q = 5 and then increases to a positive constant value for large moment rank.

• For the Next-to-Next to Leading Logarithm Approximation (NNLLA), Hq decreases to a
negative first minimum for q = 5, and for q > 5, Hq shows quasi-oscillations about 0.

The main difference between all these approximations lies in how energy momentum con-
servation is incorporated. The most accurate treatment is given by the NNLLA.

Similar behaviors as those predcited are expected for the charged-particle multiplicity distri-
bution under the Local Parton-Hadron Duality hypothesis. The oscillatory behavior observed
in Fig. 1.4(b) is often interpretated as a confirmation of NNLLA and LPHD.

1.4.2 Phenomenological approaches

However, the Hq oscillatory behavior may also be interpreted in a more phenomenological way
making use of different classes of events, which themselves do not necessarly have Hq oscillations.



These approaches are based on the idea that the main features of the shape of the charged-
particle multiplicity distribution and the oscillatory behavior of the Hq could originate from
the superposition of different types of events, as the 2-jet and 3-jet events [29] or the light- and
b-quark samples [30], which compose the full sample.

Under this hypothesis, assuming we are able to describe individually the charged-particle
multiplicity distributions of these different types of events using suitable parametrizations,
the charged-particle multiplicity distribution of the full sample could then be described by a
weighted sum of all the individual parametrizations, the weight being related to the rates of
the various type of events.

If the full sample can be resolved into various classes of events, we can express its charged-
particle multiplicity distribution as a sum of the various contributions:

P (n) = RαPα(n) + RβPβ(n) + RγPγ(n) + . . . , (1.6)

where the Pα(n), Pβ(n) and Pγ(n) are the charged-particle multiplicity distributions of events
of type α, β and γ, while Rα,β,γ are their respective rates.

Assuming these charged-particle multiplicity distributions are described by the parametriza-
tions fα(n), fβ(n) and fγ(n), the charged-particle multiplicity distribution of the full sample,
P (n), will then be described by ffull(n), the weighted sum of all the parametrizations:

ffull(n) = Rαfα(n) + Rβfβ(n) + Rγfγ(n) + . . . . (1.7)

In our analysis, we make the choice to use the Negative Binomial Distribution (NBD) as
parametrization. The NBD has been already used, with more or less success, in many types
of interactions to describe their charged-particle multiplicity distributions [31]. The use of the
NBD, as for the phenomenological approach, in multiparticle dynamics is intimately associated
to the clan concept [32, 33]. This concept was used to explain the apparent NBD behavior of
the multiplicity distribution observed in many experiments, processes and energies in both full
and restricted phase space. A clan is defined as a group of particles originating from the same
parent particle [34]. While the particle distribution within a clan is assumed to be logarithmic,
its composition with other clans (which are assumed to be independent of each other) leads to
the NBD.

In e+e− annihilation at the Z0 energy, it has been found that the charged-particle multiplicity
distribution cannot be described by a single NBD [35]. Therefore, it is interesting to try
combinations of NBDs [29, 30]. The NBD parametrization is given by

fNB(n, 〈n〉, k) =
Γ(k + n)

Γ(n + 1)Γ(k)

(

k

〈n〉 + k

)k ( 〈n〉
〈n〉 + k

)n

, (1.8)

where 〈n〉 is the mean of the distribution and k is given by

D2

〈n〉2 =
1

〈n〉 +
1

k
, (1.9)

D being the dispersion. Using the means and dispersions from the experimental distributions,
we can then have fully constrained parametrizations of the charged-particle multiplicity dis-
tributions of the various classes of events and subsequently of the full sample. In Chapter 8,
several phenomenological approaches based on this concept will be examined and confronted
with the experiment.





Chapter 2

Experimental apparatus

2.1 The LEP collider at CERN

Located near Geneva, between the Alps and the Jura, the Large Electron Positron collider,
LEP (Fig. 2.1), commissioned and operated by CERN, straddles the French-Swiss border at an
average depth of about 100 meters.

LEP, with a circumference of 27 km, is the largest (electron-positron) collider built so far.
It was designed to store and accelerate electrons and positrons, which it did up to the energy
of 104.5 GeV per beam reached during the last data taking period in 2000. The electrons and
positrons are produced and accelerated up to 20 GeV by lower energy CERN accelerators. They
are then injected into LEP and concentrated into equidistant bunches circulating in opposite
direction. Finally, they are accelerated to their final energy. Once they have reached that
energy, they are allowed to collide at four of the eight equidistant crossing points. At these
four crossing points are positioned the four LEP experiments: ALEPH, OPAL, DELPHI and
in particular L3, the source of the data used in this analysis.

During more than 10 years, LEP has exploited to its limit the current technology and design.
The limitation for such a design is synchrotron radiation, which depends on the curvature of the
collider and on the energy of the electron or positron beam. Higher energies than those reached
by LEP would require more power to replace the energy radiated or even larger rings to reduce
the curvature and hence the synchrotron radiation, both of which are expensive. Therefore,
the future of electron-positron colliding machines lies in new technologies which explore linear
collider design (cf. TESLA at DESY, CLIC at CERN, JLC in Japan and NLC in the U.S.,
where already the first collider of this kind, the SLC at SLAC, has successfully fulfilled its
goals).

The LEP collider was in operation from August 1989 to November 2000. A summary of the
whole LEP activity is given in Fig. 2.2 in terms of integrated luminosities per LEP experiment.
From 1989 to 1995, the LEP I period, its working energy was around the Z0 mass, near 91.2 GeV.
This period was dedicated to the extensive study of the parameters of the Z boson. About 4
million Z0 events were collected during this period. During 1995, a major upgrade took place
in order to increase the LEP working energy, to enable the production of W± bosons and to
continue the search for Higgs bosons and for supersymmetry already started at LEP I. During
this new era, called LEP II, the LEP energy was gradually increased up to 209 GeV in 2000.
The year 2000 also saw the report by ALEPH and L3 of events compatible with a Higgs signal.
However, too few events were reported to confirm a discovery, but too many to be rejected as a
simple statistical fluctuation. Nevertheless, this was the motivation for an extension of the data
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taking period from September to November 2000. However the additional data collected during
this period did not settle the issue. It was finally decided to definitely close LEP on this status
quo, leaving this question unanswered, but open to the higher energy collider TEVATRON at
FNAL as well as to the next generation of colliders and, in particular, for the Large Hadron
Collider (LHC), whose construction has already started in the LEP tunnel.

2.2 The L3 detector

Fig. 2.3 shows a perspective view of the L3 detector. The basic orientation of the detector is
defined from the interaction point (at the center of the detector), which is the origin of the
coordinate system in which the analysis takes place. Using the interaction point as origin, we
define the coordinate system in the following way. The x axis is perpendicular to the beam pipe,
toward the center of LEP ring, the y axis perpendicular to the beam pipe, pointing towards the
top of the detector, the z axis along the beam pipe, in the direction of the electron beam. It
is also useful to define this system in spherical coordinates, where r is the distance taken from
the origin, θ is the angle between ~r and the z axis, and φ the angle between the x axis and ~s,
the projection of ~r onto the xy plane.

The L3 detector is, in fact, composed of several subdetectors, which are fully described
in [36]. These subdetectors are all inside a huge octagonal iron magnet of 12m × 12m × 12m,
which delivers a uniform magnetic field of 0.5 T along the z axis.

From the magnet wall to the interaction point, and by increasing order of importance for
this analysis, we have:

Muon Chambers (MUCH)

Between the magnet and the inner part of the detector lies the muon chamber system. It is
located far away from the interaction point, so that only energetic muons (with momentum
larger than 3 GeV) can reach it and be detected, other particles being totally absorbed by
the material between the interaction point and the muon chambers. The system consists of 3
layers of drift chamber grouped in 8 octants covering the region around the beam pipe (i.e.
45◦ < θ < 135◦). It gives a measure of the momentum of a muon track in the xy plane.
In addition, the measurement of the z coordinate is given by Z-chambers located on top and
bottom of the first and third layers of drift chambers.

Hadron Calorimeter (HCAL)

The hadron calorimeter (Fig. 2.4) is made of 5 mm thick depleted uranium plates (U3O8)
interleaved with proportional wire chambers. The uranium plates act as an absorber while the
proportional chambers enable us to record the position of the hadron along its path through the
calorimeter and to measure its energy by the total absorption technique. Such a measurement
is only effective if the hadron is totally absorbed in the calorimeter. Therefore, a high density
material is required as an absorber and Uranium 238 fulfills this requirement. Furthermore, its
natural radioactivity is an advantage for the calibration of the calorimeter.

With components both in the barrel and in the endcap, this detector has a geometrical
coverage of the interaction point close to 4π sr (99.5% of 4π sr).
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Electromagnetic Calorimeter (ECAL)

The electromagnetic calorimeter (see Fig. 2.4) is used to measure the direction and energy of
photons and electrons. It is made of 11360 bismuth germanate crystals (Bi4Ge3O12 abbreviated
as BGO). It covers the range in polar angle of 42◦ − 138◦ for the barrel region and of 10◦ − 35◦

and 145◦−170◦ for the end-cap regions. It must be noted that there is a gap in the coverage of
7◦ between the end cap and the barrel regions. An upgrade of the detector in 1995 has partially
solved the problem by adding scintillator to the detector gap.

Time Expansion Chamber (TEC)

The central tracking chamber is designed to measure the direction and curvature (hence, the
transverse momentum, which is calculated from the curvature) of charged particles. It consists
of a cylindrical drift chamber placed along the beam axis. The chamber is filled with a mixture
of 80% carbon dioxide and 20% iso-buthane at a temperature of 291K and a pressure of 1.2 bar.
The TEC is divided in two parts, the inner chamber starting at 8.5 cm from the interaction point
and extending to 14.3 cm, and the outer chamber surrounding the inner one and extending to
46.9 cm. The inner part of the TEC is subdivided into 12 identical inner sectors each covering
30◦ of the xy plane. The outer part is subdivided into 24 identical outer sectors covering 15◦

of the xy plane (Fig. 2.5). Each inner and outer sector contains 8 and 54 sense wires (anodes),

Figure 2.5: Schematic view of a segment of TEC, showing an inner sector and part of two outer sectors.

respectively. These anode wires, stretched along the beam pipe, are the active part of the
detection method used in the time expansion chamber principle (described in Fig. 2.6). A
charged particle passing through the TEC chamber in the presence of a high homogeneous
electric field (0.9kV/cm) causes a local ionization of the gas. The electrons produced by this
ionization drift toward the nearest anode. After amplification, the signal produced on the anode
by the electron flow is recorded as a hit. This allows to record the path of the charged particle
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Figure 2.6: The time expansion chamber principle of detection.

(track) in the xy plane, from which its curvature and, consequently, its momentum can be
reconstructed. The z coordinate of a charged particle is measured by two cylindrical systems of
proportional wire chambers (Z chambers) placed around the outer TEC. TEC and Z chambers
allow the precise measurement of track parameters in the barrel region (45◦ < θ < 135◦).

The endcap regions are covered by proportional wire chambers, FTC (Forward Tracking
Chambers), allowing the z coordinate measurement in this region, but the TEC is hardly
effective in measuring track parameters in this region, since the anode wires are parallel to the
beam pipe. Therefore, a forward charged particle will traverse fewer wires and its curvature
(and hence its momentum) will lack precision. Therefore, tracks in the barrel region are more
precisely measured than those in the endcap region.

Silicon Micro-Vertex Detector (SMD)

The SMD (Fig. 2.7) is located between the beam pipe and the TEC. It is the detector closest
to the interaction point. It is aimed at measuring very precisely track parameters in order to
pinpoint the impact parameter, which makes it perfectly designed for b-quark identification. It
provides good rφ and rz coordinate resolution for a polar angle range of 21.5◦−158.5◦. Its high
resolution improves the performance of the TEC (i.e. better transverse momentum resolution).

The SMD consists of two radial layers supporting 12 ladders each. The ladders are the basic
element of the SMD. Each contains 4 silicon microstrip sensors made of high-purity n-type
silicon. On its junction side, each sensor carries strips designed to measure the rφ coordinate,
while its ohmic side has strips perpendicular to those of the junction side, in order to measure
the rz coordinate.

The principle of detection of the silicon microstrip (described in Fig. 2.8) is somewhat similar
to that of the time expansion chamber, but, of course, the medium is different. The detection,



Figure 2.7: Perspective view of the SMD.

here, benefits from the semi-conductor properties of the material. A particle passing through
the silicon sensor will produce electron-hole pairs. By applying a voltage bias between the two
sides of the sensor, holes and electrons will drift to the nearest strips on both surfaces, allowing
a simultaneous measurement of the rφ and rz coordinates.
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Figure 2.8: The principle of detection of the SMD.

2.3 Data processing

The way in which particles are detected and recorded by the various subdetectors can sometimes
be very far from the physical quantities we want to measure. Therefore, it is necessary to



translate the information coming from the detector into more convenient variables, which can
later be used to perform physics analyses such as those described in this thesis.

The treatment of the data requires three main steps. The first one is, of course, to decide
if the signals emitted by a detector are relevant to a physical process of interest. This role is
attributed to the trigger systems.

The next step is the reconstruction of the data, which translates detector response into
physical quantities and stores this information on storage media for later use.

The third step which is needed, even if it does not directly concern the data themselves, is
very important, it is the detector simulation. It enables us to understand (and to reproduce) the
response of the detector components to the passage of particles, from a given physics process.
Therefore, it helps us to understand the data and how particles interact with the detector.

2.3.1 Trigger system

No matter how relevant the information coming from the detector, the complete readout se-
quence of an event takes about 500µs (corresponding to the time of 22 e+e−beam crossings),
during which the detector cannot process any new events. Therefore, a multi-level trigger sys-
tem is implemented to reduce this dead time by allowing abortion of the readout sequence as
soon as possible if a piece of information is found to be faulty. This enables the detector to
start sooner a new readout sequence, and hence the recording of a good event.

The goal of the trigger system is to improve the interface between the detector and the data
acquisition system (DAQ). Furthermore, it decides what can be trusted as relevant for physics
analysis and should be written onto tape, thus reducing both the amount of memory space
and the time lost in recording useless information. From the 45kHz collision only a few Hz can
be stored on tape. The trigger ensures a certain level of quality of the information written on
tape.

The trigger system proceeds in a small number of steps: At first, it has to decide, from signals
emitted by a detector component, if these signals are compatible with an e+e− interaction.
Then, if the signal is relevant to an e+e− collision, it decides, depending on the quality of the
response of the subdetectors, to allow or to veto the storage on tape of these signals as an event.

There are three levels of trigger. The difference between the three levels is the complexity of
the operations treated and the time needed to perform these calculations. Such a configuration
allows a lower-level trigger to abort the readout sequence before higher-level triggers have
completed more time consuming operations, and hence allows to save time in the readout
process.

Level-1

The first-level trigger is a fast-response trigger. It consists of 5 independent sub-triggers, the
energy trigger (which analyses the response from the calorimeters), the TEC trigger, the muon
trigger (dedicated to the response of the muon chambers), the scintillator trigger, and the
beamgate triggers. The role of the first-level trigger is to initiate the readout sequence if an
e+e− collision is detected and to perform simple tests on an event in order to decide to keep
it or not for further processing. Its decision time is about 20µs. In order to pass the level-1
trigger, the event has to be selected by at least 1 of the 5 sub-triggers.



Level-2

The level-2 trigger works in parallel to the first-level trigger and has access to the same infor-
mation. It has more time to proceed to a decision, however. Only events which were selected
by only one level-1 sub-trigger are considered by the level-2 trigger. Events which were selected
by more than one level-1 sub-trigger are automatically selected. The level-2 trigger is aimed
at rejecting the most obvious background events, such as cosmic events (a muon produced by
cosmic rays), detector noise, and interaction of the beam with residual gas (beam-gas) or with
the wall of the beam pipe (beam-wall).

Level-3

The level-3 trigger uses the full data information and is able to perform full reconstruction of
the data. It also has more time to perform more complex calculations, correlating several level-1
sub-triggers relevant to a subdetector. A level-3 trigger is implemented for each subdetector.
For example, events which are selected by the TEC trigger are required to have tracks correlated
with energy deposits in the calorimeter. Finally, if an event is selected by a level-3 trigger, it
is written onto tape. This takes 500µs.

The accepted events are grouped into runs of about 5000 events, corresponding (originally)
to the tape capacity but also to a constant state of activity of the detector, a new run being
initialized in case of change of status of the detector.

For our analysis, the events are required to originate from runs where TEC, SMD, HCAL
and ECAL triggers were active. This ensures a uniform level of quality for the full data sample,
which decreases the systematic uncertainties.

2.3.2 Event reconstruction

The information written onto tape during the data acquisition consists essentially of the record-
ing of the various signals emitted by the detector. This information cannot be used directly
in physics analysis. Further processing is, therefore, needed in order to extract the physical
quantities relevant to particle physics analysis.

The reconstruction proceeds in two steps. In the first step, using the program package
REL3, the various signals coming from one subdetector are combined into a primitive object,
characteristic of this subdetector. The second step, by means of the subprogram AXL3, pro-
cesses these objects correlating the information from various subdetectors, to obtain a class
of objects relevant to physics analysis. There are several objects related to the main detector
components. The following describes briefly the objects used in the present analysis.

• ASRC’s (AXL3 Smallest Resolvable Clusters), or simply clusters: These objects are ob-
tained by combining the information from the calorimeters (both hadronic and electro-
magnetic). They correspond to the smallest energy deposit which can be resolved. The
ASRC’s are used in this analysis to select hadronic events (Sect. 3.1).

• ATRK’s (AXL3 TRacKs), also called tracks: These objects are obtained by combining
TEC, SMD and Z chamber information. They are also required to be matched with a
calorimeter object. The ATRK’s correspond to charged particles detected in the inner
part of the L3 detector. They are the main objects used in this analysis.



2.3.3 Event simulation

Natural ways to understand the data include their comparison to theoretical expectation or to
try to reproduce their signature using a Monte Carlo generator which incorporates the present
knowledge we already have of a reaction. The generation of Monte Carlo events is thus very
important for our understanding of the underlying physics.

However, it must be kept in mind, that the detector is not 100% efficient and part of the
information can be lost or distorted by the various materials used for the detection. It is
mandatory to understand the interaction between particles and the detector material, as well
as the effect induced by the various parts of the detector. This understanding is incorporated
into a Monte Carlo program which simulates the perturbation induced by the detector and the
detection itself.

Therefore, the events generated by the Monte Carlo event generator are also processed by
SIL3 [37], a program based on the GEANT program (a general program package designed to
simulate interactions between particles and detector materials) and aimed at simulating the
whole chain of detection (from the detection itself to the DAQ) of the L3 detector.

There are two levels of simulation in the L3 collaboration. The first is called ideal simulation.
It corresponds to the simulation of an “ideal” L3 detector for which all the various detector
channels work at their maximum efficiency.

The second level of simulation is called realistic simulation. This simulation is time depen-
dent and the major changes in the detector during a period of data taking are incorporated.
This can be the permanent loss of detection channels, such as a dead crystal of BGO, noisy
electronic channels, or eventual problems in a subdetector causing its inactivity. As for the
TEC, the high voltage is permanently monitored ( a status is recorded every five minutes)
during data taking in order to incorporate in the realistic simulation the loss of power (and
consequently the partial or total loss of data) in one or all sectors. The same runs used for the
data are used in the Monte Carlo simulation.

The analysis reported here uses realistic Monte Carlo simulation.



Chapter 3

Event selection

This analysis is based on data collected by the L3 detector in 1994 and 1995 at an energy
equal to the mass of the Z0 boson. The data sample corresponds to approximately two million
hadronic Z0 decays. Since the analysis makes extensive use of the reconstructed charged-particle
multiplicity distribution, not only a good purity in hadronic events is needed, but also a well
understood selection of the charged tracks. This understanding cannot be achieved without a
precise simulation of the Central Tracker of L3.

In order to fulfill the requirements of purity and track selection, the events are selected in a
two-step procedure. The first step selects hadronic events and removes most of the background,
using the energy measured in the electro-magnetic and hadronic calorimeters. The second step
of the selection, more specific to this analysis, is aimed at selecting good tracks measured
with the Central Tracking Detector, in order to obtain the best reliability of data and Monte
Carlo simulation while keeping the number of tracks in the event as large as possible. Good
agreement between data and simulation is essential in order to reconstruct the charged-particle
multiplicity distribution, since this reconstruction is strongly dependent on the description of
the inefficiencies of the L3 detector, which are obtained from simulations.

Also used in our analysis are samples obtained from light- and b-quark events, separately.
The procedure used to extract the charged-particle multiplicity distributions from these par-
ticular types of events is described in the third section.

3.1 Calorimeter based selection

The selection of hadronic events is based on the energy measured in the hadronic and electro-
magnetic calorimeters. Its main purpose is to remove as large as possible a fraction of the
background in such a way that this does not affect the measurement of the charged tracks
in TEC. Of course, the background could be eliminated using the Tracking Chamber only.
However, the cost to pay in terms of efficiency would be rather large, since this would pre-
vent any measurement of the low-multiplicity events, which are highly contaminated by many
background sources (described later).

The background sources can be divided into two main categories [38]: The first category
consists of events originating from leptonic Z0 channels (e+e−, µ+µ−, τ+τ−). The second
category, called non-resonant background, contains sources such as two-photon interactions, as
well as beam-wall and beam-gas events.

A preliminary cut on the calorimeter cluster energy removes calorimeter clusters with an
energy deposit smaller than 100 MeV, which are highly contaminated by electronic noise. Once
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these clusters are removed, we can proceed to the event selection. For that, we need to define
a set of useful variables. First of all we define the visible energy, Ecal

vis of an event as the sum
of all (remaining) cluster energies Ecal

i . In a similar manner we define the vectorial energy

sum ~Ecal, obtained by summing the cluster energy along the particle direction as seen from the
interaction point, ~ni:

Ecal
vis =

∑

i

Ecal
i and ~Ecal =

∑

i

Ecal
i · ~ni. (3.1)

We also define the longitudinal and the transverse energy imbalance, Ecal
� and Ecal

⊥ as the

projection along the z axis and in the plane perpendicular to the z axis of ~Ecal normalized to
the visible energy Ecal

vis , respectively:

Ecal
� =

|Ecal
z |

Ecal
vis

and Ecal
⊥ =

√

(Ecal
x )2 + (Ecal

y )2

Ecal
vis

. (3.2)

Cuts on the rescaled visible energy

Hadronic Z0 events are characterized by a visible energy centered around the center of mass
energy,

√
s. Non-resonant background, in particular beam-wall, beam-gas and two-photon

events, which typically have a much lower visible energy, are easily discarded by a cut on Ecal
vis

(Fig. 3.1). Selected events are required to satisfy

0.5 <
Ecal

vis√
s

< 1.5. (3.3)

The role of the upper cut is to remove Bhabha events which are located at scaled energy higher
than 1.5 because of the scaling factors (G-factors), which are used to take into account a shift
to lower value of the energy detected for hadrons. Since the energy of electrons is fully detected,
they should not be subjected to this shift consequently end up with an higher scaled energy.

Cut on the number of ASRC clusters

Hadronic events usually have a larger particle multiplicity than other processes. Hence, a way
to reduce the background contamination is to cut on low-multiplicity events. By requiring
that events have at least 14 ASRC clusters, most of the e+e−, µ+µ− and τ+τ− background is
eliminated (Fig. 3.2). It must be noted that the large discrepancy between Monte-Carlo and
data for large multiplicities is due to an incorrect description of hadronic showers in the BGO
crystals of the ECAL and not to some kind of background contamination. Therefore, there is
no reason in this analysis, which uses only charged tracks, to cut on large cluster multiplicities.

Cuts on the energy imbalance

Since at LEP, the laboratory frame for e+e− collisions coincides with the center of mass frame,
hadronic events are well balanced in energy flow. This is not the case for the non-resonant
background, which usually has a large longitudinal energy imbalance. Furthermore, due to
τ decay into a quark or a lepton via the emission of neutrinos, the τ+τ− background has a
larger energy imbalance than the other e+e− channels. As shown in Fig. 3.3, we require the
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Figure 3.2: Distribution of the number of ASRC clusters for the data (dots) compared to JETSET
7.4 PS (line) predictions.

longitudinal energy imbalance Ecal
� to be smaller than 0.4 and the transverse energy imbalance

Ecal
⊥ to be smaller than 0.6.

Cut on the direction of the thrust axis

To ensure that the event lies within the full acceptance of the TEC and since the TEC only
poorly covers the end-cap region of the detector, we use only events which have the direction
of the thrust axis1 within the barrel of the detector. Barrel events are selected by requiring
| cos(θcal

th )| < 0.74 (Fig. 3.4), where θcal
th is the polar angle of the event thrust axis determined

from calorimeter clusters.
To summarize, the calorimeter selection criteria of hadronic events are:

• 0.5 < Ecal
vis/

√

(s) < 1.5

• Nclus > 14

• Ecal
� < 0.4 and Ecal

⊥ < 0.6

• | cos(θcal
th )| < 0.74.

1The thrust axis ~t1 is defined as the axis which maximizes the quantity

∑

i
|~pi · ~t1|

∑

i
|~pi|

.

The maximum value of this quantity is called the thrust.
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Figure 3.3: Transverse and longitudinal energy imbalance for the data (dots) and for the Monte-Carlo
(line).
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After having applied these cuts, approximately one million hadronic events remain, with a
purity around 98% [38]. All the non-hadronic background (i.e. background which does not
decay hadronically) has been removed, with the exception of 1.3% of the τ+τ− background,
0.23% of the e+e−qq̄ background and 1.1% of the e+e−τ+τ− background. This calorimeter
pre-selection has the advantage of eliminating the background while being largely decoupled
from the track selection, allowing relatively weak cuts on track momenta. The next step is the
selection of charged particles using the central tracking detector.

3.2 TEC based selection

The main goals of the TEC track selection are
1. to remove badly reconstructed tracks and
2. to improve the simulation of track inefficiencies,

in order to have the best possible reliability of the central tracking detector simulation, on which
the reconstruction of the charged-particle multiplicity and momentum distributions strongly
depends.

Since the event selection by means of the calorimeter clusters has rejected most of the
background, only a few cuts will be applied on an event basis.

3.2.1 Track quality criteria

Transverse momentum

The transverse momentum of a track is calculated from its curvature imposed by the magnetic
field in the plane perpendicular to the beam axis. Tracks having a low transverse momentum
are easily contaminated by noise and must be removed. Hence, the transverse momentum is
required to be larger than 150 MeV/c (Fig. 3.5)

Number of hits

When a particle, originating from the interaction point and flying across the TEC, passes near
a wire of TEC, it causes a local ionization of the gas leading to an electric discharge on the
wire. This is called a hit. There are 62 wires in the TEC, 8 wires in the inner TEC and 54
in the outer TEC. The larger the number of hits, the better is the resolution of the transverse
momentum, since the curvature is calculated from the path formed by the subsequent hits.

Misreconstructed track segments usually have a small number of hits. Furthermore, the
absence of a hit in the inner TEC increases strongly the chance of misreconstruction of a track,
since the track is not measured close to the interaction region. Therefore, we require at least
one hit in the inner TEC, which ensures that tracks come from the interaction region (Fig. 3.6).
It will also help to solve the left-right ambiguity which occurs when detecting charged particle
with a wire chamber. As the hits recorded from a charged particle passing near an anode wire
do not tell on which side of the wire, the charged particle has been detected, two tracks can be
reconstructed from a same set of hits. One track corresponding to the real track of the charged
particle, the other, the mirror track, symmetric with respect to the wire of the track of the
charged particle.

Since the agreement between the data and the Monte Carlo simulation is rather poor for
the distribution of the number of TEC hits (Fig. 3.7 (a)), the cut is chosen to lie in the middle
of a region of the distribution where the variation of the disagreement between data and Monte
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Figure 3.5: Distribution of track transverse momenta for the data (dots) and for the Monte-Carlo
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Carlo is stable and no big change from bin to bin in this disagreement is expected. Therefore,
the number of hits in the TEC is required to be at least 25. Loss in track momentum resolution,
which could result from the use of such a low minimum requirement on the number of hits, is
minimized by the previous requirement of at least one hit in the inner TEC and also by the
choice of a rather large span (see below).

Span of a track

Tracks are reconstructed by combining hits. Sometimes, hits from different tracks are mistak-
enly combined. Since these tracks usually have a smaller length than well reconstructed tracks,
it is possible to remove most of these tracks by requiring a minimum length for each track. The
length of a track is given by the span defined as:

Span = Wfirst − Wlast + 1,

where Wfirst and Wlast are the wire numbers of the innermost hit (i.e. the wire on which the
first hit is left by the particle coming from the interaction point when entering the TEC) and
of the outermost hit (i.e. the wire on which the last hit has been recorded before the particle
leaves the TEC) recorded for a track. All tracks are required to have a span of at least 40
(Fig. 3.7 (b)).

Distance of closest approach

To check if a track originates from the interaction vertex, each track is extrapolated back to
the interaction vertex. The distance of closest approach (DCA) to the interaction vertex is
then calculated in the plane transverse to the beam direction. In order to ensure that a track
is coming from the interaction vertex, a DCA smaller than 10mm is required (Fig. 3.8).
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Figure 3.8: Distance of closest approach of tracks for the data (dots) and for the Monte-Carlo (line).

Azimuthal track angle φ

Due to a wrong simulation of inefficiencies of two TEC sectors, large discrepancies between
data and Monte Carlo are seen in the azimuthal angular distribution for the two half-sectors
located at 45◦ < φ < 52.5◦ and 225◦ < φ < 232.5◦ (Fig. 3.9). Therefore, tracks located in these
two half sectors were simply removed from the analysis.

3.2.2 TEC inefficiencies

During data taking, from time to time, high background levels, which are likely to generate
overcurrents or trips of anodes and cathodes, can cause the TEC to be partly or totally turned
off. This leads to a temporary loss of efficiency in certain TEC sectors or in the whole TEC.

The Monte Carlo simulation takes into account the major part of such problems occurring
during a data taking period (rdvn format), but not if the problem has only occurred during a
short period of time.

Finally, it appears that the Monte Carlo simulation underestimates the track losses close
to the anodes and cathodes of the TEC. This discrepancy is clearly seen in the distribution of
outer φ local, i.e., the distribution of the angle, φloc, between the track and the closest outer
TEC anode (Fig. 3.10).

In order to improve the TEC inefficiency simulation, a random rejection of Monte Carlo
tracks is applied two degrees around anodes and cathodes. The random rejection leads to
a better matching for the azimuthal angular distribution between data and simulation and,
therefore, to an overall better agreement between data and Monte Carlo.
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3.2.3 Event selection

Even though we have already applied a hadronic event selection using calorimeter clusters, a
few additional cuts are needed. In order to reject the remaining τ+τ− background, we impose a
cut on the second largest angle φ2 between any two neighboring tracks in the rφ plane. Selected
events are required to have their φ2 angle between 20◦ and 170◦ (Fig. 3.11(a)) which optimizes
the rejection of τ+τ− background without rejecting too large a fraction of the hadronic Z0

events.
Furthermore, events are required to have their thrust axis in the barrel of the TEC. For

that purpose, | cos(θTEC
th )| is required to be less than 0.7, where θTEC

th is the polar angle of the
event thrust axis determined from charged tracks (Fig. 3.11(b)). After selection, the purity
in hadronic Z0 events is about 99%. What remains in the selected sample is 0.19% of the
e+e−τ+τ−background and 0.07% of both the τ+τ−and the e+e−qq̄ background.

About 1 million events survive the selection.
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Figure 3.11: Distribution of φ2 (a) and of | cos(θTEC
th )| (b) for the data (dots) and for the Monte Carlo

(line). The shaded area in (a) indicates τ+τ− background generated with the KORALZ Monte Carlo
and is normalized to the relative production rate.

3.3 Light- and b-quark event selection

The selection of light-quark events (Z →uū, dd̄, ss̄ or cc̄) and of b-quark events (Z → bb̄)
proceeds in two steps. In the first step, a b-tag algorithm is used to define high purity samples
of light- and b-quark events. The second step applies the above-described general hadronic
event selection procedures in order to obtain samples from which charged-particle multiplicity
distributions can be extracted.

The b-tag algorithm which is applied to discriminate between light-quark and b-quark
events, relies on the full three-dimensional information on tracks recorded in the central track-
ing detector (TEC and SMD), in order to compute the probability that a track comes from the



primary vertex. The method is fully described in [39], but the main steps of the method are
briefly summarized here.

The algorithm starts with the three-dimensional reconstruction of the primary vertex by
minimizing

χ2
Ntrk

=

Ntrk
∑

i=1

(~ti − ~f(~ν, ~qi))
T G−1

i (~ti − ~f(~ν, ~qi)) + (~ν − ~νfill)
T V −1

fill (~ν − ~νfill), (3.4)

where Ntrk is the number of tracks, ~ti is the vector of measured parameters for the ith track, Gi

is the corresponding covariance matrix, ~f(~ν, ~qi) is the corresponding prediction assuming that
the track originates at the vertex ~ν with momentum ~qi, ~νfill is the so-called fill vertex, i.e. a
measure of the position of the beam spot, and Vfill is its covariance matrix. The Ntrk tracks
involved in the χ2 have to satisfy the following criteria:

• being fitted with the Kalman filter [40],

• |drφ| < min(10mm, 5σ(drφ)), where drφ and σ(drφ) are the distance of closest approach in
the xy plane and its error,

• |dsz| < 100mm, dsz being the distance of closest approach in the sz plane.

If P (χ2
Ntrk

) is less than 4% for a particular event, tracks are removed one by one and the
χ2 is redetermined after having removed each track in turn. This results in the probability
Pi = P (χ2

Ntrk
−χ2

Ntrk−1,i) for the case that track i is removed. Tracks, for which Pi and P (χ2
Ntrk

)
are both less than 2% are definitely removed. The fit procedure is repeated until no further track
needs to be removed. Primary vertices having less than three remaining tracks are rejected.

Once the primary vertex has been reconstructed, the decay lengths Lrφ and Lsz measured
in the rφ and sz planes, respectively, can be estimated. They are defined as the distance in the
rφ and sz (see Fig. 3.12) planes between the impact point of a track and the primary vertex
and correspond to independent measurements of the true decay length of the B hadron. They
are used to compute an average decay length L.

From the significance defined as S = L/σL, the probability, P (Si), that a track with decay
length, L, originates from the primary vertex, is computed. The track probabilities P (Sj) are
combined into an event probability, Pevent, which carries the sensitivity for an event to be a
b-quark event,

Pevent =
Π

2N

N−1
∑

i=0

N
∑

j=i+1

CN
j

(− ln Π)i

i!
, where Π =

N+
∏

j=1

P (Sj), (3.5)

where N+ is the number of tracks which have a positively signed decay length [39].
Due to the long life time and, hence, the long decay length of b hadrons, the probability

Pevent is close to zero for a b-quark event, while for other types of events, Pevent, is larger.
Therefore, to emphasize the low probability region, a discriminant δ is defined as

δ = − log Pevent. (3.6)

The distribution of this discriminant is shown in Fig. 3.13 for the 1994 (left) and the 1995
(right) data taking periods, for both the data and JETSET for all events, together with the
separate JETSET discriminant distributions for light-quark events and for b-quark events. The



selection or the rejection of b-quark events is based on the discriminant δ. Light-quark events
are selected by δ < δcut, and b-quark events by δ > δcut. The purity and efficiency of the
light-quark sample are shown in Fig. 3.14 as a function of δcut for the 1994 data sample (top
left) and for the 1995 data sample (top right). The purity and efficiency of the b-quark sample
are shown in Fig. 3.14 as a function of δcut for the 1994 data sample (bottom left) and for the
1995 data sample (bottom right).

To minimize the size of the corrections which will have to be applied to the tagged samples in
order to get pure light- and b-quark samples, high purities in light and b quarks are required.
Therefore, the tagged light-quark event sample is selected by requiring a discriminant value
δ < 1.2. For this cut, the purity and efficiency of the sample in light quarks for 1994 are
93.4% and 89.2%, respectively, for 1995, 93.0% and 91.6%. The tagged b-quark event sample
is selected by requiring a discriminant value δ > 3.4, which leads to a purity and efficiency in
b-quarks for 1994 of 95.2% and 38.9%, respectively, and for 1995 of 97.0% and 37.1%. These
purities and efficiencies are not altered by the event selection.

Once the light- and b-quark samples are selected, we apply to them the same selection
criteria which are applied to the full sample, as described previously in Sects. 3.1 and 3.2.1.

Lsz

dsz

jet direction

track

track direction

z

s
Interaction point

Figure 3.12: Distance of closest approach of a track, dsz, together with its decay length, Lsz in the sz
plane.
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Chapter 4

The charged-particle multiplicity
distribution

Besides its theoretical interest discussed in Sect. 1.4, the interest in the charged-particle multi-
plicity distribution arises from the fact that the detection of charged particles is far more easy
than the detection of neutral particles. To measure the full multiplicity distribution (charged
and neutral particles), we would have to rely on the detection of energy deposits in the calorime-
ter, the calorimeter clusters. Since these clusters can represent from a fraction of the energy up
to the whole energy of a particle, the correspondence between clusters and particles is rather dif-
ficult to establish. Therefore, the extrapolation from energy clusters to particles would depend
a lot on the simulation. As we have seen in the previous chapter, due to an underestimation of
the noise in the calorimeter, the agreement in terms of clusters between data and simulation is
not good enough to perform such a measurement.

A charged particle is detected as a track in the Central Tracking Chamber. Unlike a
calorimeter cluster, a track and its kinematical content represents a particle and not a frag-
ment of a particle (the track quality selections eliminate most of the badly measured or split
tracks). This increases both the reliability and the traceability of the final result since we can
keep track of the charged particles from their detection to their reconstruction. However, an
accurate treatment is still needed to reconstruct the charged-particle multiplicity distribution.

In the first section of this chapter, we discuss the steps needed to reconstruct the charged-
particle multiplicity distribution for the full, light- and b-quark samples, starting from the
measured raw-data charged-particle multiplicity distribution. The next two sections introduce
the calculation used to estimate their statistical errors and their systematic uncertainties. The
resulting charged-particle multiplicity distributions and their principal moments are presented
and discussed in the final section of this chapter.

4.1 Reconstruction of the multiplicity distribution

Because of the limited acceptance of the detector and of the selection procedures which were
used to obtain a pure sample of hadronic decays, not only do events escape both the detection
and selection processes, but also do the detected events usually contain fewer particles than
were produced. The most dramatic example of this effect is given in Fig. 4.1 by the charged-
particle multiplicity distribution itself. If all charged particles in an event were detected, charge
conservation implies that their number would always be even. However, as shown here, we find
both even and odd multiplicities. Therefore, the treatment needed to reconstruct the charged-
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particle multiplicity has to take into account not only the undetected events, but also the
undetected particles within an event. We therefore proceed in two steps. The first step uses
an unfolding method which corrects the number of particles in an event. The second step
corrects for event selection, including light- or b-quark selection and initial-state radiation. An
additional correction is applied to take into account the charged K0

s and Λ decay products.

As a convention, and unless otherwise stated, we refer by N(n) to the distribution of the
number of events with a particle multiplicity n, and by P (n) to the distribution of our estimate
of the probability to obtain an event with a particle multiplicity of n,

P (n) =
N(n)

∑

i

N(i)
. (4.1)

The same convention will also apply to matrices.
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Figure 4.1: The detected charged-particle multiplicity distribution of the 1994 data.

Correction for inefficiencies and limited acceptance of the detector

The most common way to correct for detector inefficiencies consists of multiplying bin-by-bin
the raw data distribution of a given variable, V data

raw , by a correction factor which is the ratio
of the distribution of the variable, V MC

prod, generated by Monte Carlo in the case of a detector



working at 100% efficiency and the distribution of the variable, V MC
det , generated by Monte Carlo,

passed through the simulation of the detector, reconstructed and selected as the data,

V data
cor = V data

raw

V MC
prod

V MC
det

. (4.2)

However, this type of correction can only be used when the simulated and generated distribu-
tions are consistent with each other. (e.g. have the same number of bins). Because the method
intrinsically assumes the independence of each bin, it is better suited to correct for a global
effect such as, e.g., a loss of events due to the selection procedure. Although this method will
be used for that purpose later, it is inappropriate here because of bin-to-bin migration. This is
not necessarily localized to adjacent bins and, therefore, cannot be treated by simply changing
the width of the bins in such way that the bin-to-bin migration would be taken into account.
Due to the imperfection of the detection process (not only the detector itself, but also the track
reconstruction and track quality cuts), the detected multiplicity is very often different from
the original multiplicity. One can have detected multiplicities smaller or larger than the ones
produced (as shown in Fig. 4.2). Furthermore, this effect of the bin-to-bin migration depends
only in a non-trivial way to the number of particle produced and cannot be corrected without
a full simulation of the detector. Therefore, another method is needed to take into account, as
properly as possible, the bin migrations between produced and detected multiplicities. This is
done by a so-called unfolding method.

The unfolding method makes use of the detector response matrix, N , which takes the bin
migrations into account. For each Monte Carlo event, this matrix N keeps track of the number
of produced charged particles, n, and its associated number of detected tracks, ndet, which
have been processed and selected in the same way as the data tracks. Each matrix element
N (ndet, n) of N corresponds to the number of Monte Carlo events which have n produced
charged particles and ndet detected tracks. The matrix found using events generated with
JETSET is shown in Fig. 4.2. The probability of detecting ndet tracks, P (ndet), is related to
the probability distribution of produced charged particles, P (n) by

P (ndet) =
∑

n

N (ndet, n)
∑

ndet

N (ndet, n)
P (n), (4.3)

Defining the migration matrix M by

M(ndet, n) =
N (ndet, n)

∑

ndet

N (ndet, n)
. (4.4)

Eq. (4.3) can be rewritten as
Pdet = MPprod, (4.5)

where Pdet and Pprod are vectors whose elements are P (ndet) and P (n), respectively.
To estimate the produced multiplicity distribution of the data, P data

prod , we can invert Eq. (4.5),

P data
prod = IP raw

det , (4.6)

where I is obtained in a same manner as M

I(n, ndet) =
N T(n, ndet)

∑

n

N T(n, ndet)
. (4.7)



Note that I 6= MT because of different normalizations. The normalization of Eq. (4.4) makes
M independent of the multiplicity distribution of the event generator. But this is not the case
for Eq. (4.7). Consequently, the use of the matrix I in Eq. (4.6) could bias the result towards
the distribution of the event generator.
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Figure 4.2: The response matrix of the detector obtained with JETSET Monte Carlo.

Therefore, we use a more elaborate method, known as Bayesian unfolding, in which Eq. (4.5)
is used iteratively [41], [42]. The probabilities of producing n particles and of detecting ndet

tracks are related by Bayes’ theorem:

M(ndet, n)P (n) = I(n, ndet)P (ndet). (4.8)

Hence

I(n, ndet) = M(ndet, n)
P (n)

P (ndet)
. (4.9)

Taking P (ndet) from Equation (4.3), this becomes

I(n, ndet) =
M(ndet, n)P (n)

∑

n

M(ndet, n)P (n)
. (4.10)

Inserting this in Eq. (4.6) gives an estimate of the produced multiplicity distribution:

P data(n) =
∑

ndet

M(ndet, n)P (n)
∑

n

M(ndet, n)P (n)
P raw(ndet). (4.11)



This equation is the basis for the Bayesian unfolding. But instead of using directly the result
of this equation, and in order to remove the bias due to the use of a limited statistics sample
for the construction of the matrix M, we will use Eq. (4.11) iteratively.

We start the iterative unfolding procedure by comparing the detected charged-particle
multiplicity distribution of the data, P raw(ndet) to

∑M(ndet, n)P (0)(n), which, according to
Eq. (4.3), corresponds to the detected distribution P (0)(ndet). In principle, the initially pro-
duced distribution, P (0)(n), can be anything, but here we use the charged-particle multiplicity
distribution produced from JETSET Monte Carlo, since we found that its fully simulated
multiplicity distribution agrees rather well with the raw data. The χ2/dof between the de-
tected distributions, P raw(ndet) and P (0)(ndet) is calculated, and if it is larger than 1, the ratio
C(1)(ndet) is calculated,

C(1)(ndet) =
P raw(ndet)

∑

n

M(ndet, n)P (0)(n)
. (4.12)

Using C(1) in Eq. (4.11), we can write

C(1)(n) =
∑

ndet

M(ndet, n)C(1)(ndet), (4.13)

with

C(1)(n) =
P (1)(n)

P (0)(n)
, (4.14)

where P (1)(n) is the first-iteration estimate of the produced charged-particle multiplicity dis-
tribution of the data.

Using now P (1)(n) in Eq. (4.3), we can compare the detected charged-particle multiplicity
distribution of the data P raw(ndet) to the estimate of the detected charged-particle multiplicity
distribution P 1(ndet) at detected level,

P (1)(ndet) =
∑

n

M(ndet, n)P (1)(n). (4.15)

Depending on the value of the χ2 between P raw(ndet) and P (1)(ndet), we proceed to the next iter-
ation by repeating with P (1)(n) instead of P (0)(n) the whole procedure described in Eqs. (4.12)
and (4.14), leading finally to the estimate of the charged-particle multiplicity distribution of
the data for the second iteration,

P (2)(n) = P (1)(n)C(2)(n). (4.16)

By generalizing this result to the qth iteration we have:

P (q)(n) = P (q−1)(n)C(q)(n) = P (0)(n)

q
∏

i=1

C(i)(n), (4.17)

where C(i)(n) =
∑

ndet

M(ndet, n)
P raw(ndet)

∑

n

M(ndet, n)P (i−1)(n)
. (4.18)

The iterative process is stopped when the χ2/dof has become sufficiently small, i.e., smaller
than 1. This occurs after the second iteration. Therefore, P (2)(n) is taken as our estimate of
the reconstructed charged-particle multiplicity distribution of the data,

P rec(n) = P (2)(n). (4.19)



The unfolding method corrects only for detector inefficiencies, changing the multiplicity
within a given event. In particular, it does not correct for events which were rejected by the
event selection procedure. To obtain a fully corrected charged-particle multiplicity distribution,
we, therefore, need additional factors.

Correction for event selection

We first correct for events which were removed by the event selection. This is done by applying
correction factors (Fig. 4.3 (a)), which are obtained by taking the ratio of the charged-particle
multiplicity distribution of all Monte Carlo events at generator level, P all

prod(n), to that of the
generator level which, when fully simulated, pass the selection procedure, P acc

prod(n),

Cacc(n) =
P all

prod(n)

P acc
prod(n)

. (4.20)
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Figure 4.3: ratios Cacc(n), (a), and CISR(n), (b), to correct for event selection and for ISR, respectively.

Correction for Initial-State Radiation

Since we are interested in a pure sample of hadronic events at the Z0 energy, we also need to
correct for Initial-State Radiation (ISR). This ISR refers to the emission of one or more photons
by the electron or the positron, which shifts the energy of the event to a lower value. The ISR
events have a signature similar to that of normal hadronic events, except that they have lower
center of mass energies and, hence, lower charged-particle multiplicities. At the Z0 energy, these
events represent only a small fraction of the hadronic events and are well simulated by Monte
Carlo. Therefore, their contribution may be easily corrected by a simple correction factor,
(Fig. 4.3 (b)), corresponding to the ratio of the charged-particle multiplicity distributions of



Monte Carlo events generated with, P ISR(n), and without, P noISR(n), initial state radiation,

CISR(n) =
P noISR(n)

P ISR(n)
. (4.21)

These two corrections are applied to the reconstructed charged-particle multiplicity distribution
of the data, P (n), to obtain finally a fully corrected charged-particle multiplicity distribution,

P (n) = Cacc(n)CISR(n)P rec(n). (4.22)

Correction for K0
s and Λ decay products

In the context of the strong interaction, particles which decay weakly or electromagnetically
are considered stable. However, experimentally it is more appropriate to consider particles
which are detected. This leads to a problem in the case of K0

s and Λ, both of which can
decay weakly to two charged particles which can be detected in L3. Therefore, the detected
charged-particle multiplicity distribution contains charged particles produced in these decays.
However, to obtain a charged-particle multiplicity distribution relevant to QCD, K0

s and Λ
should be considered stable. The necessary correction introduces the uncertainties on K0

s and
Λ production into the charged-particle multiplicity distribution. Particularly in the early days
of LEP, these uncertainties were large, which led experiments to refrain from applying these
corrections. At present, these uncertainties are much smaller. In the unfolding procedure, we
have, therefore, corrected the data to obtain the multiplicity distribution that does not include
K0

s and Λ decay products. However, for comparison with other experiments, we also present
the multiplicity distribution containing these decay products.

Inclusion of the K0
s and Λ decay products corresponds to an increase of the number of

charged particles in an event. The problem we are facing is then similar to the track migration
problem caused by detector acceptance and inefficiencies. Therefore, K0

s and Λ decay processes
are treated in a similar way, i.e. by the use of a probability matrix.

Using the JETSET 7.4 PS generator, we build the matrix k(nK0 , nnoK0) which represents the
number of events which have nK0 charged particles in the case that K0

s and Λ decay products
are included and nnoK0 charged particles in the case that they are not. The probability matrix is
then obtained by normalizing k(nK0 , nno K0) by the distribution of the number of events having
nnoK0 charged particles, assuming stable K0

s and Λ, NMC(nnoK0),

K(nK0 , nnoK0) =
k(nK0 , nnoK0)

NMC(nnoK0)
. (4.23)

Since the process involved is far more simple than the detector response, and due to the fact that
we can use as much statistics as we want, we do not need to use the iterative procedure described
previously. The simple use of the probability matrix as described in Eq. (4.3) is sufficient to
get a reliable result. The charged-particle multiplicity distribution including K0

s and Λ decay
products, P data(nK0), is then given by

P data(nK0) =
∑

n
noK0

K(nK0 , nnoK0)P data(nnoK0). (4.24)



Correction for light- or b-quark purities

We need additional corrections specifically for the charged-particle multiplicity distributions
of the light- and b-quark samples. These multiplicity distributions are corrected in the same
way as the full sample described previously, but with an additional flavor dependent correction
factor Cfl

purity(n) to correct the light- or b-quark samples for b- or light-quark contaminations,
respectively. The latter are obtained by taking the ratio of the charged-particle multiplicity
distribution produced from Monte Carlo events for a given flavor, fl, P fl

prod and of the charged-
particle multiplicity distribution of generated Monte Carlo events which have passed the flavor
tagging, P fl-tagged

prod ,

Cfl
purity(n) =

P fl(n)

P fl−tagged(n)
. (4.25)

The charged-particle multiplicity distributions of the light- and b-quark samples, P udsc
data (n) and

P b
data(n), respectively, are given by

P fl
data(n) = Cfl

purity(n)P fl−tagged
data (n). (4.26)

Combining 1994 and 1995 data samples

There are many ways to combine data from different years, especially when they represent the
same process at the same energy. In our analysis, we choose to combine the charged-particle
multiplicity distributions obtained from the 1994 and 1995 data samples, after these have been
fully corrected, allowing to take into account the specificities of the corrections between the 2
years,

P 94+95
data (n) =

N94
data(n) + N95

data(n)
∑

n

(N94
data(n) + N95

data(n))
, (4.27)

where N94
data(n) and N94

data(n) are the fully corrected distributions of the number of events with
a multiplicity n for 1994 and 1995, respectively. However, it is not mandatory, here, to combine
the multiplicity distribution after they have been corrected since we used exactly the same
selection for the 1994 and 1995 data samples and that the corrections are also similar, but it
allows us to perform consistency checks of the two samples. We find a χ2 of 15.4 for 27 degrees
of freedom between the charged-particle multiplicity distribution of the 1994 and 1995 data
samples.

4.2 Statistical errors

In order to calculate the statistical errors on the charged-particle multiplicity distributions and
to estimate the errors on their moments, we need to calculate the covariance matrix of the
charged-particle multiplicity distribution. The covariance matrix takes into account the corre-
lations which exist between the multiplicities as well as the correlations which are introduced
by the corrections applied on the data, each term described in the previous section giving a
contribution.

For a given total number of events, the number of events with n charged particles, N(n),
is distributed according to a multinomial distribution. Therefore, the errors are described in



terms of a covariance matrix of the form:

CoV(N(n), N(m)) =
1

∑

N(i)

{

N(n)[
∑

N(n) − N(n)] n = m

−N(n)N(m) n 6= m.
(4.28)

In the limit of infinite statistics the correlations vanish and the diagonal terms becomes [N(n)]2

as for the independent Poisson case. The covariance matrix of the normalized charged-particle
multiplicity distribution P (n) differs from CoV(N(n), N(m)) by a normalization factor:

CoV(P (n), P (m)) =
1

[
∑

N(i)]2
CoV(N(n), N(m)) =

1
∑

N(n)

{

P (n)[1 − P (n)] n = m

−P (n)P (m) n 6= m.

(4.29)
All corrections which are described in the previous section gives rise to their own contribution
to the covariance matrix of the corrected data. They are briefly described in the following.

Contribution from the unfolding method

The covariance matrix of P (q)(n), calculated from Eq. (4.17), is given by

CoV(P (q)(i), P (q)(j)) = P (q)(i)P (q)(j)[
CoV(P (0)(i), P (0)(j))

P (0)(i)P (0)(j)
+

q
∑

m=1

CoV(C(m)(i), C(m)(j))

C(m)(i)C(m)(j)
].

(4.30)
Two simplifications are used in the calculation [41]. Firstly, P (0)(n) is assumed to be without
statistical errors, since it affects the result in a systematic way. (This effect will be examined
later as a systematic contribution). Secondly, in the covariance matrix, we only take into
account the correction factor C(q)(n) used in the last iteration only, neglecting the contribution
of the q − 1 other C(i)(n). This is equivalent to replacing P (0)(n) by P (q−1)(n) as the starting
multiplicity distribution. The covariance matrix of P (q)(n) is then simplified to

CoV(P (q)(i), P (q)(j)) = P (q)(i)P (q)(j)
CoV(C(q)(i), C(q)(j))

C(q)(i)C(q)(j)
. (4.31)

From the definition of C
(q)
prod(n), given in Eq. (4.18), it is straightforward to obtain its covariance

matrix:

CoV(C(q)(i), C(q)(j)) =
∑

k

∑

l

I(k, i)I(l, j)
CoV(P raw(k), P raw(l))

P
(q−1)
sim (k)P

(q−1)
sim (l)

+
∑

k

∑

l

I(k, i)I(l, j)
P raw(k)P raw(l)

(P
(q−1)
sim (k)P

(q−1)
sim (l))2

CoV(P
(q−1)
sim (k), P

(q−1)
sim (l))

+
∑

k

∑

l

CoV(N (k, i),N (l, j))

Ngen(k)Ngen(l)

P raw(k)P raw(l)

P
(q−1)
sim (k)P

(q−1)
sim (l)

+
∑

k

∑

l

M(k, i)M(l, j)
P raw(k)P raw(l)

P
(q−1)
sim (k)P

(q−1)
sim (l)

CoV(Ngen(k), Ngen(l))

Ngen(k)Ngen(l)
,

(4.32)

where Ngen(n) =
∑

ndet

N (ndet, n), (4.33)



P
(q−1)
sim (ndet) =

∑

n

M(ndet, n)P (q−1)(n), (4.34)

and CoV(P
(q−1)
sim (k), P

(q−1)
sim (l)) =

∑

o

∑

p

M(o, k)M(p, l)P
(q−1)
prod (o)P

(q−1)
prod (p)

CoV(Ngen(o), Ngen(p))

Ngen(o)Ngen(p)

+
∑

o

∑

p

CoV(N (o, k),N (p, l))

Ngen(o)Ngen(p)
P (q−1)(o)P (q−1)(p).

(4.35)

N raw(ndet) and Ngen(n) being also distributed according a multinomial distribution, their covari-
ance matrices are obtained by Eqs. (4.28) and (4.29). For N (ndet, n), we exclude the possibility
of correlation between generated multiplicities assuming that each Monte Carlo event is gener-
ated independently from each other. Hence,

CoV(N (k, i),N (l, j)) =
1

∑

i

N (k, i)















N (k, i)[
∑

i

N (k, i) −N (k, i)] i = j and k = l

−N (k, i)N (k, j) i 6= j and k = l

0 k 6= l.

(4.36)

Contribution from event selection and ISR corrections

The covariance matrix of the event selection correction factors Cacc(n) is given by

CoV(Cacc(i), Cacc(j))

Cacc(i)Cacc(j)
=

CoV(P all
prod(i), P

all
prod(j))

P all
prod(i)P

all
prod(j)

+
CoV(P acc

prod(i), P
acc
prod(j))

P acc
prod(i)P

acc
prod(j)

. (4.37)

We assume a multinomial distribution for the charged-particle multiplicity distributions (see
Eq. (4.29)) involved in both correction factors.

In the same way, the covariance matrix of the ISR correction factors CISR(n) is given by

CoV(CISR(i), CISR(j))

CISR(i)CISR(j)
=

CoV(P noISR
prod (i), P noISR

prod (j))

P noISR
prod (i)P noISR

prod (j)
+

CoV(P ISR
prod(i), P

ISR
prod(j))

P ISR
prod(i)P

ISR
prod(j)

. (4.38)

The covariance matrix of P rec(nrec) resulting from the unfolding procedure being given by
Eq. (4.31), the covariance matrix of the corrected charged-particle multiplicity distribution
P cor(n) given in Eq. (4.22) is simply

CoV(P cor(i), P cor(j))

P cor(i)P cor(j)
=

CoV(Cacc(i), Cacc(j))

Cacc(i)Cacc(j)

+
CoV(CISR(i), CISR(j))

CISR(i)CISR(j)

+
CoV(P rec(i), P rec(j))

P rec(i)P rec(j)
.

(4.39)



Contribution from the addition of K0
s and Λ decay products

The covariance matrix of the charged-particle multiplicity distribution, to which the charged
K0

s and Λ decay products have been added, PK0

data(nK0) (Eq. (4.24)) is given by

CoV(PK0

data(i), P
K0

data(j)) =
∑

m

∑

n

K(m, i)K(n, j)P noK0

data (m)P noK0

data (n)
CoV(NnoK0

MC (m), NnoK0

MC (n))

NnoK0

MC (m)NnoK0

MC (n)

+
∑

m

∑

n

CoV(k(m, i), k(n, i))

NnoK0

MC (m)NnoK0

MC (n)
P noK0

data (m)P noK0

data (n)

+
∑

m

∑

n

K(m, i)K(n, j)
CoV(P noK0

data (m), P noK0

data (n))

P noK0

data (m)P noK0

data (n)
,

(4.40)

where P noK0

data (nnoK0) is the reconstructed, corrected charged-particle multiplicity distribution
of the data. Therefore, its covariance matrix incorporates all the contributions previously
encountered. Multinomial distributions are assumed for NnoK0

MC (nnoK0) (see Eq. (4.28)). We also
assume multinomial distributions for the matrix k(nK0, nnoK0) and that there is no correlation
between nnoK0 multiplicities. This is reasonable, since in the procedure we use to incorporate
K0

s and Λ decay products, the nnoK0 multiplicities are generated (independently) first and only
then, K0

s and Λ decay products are obtained by decaying K0
s and Λ. The covariance matrix of

k(nK0, nnoK0) is then given by

CoV(k(m, i), k(n, j)) =
1

∑

i

k(m, i)















k(m, i)[
∑

i

k(m, i) − k(m, i)] i = j and m = n

−k(m, i)k(m, j) i 6= j and m = n

0 m 6= n.

(4.41)

Contribution from the light- or b-quark purity correction

This contribution is similar in its form to that for the event selection. Therefore, the covariance
matrix of P fl

data(n) is given by

CoV(P fl
data(i), P

fl
data(j))

P fl
data(i)P

fl
data(j)

=
CoV(P fl

prod(i), P
fl
prod(j))

P fl
prod(i)P

fl
prod(j)

+
CoV(P fl-tagged

prod (i), P fl-tagged
prod (j))

P fl-tagged
prod (i)P fl-tagged

prod (j)

+
CoV(P fl-tagged

data (i), P fl-tagged
data (j))

P fl-tagged
data (i)P fl-tagged

data (j)
.

(4.42)

Combining covariance matrices of 1994 and 1995 data samples

The covariance matrices of the charged-particle multiplicity distribution of the 1994 and 1995
data samples are combined, after all contributions from the various corrections applied to the
data have been taken into account. This yields to

CoV(P 94+95
data (i), P 94+95

data (j)) =

95
∑

year=94

(
∑

i

Nyear
data(i))

2CoV(P year
data(i), P

year
data(j))

(
∑

i

(N94
data(i) + N95

data(i)))
2

. (4.43)



Statistical errors on moments

Statistical errors on the moments are found by propagating the errors on the corresponding
corrected charged-particle multiplicity distribution of the data, making use of the covariance
matrix previously calculated.

• Variance of the mean multiplicity µ1

The mean multiplicity is defined as

µ1 =
∑

n

nP (n), (4.44)

with variance

Var(µ1) =
∑

n,m

n · mCoV(P (n), P (m)). (4.45)

• Variance of µk

In a similar way, a moment of order k is defined by

µk =
∑

n

nkP (n), (4.46)

and its variance by

Var(µk) =
∑

n,m

nk · mkCoV(P (n), P (m)). (4.47)

• Variance of the dispersion D =
√

〈(n − µ1)2〉

Var(D) =
1

4D2

∑

n,m

n · m(n − 2µ1)(m − 2µ1)CoV(P (n), P (m)). (4.48)

• Variance of µ1

D

Var
(µ1

D

)

=
(µ1

D

)2 ∑

n,m

n·m
(

1

µ1

+
1

2D2
(n − 2µ1)

)

·
(

1

µ1

+
1

2D2
(m − 2µ1)

)

CoV(P (n), P (m)).

(4.49)

• Variance of the skewness S = 〈(n−µ1)3〉

D3

Var(S) =
1

D3

∑

n,m

n·m
(

n2 − 3n(µ1 +
SD

2
) + 3(2µ2

1 − µ2 − SDµ1)

)

·
(

m2 − 3m(µ1 +
SD

2
) + 3(2µ2

1 − µ2 − SDµ1)

)

· CoV(P (n), P (m)).

(4.50)



• Variance of the kurtosis K = 〈(n−µ1)4〉

D4
− 3

Var(K) =
1

D3

∑

n,m

n · mCoV(P (n), P (m))

· {n3 − 4µ1n
2 + [6µ2

1 − 2D2(K + 3)]n − 4[µ3 + (D2(K + 3) − 3µ2)µ1 + 3µ3
1]}

· {m3 − 4µ1m
2 + [6µ2

1 − 2D2(K + 3)]m − 4[µ3 + (D2(K + 3) − 3µ2)µ1 + 3µ3
1]}.

(4.51)

4.3 Systematic uncertainties

The systematic errors presented here are estimated for the combined 1994 and 1995 data sam-
ples. Each variation of the analysis procedure is performed separately for the two years, and
the years are combined using Eq. (4.27). The resulting difference with the value obtained in the
standard analysis is used to determine the systematic error as described below. The systematic
contributions to the errors of the charged-particle multiplicity distributions and their moments
are classified into six main categories:

The track quality cuts

The influence of the track quality cuts is investigated by varying independently each cut pa-
rameter (Sect. 3.2.1) using the values given in Table 4.1. used to define a good track. For
each cut parameter, p, starting from the original cut value Cp

0 , we measure and reconstruct
the charged-particle multiplicity distributions and their moments using both smaller, Cp

α, and
larger, Cp

ω, values of the cut parameter. The systematic contribution to the error from this cut
parameter is obtained by taking half of the difference between the results (P (n) or moments)
obtained from the two cut values. This operation is repeated for all cut parameters, and the
systematic contribution to the error from the track quality is then taken to be the quadratic
sum from all the contributions:

∆sys
trackP (i) =

1

2

√

√

√

√

all cuts
∑

p

max(P C
p

α(i) − P C
p

ω(i))2, where Cp
0 ∈ [Cp

α; Cp
ω]. (4.52)

This contribution is the dominant part of the systematic error. It contributes more than
60% of the systematic error on the mean charged-particle multiplicity (first row of Table 4.3
which shows the relative contribution expressed in terms of the square of the systematic error,
(∆sys〈n〉)2).

cuts Cp
α Cp

ω

Pt > Cp 0.1 MeV/c 0.2 MeV/c
Span ≥ Cp 32 48

Ninner Hits ≥ Cp 0 2
NHits ≥ Cp 20 30
|DCA| < Cp 5mm 15mm

Table 4.1: Alternative values used to determine the systematic error coming from the choice of track
quality cuts.



The event selection

The same technique as for the track quality cuts is used for the parameters of the event selection
(described in Sects. 3.1 and 3.2.3) using the alternative cut values given in Table 4.2. It does not
include the contribution from the light- or b-quark tagging. This is the smallest contribution
to the systematic error (these values are summarized in the second row of Table 4.2).

cut Cp
α Cp

ω

Cp < Ecal
vis/

√

(s) 0.44 0.56

Ecal
vis/

√

(s) < Cp 1.42 1.55
Nclus > Cp 13 16
Ecal

� < Cp 0.35 0.45

Ecal
⊥ < Cp 0.55 0.64

| cos(θcal
th )| < Cp 0.64 0.8

| cos(θtrk
th )| < Cp 0.6 0.8

φ2 < Cp 165◦ 175◦

Table 4.2: Alternative values used to determine the systematic error contribution due to the event
selections.

The light- and b-quark tagging method

The contributions from light- and b-tagging are obtained by varying the values of the discrimi-
nants used for the selection. Applying values above and below the nominal discriminant value,
the systematic uncertainty is taken as half of the difference between the corresponding charged-
particle multiplicity distributions. Its contribution to the mean charged-particle multiplicity is
given in the third row of Table 4.3.

Monte Carlo model uncertainties

Another important source of systematic error is the influence of the model used to correct the
data. This error is estimated by varying the parameters in the Monte Carlo generator and by
comparing the result of different Monte Carlo generators. To investigate the influence of the
parton shower algorithm, ARIADNE is used instead of JETSET to reconstruct the charged-
particle multiplicity distribution of the data. The difference between the two reconstructed
multiplicity distribution data sets is taken as the systematic uncertainty.

The influence of the modeling of heavy-quark decays and its implementation in the Monte
Carlo model is estimated by generating events with JETSET, for different values of the frag-
mentation parameter ǫb. The value used in JETSET by the L3 collaboration is ǫb = 0.0035.
This value is varied by ±0.0015. As systematic uncertainty, we take half of the difference be-
tween the multiplicity distributions obtained using the larger and the smaller values of ǫb. The
influence of the change in the value of other hadronization parameters such as the strangeness
suppression were found to be negligible.

The two contributions from the modeling are added in quadrature. While the contribution
of ǫb is small for the full sample and negligible for the light-quark sample, it is the largest
theoretical contribution for the charged-particle multiplicity distribution of the b-quark sample.
The total contribution of Monte Carlo uncertainties are given in the fourth row of Table 4.3.



The influence of the unfolding method

The model independence of the unfolding method and its overall reliability is tested in several
ways. The results of the tests are used to contribute to the systematic error.

First, in order to check the consistency of the method, we change the charged-particle mul-
tiplicity distribution used to start the unfolding method, P (0)(n) (Eq. (4.17)), using instead the
charged-particle multiplicity distribution generated independently with the ARIADNE gener-
ator. It must be noted that the starting distribution should not matter and, in principle, a
uniform distribution could also be used. However, since we use a small number of iterations
(only two, the variation in the number of iteration is investigated independently), it is preferable
to start with a distribution which is close to the data already as it is the case for ARIADNE.

Also the number of iterations used to obtain the final result in the unfolding procedure is
changed to 4 iterations instead of 2. The difference between the charged-particle multiplicity
distributions obtained after 2 and after 4 iterations represents the next systematic uncertainty.

Since the unfolding method relies strongly on Monte Carlo, we investigate the dependence
of the method on a given Monte Carlo sample. This is done by comparing the produced
charged-particle multiplicity distribution of events generated with JETSET to that obtained
by unfolding the simulated distribution of the same events using a response matrix of the de-
tector determined using ARIADNE, and by a similar comparison with the roles of JETSET
and ARIADNE exchanged. The difference between the unfolded distributions and the corre-
sponding produced one (or between their moments) are taken as a systematic error and added
in quadrature.

These contributions to the systematic error on the mean charged-particle multiplicity are
summarized in the fifth row of Table 4.3.

γ conversion

A photon, passing through the material of the detector, may convert into an e+e−pair. This
changes the number of detected charged particles, adding particles which do not intrinsically
originate from the decay of the Z0. While this phenomenon is well known and treated by the
simulation of the detector, a difference between data and simulation in the number of pairs
of charged particles produced in this way constitutes a source of uncertainty. Therefore, we
compare the rate of γ conversions produced by the simulation in the central tracking chamber to
the number of γ converted in the data, identified using a simple secondary vertex reconstruction
algorithm. The simulated rate is found to be slightly smaller (the difference does not exceed
15%) than the rate obtained from the data. The difference is taken as a systematic uncertainty.
It contributes for 13.2%, 14.7% and 8.0% to the total systematic error on the mean charged-
particle multiplicity for the full, light- and b-quark samples, respectively (sixth row of Table 4.3).

All the above-mentioned contributions to the systematic error are estimated for all the
measurements (i.e. charged-particle multiplicity distributions and moments) and added in
quadrature.

In our analysis, uncertainties due to background processes (e.g. Z0 leptonic decays) are
found to be negligible or covered in the systematic contribution due to the event selection.



systematic contribution full sample light-quark sample b-quark sample
track quality cuts 67.5% 61.8% 71.3%
event selection 0.2% 0.3% 0.1%
tagging 3.0% 2.2%
MC modelling 8.9% 9.3% 8.5%
unfolding method 10.2% 10.9% 9.9%
γ conversion 13.2% 14.7% 8.0%

Table 4.3: Relative contribution, (∆sys
source/∆

sys
tot)

2, of the various sources of systematic error expressed
in terms of the square of the systematic error to the measurement of the mean charged-particle
multiplicity.

4.4 The charged-particle multiplicity distributions

The charged-particle multiplicity distributions for the full, light- and b-quark samples have been
measured together with their low-order moments and are presented separately in the following.

4.4.1 All events

The charged-particle multiplicity distribution of the full sample is displayed in Fig. 4.4(a), where
K0

s and Λ are assumed to be stable, and in Fig. 4.4(b), where charged particles from the decay of
K0

s and Λ are included (see also Table 4.7). The main difference between the two distributions
is an overall shift of the multiplicity distribution by about 2 charged particles. The distribution
including charged particles from K0

s and Λ decay is also broader. Both distributions agree quite
well with JETSET and ARIADNE, but HERWIG overestimates the data for both low and high
multiplicities.

The high statistics at the Z0 mass allows us to measure with high accuracy the low-order
moments of the charged-particle multiplicity distribution, including the skewness, S, and the
kurtosis, K. They are summarized in Table 4.4 with and without charged particles resulting
from K0 and Λ decay.

The mean charged-particle multiplicity including the decay products of K0 and Λ is 〈nK0〉 =
20.46 ± 0.01 ± 0.11. This result is lower than the previous L3 measurement [43] (〈nK0〉 =
20.79 ± 0.03 ± 0.52), but agrees within the systematic error on the previous result.

4.4.2 Light-quark events

Analytical pQCD calculations assume massless quarks. They do not take into account mass
effects or the weak decay of heavy quarks. It is therefore more meaningful to measure the
charged-particle multiplicity distribution and its moments for light quarks only, thus allowing
better comparison with analytical QCD calculations.

The charged-particle multiplicity distribution for the light-quark sample is shown in Fig. 4.5
(a) and (b) assuming stable K0 and Λ and including K0 and Λ decay products, respectively (see
also Table 4.8). As for the full sample, JETSET and ARIADNE are found to agree well with the
data, while HERWIG overestimates both low and high multiplicities. The principal moments
of the charged-particle multiplicity distribution of the light-quark samples are summarized in
Table 4.5. The mean charged-particle multiplicity including the decay of K0 and Λ is found to
be 〈nK0〉 = 19.88 ± 0.01 ± 0.10.



4.4.3 b-quark events

In order to investigate the influence of the heavy-quark mass or its weak decay, and to check the
difference between the light- and heavy-quark charged-particle multiplicity distributions, the
charged-particle multiplicity distribution and its moments are also measured for the b-quark
sample. The result without K0

s and Λ decay products is given in Fig. 4.6 (a) and that including
charged particles produced in the decays of K0

s and Λ in Fig. 4.6 (b) and also in Table 4.9. As
for the two other samples, the charged-particle multiplicity distributions are found to agree well
with JETSET and ARIADNE. The disagreement for high multiplicities is bigger for HERWIG
than in the case of the light-quark sample. HERWIG, furthermore, underestimates the low
multiplicities.

The moments of the charged-particle multiplicity distribution are summarized in Table 4.6.
As an effect of the weak decay of the b-quark, the mean charged-particle multiplicity of the
b-quark sample is larger than that of the light-quark sample and is found to be 〈nK0〉 =
22.45±0.03±0.14 when the charged decay products of the K0

s and Λ are included. Furthermore,
we find the difference between the mean charged-particle multiplicity of the b-quark sample and
of the light-quark sample to be 〈n〉b-quark − 〈nK0〉light-quark = 2.43 ± 0.03 ± 0.05 when K0

s and Λ

are considered as stable and 〈nK0〉b-quark − 〈nK0〉light-quark = 2.58 ± 0.03 ± 0.05 when K0
s and Λ

charged decay products are added.
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Figure 4.4: The charged-particle multiplicity distribution of the full sample without K0
s and Λ decay

products (a) and including the K0
s and Λ decay products (b), compared with JETSET and HERWIG.

Errors include both statistical and systematic contributions.

without K0 and Λ decay with K0 and Λ decay
Variable Value Error Value Error

Stat. Syst. Stat. Syst.
〈n〉 18.63 ± 0.01 ± 0.11 20.46 ± 0.01 ± 0.11
〈n2〉 381.7 ± 0.3 ± 4.4 457.7 ± 0.3 ± 4.9
〈n3〉 8524 ± 10 ± 154 11108 ± 12 ± 181
〈n4〉 205918 ± 362 ± 5137 290551 ± 475 ± 6529
D 5.888 ± 0.005 ± 0.051 6.244 ± 0.005 ± 0.051
〈n〉/D 3.164 ± 0.002 ± 0.016 3.277 ± 0.002 ± 0.016
S 0.596 ± 0.004 ± 0.010 0.600 ± 0.004 ± 0.010
K 0.51 ± 0.01 ± 0.04 0.49 ± 0.01 ± 0.03

Table 4.4: Moments of the charged-particle multiplicity distribution for the full sample.
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(a) stable K0 and Λ
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Figure 4.5: The charged-particle multiplicity distribution for the light-quark sample without K0 and Λ
decay products (a) and including the K0 and Λ decay products (b), compared with JETSET and
HERWIG. Errors include both statistical and systematic contributions.

without K0 and Λ decay with K0 and Λ decay
Variable Value Error Value Error

Stat. Syst. Stat. Syst.
〈n〉 18.07 ± 0.01 ± 0.10 19.88 ± 0.01 ± 0.10
〈n2〉 360.0 ± 0.3 ± 4.1 432.4 ± 0.4 ± 4.5
〈n3〉 7827 ± 11 ± 142 10220 ± 14 ± 166
〈n4〉 184370 ± 390 ± 4705 260701 ± 531 ± 5852
D 5.769 ± 0.007 ± 0.054 6.111 ± 0.007 ± 0.053
〈n〉/D 3.133 ± 0.003 ± 0.019 3.252 ± 0.003 ± 0.019
S 0.613 ± 0.005 ± 0.013 0.617 ± 0.005 ± 0.011
K 0.54 ± 0.02 ± 0.06 0.53 ± 0.02 ± 0.05

Table 4.5: Moments of the charged-particle multiplicity distribution for the light-quark sample.



10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

0 10 20 30 40 50 60
n

P(
n)

data
JETSET 7.4 PS
HERWIG 5.9

(a) stable K0 and Λ

b-quark sample

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

0 10 20 30 40 50 60
n

P(
n)

(b) with K0 and Λ decay products

Figure 4.6: The charged-particle multiplicity distribution for the b-quark sample without K0 and Λ
decay products (a) and including the K0 and Λ decay products (b), compared with JETSET and
HERWIG. Errors include both statistical and systematic contributions.

without K0 and Λ decay with K0 and Λ decay
Variable Value Error Value Error

Stat. Syst. Stat. Syst.
〈n〉 20.51 ± 0.03 ± 0.14 22.45 ± 0.03 ± 0.14
〈n2〉 454 ± 1 ± 6 542 ± 1 ± 7
〈n3〉 10787 ± 40 ± 214 14006 ± 48 ± 254
〈n4〉 273.9 · 103 ± 1.5 · 103 ± 7.3 · 103 385.8 · 103 ± 1.9 · 103 ± 9.4 · 103

D 5.78 ± 0.01 ± 0.05 6.16 ± 0.01 ± 0.05
〈n〉/D 3.551 ± 0.006 ± 0.016 3.645 ± 0.005 ± 0.015
S 0.574 ± 0.017 ± 0.008 0.573 ± 0.017 ± 0.007
K 0.43 ± 0.04 ± 0.04 0.42 ± 0.04 ± 0.03

Table 4.6: Moments of the charged-particle multiplicity distribution for the b-quark sample.



without K0 and Λ decay with K0 and Λ decay
Multiplicity Value Error Value Error

Stat. Syst. Stat. Syst.
2 0.000075 ±0.000012 ±0.000038 0.000018 ±0.000003 ±0.000009
4 0.000854 ±0.000031 ±0.000137 0.000268 ±0.000010 ±0.000051
6 0.005415 ±0.000073 ±0.000203 0.002054 ±0.000028 ±0.000104
8 0.020121 ±0.00014 ±0.000779 0.009328 ±0.000063 ±0.000368

10 0.049286 ±0.000205 ±0.001147 0.027621 ±0.000108 ±0.000755
12 0.088697 ±0.000262 ±0.001408 0.058426 ±0.000150 ±0.001115
14 0.122932 ±0.000291 ±0.001645 0.093836 ±0.000173 ±0.001263
16 0.140991 ±0.000300 ±0.001268 0.121719 ±0.000176 ±0.001274
18 0.138721 ±0.000292 ±0.000734 0.133779 ±0.000168 ±0.000978
20 0.122072 ±0.000275 ±0.001286 0.129539 ±0.000158 ±0.000883
22 0.097885 ±0.000250 ±0.001157 0.113598 ±0.000148 ±0.000419
24 0.073501 ±0.000221 ±0.000874 0.092586 ±0.000138 ±0.000639
26 0.051795 ±0.000188 ±0.000933 0.070832 ±0.000125 ±0.000804
28 0.034650 ±0.000156 ±0.001353 0.051225 ±0.000109 ±0.000998
30 0.022146 ±0.000126 ±0.000722 0.035490 ±0.000093 ±0.000908
32 0.013439 ±0.000098 ±0.000835 0.023541 ±0.000076 ±0.000822
34 0.008025 ±0.000077 ±0.000427 0.014928 ±0.000061 ±0.000634
36 0.004460 ±0.000057 ±0.000307 0.009190 ±0.000047 ±0.000461
38 0.002420 ±0.000043 ±0.000225 0.005395 ±0.000036 ±0.000306
40 0.001302 ±0.000031 ±0.000222 0.003119 ±0.000027 ±0.000221
42 0.000644 ±0.000022 ±0.000096 0.001735 ±0.000020 ±0.000146
44 0.000293 ±0.000015 ±0.000049 0.000903 ±0.000014 ±0.000090
46 0.000168 ±0.000012 ±0.000041 0.000452 ±0.000010 ±0.000056
48 0.000058 ±0.000007 ±0.000016 0.000228 ±0.000007 ±0.000035
50 0.000025 ±0.000005 ±0.000019 0.000102 ±0.000004 ±0.000018
52 0.000013 ±0.000004 ±0.000025 0.000051 ±0.000003 ±0.000013
54 0.000013 ±0.000008 ±0.000021 0.000023 ±0.000003 ±0.000010
56 0.2 · 10−6 ±0.4 · 10−6 ±0.000001 0.000013 ±0.000003 ±0.000007
58 0.000003 ±0.000001 ±0.000003
60 0.000003 ±0.000001 ±0.000003
62 0.000001 ±0.000001 ±0.000001

Table 4.7: Charged-particle multiplicity distributions with and without K0 and Λ decay products for
the full sample.



without K0 and Λ decay with K0 and Λ decay
Multiplicity Value Error Value Error

Stat. Syst. Stat. Syst.
2 0.000098 ± 0.000017 ± 0.000042 0.000021 ± 0.000004 ± 0.000009
4 0.001089 ± 0.000044 ± 0.000152 0.000331 ± 0.000014 ± 0.000055
6 0.006742 ± 0.000102 ± 0.000263 0.002582 ± 0.000041 ± 0.000132
8 0.023975 ± 0.000184 ± 0.000806 0.011335 ± 0.000087 ± 0.000402

10 0.057501 ± 0.000273 ± 0.001198 0.032821 ± 0.000148 ± 0.000803
12 0.099218 ± 0.000339 ± 0.001419 0.066995 ± 0.000200 ± 0.001156
14 0.133099 ± 0.000373 ± 0.001520 0.104305 ± 0.000226 ± 0.001224
16 0.146113 ± 0.000377 ± 0.001090 0.130215 ± 0.000226 ± 0.001127
18 0.138063 ± 0.000363 ± 0.000791 0.137874 ± 0.000213 ± 0.000863
20 0.117316 ± 0.000338 ± 0.001396 0.128385 ± 0.000199 ± 0.000939
22 0.091121 ± 0.000302 ± 0.001183 0.109303 ± 0.000187 ± 0.000584
24 0.066498 ± 0.000262 ± 0.000846 0.086274 ± 0.000171 ± 0.000679
26 0.045660 ± 0.000221 ± 0.000903 0.064172 ± 0.000152 ± 0.000788
28 0.029891 ± 0.000180 ± 0.001320 0.045495 ± 0.000132 ± 0.000974
30 0.018742 ± 0.000144 ± 0.000650 0.030750 ± 0.000110 ± 0.000857
32 0.011102 ± 0.000111 ± 0.000799 0.019974 ± 0.000089 ± 0.000774
34 0.006490 ± 0.000086 ± 0.000383 0.012434 ± 0.000070 ± 0.000590
36 0.003574 ± 0.000064 ± 0.000282 0.007410 ± 0.000054 ± 0.000416
38 0.001907 ± 0.000048 ± 0.000206 0.004343 ± 0.000041 ± 0.000275
40 0.001000 ± 0.000035 ± 0.000219 0.002434 ± 0.000031 ± 0.000199
42 0.000426 ± 0.000022 ± 0.000080 0.001284 ± 0.000021 ± 0.000124
44 0.000187 ± 0.000015 ± 0.000042 0.000651 ± 0.000014 ± 0.000076
46 0.000109 ± 0.000012 ± 0.000036 0.000330 ± 0.000011 ± 0.000051
48 0.000038 ± 0.000008 ± 0.000015 0.000149 ± 0.000007 ± 0.000029
50 0.000020 ± 0.000006 ± 0.000028 0.000072 ± 0.000006 ± 0.000018
52 0.000018 ± 0.000009 ± 0.000051 0.000033 ± 0.000005 ± 0.000023
54 0.000003 ± 0.000004 ± 0.000010 0.000014 ± 0.000003 ± 0.000012
56 0.000011 ± 0.000004 ± 0.000014
58 0.000001 ± 0.000001 ± 0.000001
60 0.000003 ± 0.000002 ± 0.000004

Table 4.8: Charged-particle multiplicity distributions with and without K0 and Λ decay products for
the light-quark sample.



without K0 and Λ decay with K0 and Λ decay
Multiplicity Value Error Value Error

Stat. Syst. Stat. Syst.
2
4 0.000034 ± 0.000020 ± 0.000112 0.000009 ± 0.000005 ± 0.000030
6 0.000842 ± 0.000103 ± 0.000143 0.000227 ± 0.000028 ± 0.000060
8 0.005317 ± 0.000228 ± 0.000695 0.001944 ± 0.000085 ± 0.000270

10 0.019552 ± 0.000416 ± 0.001111 0.008961 ± 0.000188 ± 0.000663
12 0.049975 ± 0.000629 ± 0.001634 0.026978 ± 0.000324 ± 0.001120
14 0.089681 ± 0.000785 ± 0.002247 0.057434 ± 0.000447 ± 0.001571
16 0.125570 ± 0.000859 ± 0.002153 0.092830 ± 0.000508 ± 0.001910
18 0.143850 ± 0.000869 ± 0.001663 0.121985 ± 0.000507 ± 0.001818
20 0.140402 ± 0.000835 ± 0.001421 0.135052 ± 0.000471 ± 0.001417
22 0.122014 ± 0.000785 ± 0.001342 0.130966 ± 0.000439 ± 0.000563
24 0.097834 ± 0.000726 ± 0.001264 0.115071 ± 0.000421 ± 0.000747
26 0.072607 ± 0.000648 ± 0.001298 0.093411 ± 0.000405 ± 0.001048
28 0.050486 ± 0.000554 ± 0.001741 0.071269 ± 0.000377 ± 0.001320
30 0.033232 ± 0.000462 ± 0.001200 0.051408 ± 0.000338 ± 0.001316
32 0.020745 ± 0.000370 ± 0.001116 0.035160 ± 0.000289 ± 0.001193
34 0.012608 ± 0.000296 ± 0.000680 0.023016 ± 0.000238 ± 0.000956
36 0.007315 ± 0.000225 ± 0.000468 0.014572 ± 0.000192 ± 0.000704
38 0.003959 ± 0.000170 ± 0.000356 0.008841 ± 0.000150 ± 0.000493
40 0.002179 ± 0.000130 ± 0.000292 0.005114 ± 0.000114 ± 0.000356
42 0.001010 ± 0.000088 ± 0.000106 0.002853 ± 0.000084 ± 0.000214
44 0.000449 ± 0.000057 ± 0.000084 0.001503 ± 0.000058 ± 0.000120
46 0.000218 ± 0.000042 ± 0.000073 0.000741 ± 0.000038 ± 0.000080
48 0.000084 ± 0.000024 ± 0.000034 0.000378 ± 0.000027 ± 0.000059
50 0.000024 ± 0.000012 ± 0.000023 0.000165 ± 0.000016 ± 0.000035
52 0.000008 ± 0.000007 ± 0.000032 0.000066 ± 0.000008 ± 0.000020
54 0.000006 ± 0.000007 ± 0.000011 0.000033 ± 0.000005 ± 0.000014
56 0.000010 ± 0.000004 ± 0.000005
58 0.000003 ± 0.000002 ± 0.000002
60 0.000001 ± 0.000001 ± 0.000002
62 0.2 · 10−6 ± 0.1 · 10−6 ± 0.1 · 10−6

64 0.2 · 10−6 ± 0.1 · 10−6 ± 0.1 · 10−6

Table 4.9: Charged-particle multiplicity distributions with and without K0 and Λ decay products for
the b-quark sample.





Chapter 5

Inclusive charged-particle ξ spectrum

This chapter is dedicated to the measurement of the inclusive charged-particle spectrum in
ξ = −ln(2p/

√
s), p being the momentum of the particle and

√
s the center of mass energy. In

the first section, we describe briefly, the reconstruction of the ξ spectrum. This is followed by
the description and the estimation of both statistical and systematic errors. In the last section,
we present the measurement of the ξ spectrum and its peak position for the full, light-quark
and b-quark samples. The resulting spectra are compared to the analytical QCD expectation
in the framework of the Local Parton-Hadron Duality.

5.1 Reconstruction of the inclusive spectrum

The method used to reconstruct the ξ spectrum is very similar to that used for the charged-
particle multiplicity distribution (Sect. 4.1). Therefore, we present here just the major steps
which enable us to access the fully reconstructed ξ spectrum.

Correction for inefficiencies and limited acceptance of the detector

The correction of the ξ spectrum for inefficiencies and limited acceptance of the detector uses
the same Bayesian unfolding method as we already used for the charged-particle multiplicity
distribution. The variables are, of course, different. We define, here, nt as the total number
of detected tracks in the Monte Carlo sample. Any track of this sample has been generated
with a certain momentum p (and hence ξ value). Due to detector resolution, the measured
value is shifted with respect to the generated one. Therefore, the main purpose of the Bayesian
unfolding is, in this case, to correct for this shift

The number of tracks nξ(ig) produced with a ξ value between δξ(ig − 1) and δξig. is given
by

nξ(ig) =

∫ ∞

0

dξdet

∫ δξig

δξ(ig−1)

∂2nt

∂ξgen∂ξdet
dξgen. (5.1)

Similarly, the number of tracks nξ(jd) with a ξ value measured between δξ(jd − 1) and δξjd is
given by

nξ(jd) =

∫ ∞

0

dξgen

∫ δξjd

δξ(jd−1)

∂2nt

∂ξgen∂ξdet
dξdet. (5.2)

We build the matrix m(jd, ig) representing the number of tracks with ξ values generated,
ξgen, between δξ(ig − 1) and δξig and measured, ξdet, between δξ(jd − 1) and δξid, where δξ is
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the size of the interval, which is chosen in this analysis to be 0.2,

mξ(jd, ig) =

∫ δξig

δξ(ig−1)

dξgen

∫ δξjd

δξ(jd−1)

∂2nt

∂ξgen∂ξdet

dξdet. (5.3)

In addition, this matrix contains a “0-particle” bin, m(jd, 0), which represents detected
tracks which do not have any corresponding generated particle. We find in this category
mainly the charged particles coming from the decay of K0

s and Λ, since, as discussed in the
previous chapter, K0

s and Λ are considered stable at generator level. There is also a small
contribution from mis-reconstructed tracks. In the Bayesian unfolding, this “0-particle” bin acts
by rejecting on a statistical basis a certain number of tracks in each ξ interval [δξ(jd −1), δξjd].
The probability matrix Mξ(jd, ig) of detecting a particle with ξ generated within the interval
δξ(ig − 1) and δξig and measured between δξ(jd − 1) and δξjd is obtained by

Mξ(jd, ig) =
mξ(jd, ig)

∑

jd

mξ(jd, ig)
. (5.4)

Using the Bayesian unfolding with the variables defined above, in the same manner as for the
case of the charged-particle multiplicity distribution (see Sect 4.1), we can correct the number
of detected data tracks, ndata

ξ (jd) having ξ measured within the interval [δξ(jd −1), δξjd]. After
unfolding, we obtain nrec

ξ (ig), the reconstructed number of tracks having ξ produced within the
interval [δξ(ig − 1), δξig]. It corresponds to the result obtained from the Bayesian unfolding
method after five iterations. While only two steps were needed to obtain a stable result for
the charged-particle multiplicity distribution, a stable result for the ξ distribution cannot be
achieved with less than five steps. This may be explained by the fact that the JETSET Monte
Carlo ξ distribution used to start the iteration procedure does not agree well with the data (see
Sect. 5.3), whereas the agreement was rather good for the multiplicity distribution.

Other corrections

In addition to the correction for detector inefficiencies, the data are further corrected for event
selection, Initial State Radiation, taking into account of K0

s and Λ charged decay products as
well as b- or light-quark contamination in light- or b-quark samples. These corrections are all
applied bin-by-bin using multiplicative correction factors,

Ceffect(ig) =
nno effect

ξ (ig)

neffect
ξ (ig)

, (5.5)

where neffect
ξ (ig) and nno effect

ξ (ig) are the number of charged particles produced with ξ generated
in the interval [δξig, δξ(ig − 1)]. They are obtained from Monte Carlo samples which do or do
not include the effect we want to correct for. The elements nξ(ig) of the ξ spectra are then
given by

nξ(ig) = nrec
ξ (ig)Cacc(ig)CISR(ig)CK0(ig), (5.6)

where Cacc(ig), CISR(ig) and CK0(ig) are the multiplicative factors correcting for event selection,
initial-state radiation and for the inclusion of charged particles coming from the decay of K0

s

and Λ, respectively. An additional correction factor Cpurity
fl (ig) is used on light- and b-quark

tagged samples to correct for b- and light-quark contaminations,

nfl
ξ (ig) = nfl-tagged

ξ (ig)C
purity
fl (ig). (5.7)



In order to simplify the calculation used to reconstruct and correct the data (in particular
for the unfolding method), we did not normalize the result until now. The ξ distribution is
normalized in such a way that the integral over the ξ distribution corresponds to the mean
charged-particle multiplicity. We find a χ2 of 31.7 for 40 degree of freedom between the 1994
and 1995 data samples. The combined 1994 and 1995 normalized number of charged particles
p94+95

ξ (ig) having ξ in the interval [δξ(ig − 1), δξig] is then given by

p94+95
ξ (ig) =

n94
ξ (ig) + n95

ξ (ig)

δξ
∑

n

(N94
data(n) + N95

data(n))
, (5.8)

where N94
data(n) and N95

data(n) are the numbers of events having n charged particles in 1994 and
1995, respectively, as defined in the previous chapter.

5.2 Estimation of the errors

5.2.1 Statistical errors

Because of the very large statistics of the sample (there are about 30 million of charged particles
which are produced), we can ignore the correlation in the covariance matrix CoV(nξ(i), nξ(j))
and take into account of only the diagonal terms. This constitutes a slight overestimation of
the errors, which is still reasonable in view of the sample size. Therefore, the statistical error
on p94+95

ξ (ig), ∆p94+95
ξ (ig) is given by

∆p94+95
ξ (ig) =

√

(∆n94
ξ (ig))2 + (∆n95

ξ (ig))2

δξ
∑

n

(N94
data(n) + N95

data(n))
, (5.9)

where ∆ny
ξ(ig), y = 94 or 95, is the statistical error for 1994 or 1995 on the number of tracks

with ξ produced within [δξ(ig −1), δξig]. The error ∆ny
ξ(ig) takes into account all the terms we

use to correct the data and is for each year of the form

∆nξ(ig) = nξ(ig)

√

√

√

√(
∆nrec

ξ (ig)

nrec
ξ (ig)

)2 +
∑

effect

{

(
∆neffect

ξ (ig)

neffect
ξ (ig)

)2 + (
∆nno effect

ξ (ig)

nno effect
ξ (ig)

)2

}

, (5.10)

where any of the ∆nξ(ig) corresponds to
√

nξ(ig).

5.2.2 Systematic errors

The sources of systematic errors investigated here are the same, with the exception of γ conver-
sion, as those we investigated for the charged-particle multiplicity distribution, namely event
selection, track quality cuts, Monte Carlo modelling, unfolding method, and b-tagging. The
systematic error for the combined 1994 and 1995 samples is estimated in the same way as it
was for the charged-particle multiplicity distribution. Table 5.1 presents the contributions to
the total systematic error from the various sources. This result is obtained from the integral of
the ξ distribution which corresponds to the mean charged-particle multiplicity. It expresses the
relative contribution of the various source of systematic error of an average δξ bin. It allows



a direct comparison with Table 4.3. As for the mean charged-particle multiplicity calculated
in the previous chapter, the main source of systematic error is the track quality cuts. It is,
also, to be noted that the contribution from the unfolding method is larger here than for the
charged-particle multiplicity distribution (Table 4.3).

systematic contribution full sample light-quark sample b-quark sample
track quality cuts 63.3% 64.8% 48.9%
event selection 0.3% 0.3% 2.0%
tagging 0.9% 8.1%
modelling 19.5% 17.6% 23.3%
unfolding method 16.9% 16.4% 17.7%

Table 5.1: Relative contribution of the various sources of systematic error to the measurement of the
integral over the inclusive charged-particle spectrum.

5.3 Inclusive charged-particle ξ spectrum

The inclusive charged-particle ξ spectrum is measured for the full, light- and b-quark samples.
The resulting distributions for the three samples are shown together with JETSET in Fig. 5.1
and with HERWIG in Fig. 5.3, assuming stable K0

s and Λ for the left plots and including K0
s and

Λ charged decay products for the right plots. For both light- and b-quark samples, as well as for
the full sample, it is seen that, JETSET overestimates ξ around the peak region, while high ξ are
underestimated. HERWIG shows even larger disagreement for the b-quark and the full samples.
However, it gives a relatively good description of the light-quark sample. The disagreement in
HERWIG is caused by a poor implementation (or tuning) of b-quark fragmentation. It must
be noted that the disagreement of HERWIG for the charged-particle multiplicity distribution
cannot be related entirely to the b-quark fragmentation implementation, even if it has some
effects, as seen in Fig. 4.6, where a very large shift of the b-quark charged-particle multiplicity
distribution is displayed. Differences are also seen for the light-quark samples (Fig. 4.5).

5.3.1 Mean charged-particle multiplicity

By integrating over the whole ξ spectrum, it is possible to obtain a measurement of the mean
charged-particle multiplicity. This result provides a cross-check of the direct measurement
performed in the previous chapter. The average numbers of charged particles obtained from
the ξ spectra are summarized in Table 5.2 for the ξ distribution of the full, light- and b-quark
samples, including and excluding charged particles from K0

s and Λ decay. The average numbers
of charged particles measured from the ξ distribution are found to be in good agreement with
the results obtained from the direct measurement (see Table 4.4, 4.5 and 4.6), thus reconfirming
the consistency of both our measurements and the methods used to obtain them.

5.3.2 ξ⋆ measurement

An important parameter which can be extracted from the ξ spectrum is its peak position, ξ⋆.
Both the shape of the ξ distribution and the evolution of ξ⋆ with the center-of-mass energy are
predicted by analytical QCD assuming Local Parton-Hadron Duality. This is usually seen as an
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Figure 5.1: ξ spectrum for the full, light- and b-quark samples compared to JETSET expectations.
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Figure 5.2: ξ spectrum for the full, light- and b-quark samples compared to HERWIG expectations.



Mean charged-particle multiplicity
without K0

s and Λ decays with K0
s and Λ decays

full sample 18.56 ± 0.01 ± 0.10 20.50 ± 0.01 ± 0.11
light-quark sample 18.02 ± 0.01 ± 0.10 19.95 ± 0.01 ± 0.12

b-quark sample 20.55 ± 0.03 ± 0.11 22.56 ± 0.03 ± 0.12

Table 5.2: Average number of charged particles obtained by integrating over the ξ spectrum. The
first error quoted is statistical, the second systematic.

important test of pQCD and of the importance of the coherence effect. In the Double Leading
Logarithm Approximation (DLLA), analytical QCD calculations predict the shape of the ξ
spectrum to be a Gaussian. With next to leading order corrections, taking into account gluon
interferences responsible for coherence effects, the Modified Leading Logarithm Approximation
(MLLA) skews and flattens the shape of the ξ spectrum, thereby shifting the peak position, ξ⋆,
to a higher value.

We performed fits to the ξ spectra over the interval [2.3, 4.7] 1 with the Gaussian parametriza-
tion as expected by DLLA, and also with a skewed Gaussian using the Fong-Webber parametriza-
tion, which reproduces the MLLA expectation around the peak position ξ⋆. In the fitting pro-
cedure both statistical and systematic errors are included. We found good agreement for both
parametrizations around the peak value for the full and the light-quark sample, with or without
K0

s and Λ decay products. The Fong-Webber fits have χ2 confidence levels of 49% for the full
sample and 88% for the light-quark sample. (These χ2 confidence levels are for distributions
which exclude K0

s and Λ decay products, but similar values are found for the other distribu-
tions.) The Gaussian fits give somewhat lower χ2 confidence levels, 20% for the full sample and
11% for the light-quark sample, respectively. The fitted distributions are shown in Fig. 5.3 for
the full sample and in Fig. 5.4 for the light-quark sample.

For the b-quark sample, the agreement with the Fong-Webber parametrization is poor with
χ2 confidence level of 5 · 10−4%. The agreement with the Gaussian parametrization for this
sample is acceptable with a χ2 confidence level of 11%. The fitted distributions of the b-quark
samples are shown in Fig. 5.5. This poor agreement of the MLLA fit (besides the fact that
massless quarks are assumed) may be due to the fact that some particles, originating from
the weak decay rather than from the partonic shower, would mask part of the coherence effect
induced by the gluon interference in the parton shower.

From the fits performed on the ξ distributions, we extract the peak position, ξ⋆. In Table 5.3,
we present the peak positions obtained from the Gaussian parametrization for the full, light-
and b-quark samples with and without K0

s and Λ decay products, in Table 5.4, those obtained
from the Fong-Webber parametrizations.

An additional contribution to the systematic error is obtained by changing the fit range,
using both a larger and a smaller fit range. This systematic contribution is quadratically added
to the systematic errors obtained from our usual systematic sources (e.g. track quality cuts,
event selection, unfolding method, theoretical uncertainties, tagging). The systematic error of
ξ⋆ is largely dominated by the change of the fit range, which represents more than 90% of the
total systematic error, as shown in Table 5.5.

We also measure the ratio ξ⋆
ltag/ξ

⋆
full and ξ⋆

btag/ξ
⋆
full, combining results from Gaussian and

1This region corresponding to 60% of the ξ distribution is commonly used to compare to other LEP experi-
ment.
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Figure 5.3: ξ spectrum with Gaussian and Fong-Webber parametrizations for the full sample without
(a) and with (b) K0
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Figure 5.4: ξ spectrum with Gaussian and Fong-Webber parametrizations for the light-quark sample
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Figure 5.5: ξ spectrum with Gaussian and Fong-Webber parametrizations for the b-quark sample
without (a) and with (b) K0

s and Λ charged decay products.

Fong-Webber fits. Assuming stable K0
s and Λ we find:

ξ⋆
ltag/ξ

⋆
full = 1.008 ± 0.003 ± 0.003 and ξ⋆

btag/ξ
⋆
full = 0.974 ± 0.003 ± 0.004.

When the K0
s and Λ decay products are included,

ξ⋆
ltag/ξ

⋆
full = 1.008 ± 0.003 ± 0.001 and ξ⋆

btag/ξ
⋆
full = 0.975 ± 0.003 ± 0.004.

So, these results are found not to be sensitive to the inclusion of the K0
s and Λ decay products.

These ratios also show a clear flavor dependence of the ξ spectrum. ξ⋆
btag/ξ

⋆
full is found to be in

good agreement with a previous measurement performed by the OPAL collaboration [44].



ξ⋆ from Gaussian fit
without K0

s and Λ decays with K0
s and Λ decays

full sample 3.684 ± 0.007 ± 0.018 3.712 ± 0.008 ± 0.018
light-quark sample 3.714 ± 0.008 ± 0.020 3.743 ± 0.009 ± 0.021

b-quark sample 3.584 ± 0.007 ± 0.009 3.613 ± 0.007 ± 0.009

Table 5.3: Peak position, ξ⋆, of the ξ spectra, obtained from a Gaussian parametrization. The first
error quoted is statistical, the second systematic.

ξ⋆ from Fong-Webber fit
without K0

s and Λ decays with K0
s and Λ decays

full sample 3.715 ± 0.007 ± 0.011 3.741 ± 0.007 ± 0.011
light-quark sample 3.745 ± 0.007 ± 0.009 3.770 ± 0.008 ± 0.009

b-quark sample 3.625 ± 0.007 ± 0.026 3.656 ± 0.007 ± 0.026

Table 5.4: Peak position, ξ⋆, of the ξ spectra, obtained from the Fong-Webber parametrization of a
skewed Gaussian. The first error quoted is statistical, the second systematic.

systematic contribution full sample light-quark sample b-quark sample
track quality cuts 77.8% 78.3% 72.9%
event selection 0.8% 1.8% 0.5%
tagging 0.5% 5.0%
MC modelling 17.8% 16.8% 18.0%
unfolding method 3.6% 2.6% 3.6%

Total 29.1% 21.7% 96.0%
fit range 70.9% 78.3% 4.0%

Table 5.5: Relative contribution of the various sources of systematic error to the measurement of ξ⋆

obtained from the Gaussian fit. In the first 5 rows, the square of the contribution from the various
sources we have used for all the analysis are expressed relative to the quadratic sum of all 5 sources.
Then, in the last two rows, the contribution of the sum of these sources and the contribution due to
the fit range are expressed relative to the quadratic sum of these two contribution.





Chapter 6

Hq moments of the charged-particle
multiplicity distribution

This is the first chapter dedicated to the detailed study of the shape of the charged-particle
multiplicity distribution, which is the starting point of the analysis. In order to understand the
origin of the shape of the charged-particle multiplicity distribution, in the next chapters, the
full sample events will be classified into several categories and their charged-particle multiplicity
distributions measured.

In this chapter, the focus is kept on the entire charged-particle multiplicity distribution.
Its shape is analyzed using the ratios of cumulant factorial moments to factorial moments, Hq,
which resolve the relative weight of a single q-particle correlation function on the shape of the
distribution. This study not only uses the charged-particle multiplicity distribution of the full
sample but also those of the light- and b-quark samples.

In the first section of this chapter, we describe the various steps needed to obtain a reliable
measurement of the Hq. This includes the evaluation of both statistical and systematic errors,
followed by a short study of the truncation in the tail of the charged-particle multiplicity
distribution. The next section presents the measurement of the Hq moment for the charged-
particle multiplicity distribution of the full, light- and b-quark samples. Results are compared
to the numerous analytical QCD predictions which exist up to the Next to Next to Leading
Logarithm Approximation (NNLLA). The last section of the chapter describes an attempt at
finding an answer on the origin of the Hq behavior (or at least finding a way to reproduce it)
based on the study of various Monte Carlo models.

6.1 Measurement of the Hq moments

In this section, we present the steps needed to obtain a reliable Hq measurement. This includes,
of course, the estimation of both the statistical and systematic errors, but also more specific
problems as the influence of the statistics on the measurement, the sensitivity of the Hq moments
to the truncation of the tail of the charged-particle multiplicity distribution and its influence
on the result.

6.1.1 Hq correlation

In order to test the consistency of the measurements of the Hq moments, we determine the
Hq obtained from distributions of various statistics and study the resulting correlation between
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Hq. It has been shown in a previous analysis that this type of correlation is small at low
q [45]. Here, we extend this analysis to values of q up to the value of the mean charged-
particle multiplicity. We perform this study using events generated according to a Poisson
distribution. Knowing that, mathematically, all Hq moments of a Poisson distribution are
zero, we first try to evaluate how much this result is affected by the statistics. Therefore,
we generate randomly events according to a Poisson distribution having the same mean value
as the experimental charged-particle multiplicity distribution of the full sample. We generate
several samples containing up to 2 · 109 events. A few examples are given in Fig. 6.1.

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

x 10
-3

2 4 6 8 10 12 14 16 18

order q

H
q

 1x105 events

 1x106 events

 2x109 events

(a)

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

x 10
-3

2 4 6 8 10 12 14 16 18

order q

H
q

 1x105 events
 1x106 events
 2x109 events
 hadronic events

(b)

Figure 6.1: Comparison between the Hq moments obtained from events generated randomly according
a Poisson distribution for various size samples (a). The results are further compared in (b) to the
data.

In Fig. 6.1(a) the effect on the Hq of limited statistics is shown for a Poisson distribution,
which expects zero for all q. We see large deviations from zero. However, these deviations are
seen only for q smaller than 8 and decrease with the increase of the statistics. For larger q they
are all very close to 0. The 2 · 109 sample does not show any significant deviation from the
mathematical Poisson distribution. However, this effect of the limited statistic is seen to be
negligible compared to the size of the Hq oscillation seen in the data (Fig. 6.1(b)) and hence
smaller than the size of the effect we want to study. This shows us that the measurement of
the Hq moments should be rather independent of the size of the data samples.

Because of the mathematical expression of the Hq (Eq. (1.5)) by which an Hq moment is
calculated iteratively from the previous ones, one can worry about correlations which may exist
between the Hq. Since the Hq are supposed to measure the relative weight of the genuine q-
particle correlation function, we investigate the reliability of this result. Therefore, we determine
from the previously generated Poisson distributions also their correlation matrices.

In Fig. 6.2 we can see a clear dependence of the correlation on the statistics. The sample
which has the smallest number of events (Fig. 6.2(a)) exhibits a large number of correlation



peaks at large q, but most of the correlations are relatively weak. At low q, for example H3

appears to be predominantly correlated to H9, H11, H14 and H16, but these correlations are only
about 20%. By increasing q the overall correlation pattern is increased, showing alternation of
peaks of correlation and of anti-correlation, but most of these peak values stay in an acceptable
range of less than 40%. Nevertheless, hard anti-correlation (about 80%) occurs between the
Hq ranges of H7 − H10 and H17 − H20. Furthermore, at large q values large anti-correlation
(about 80%) exists with adjacent Hq. For example, H16 is highly correlated with H15 and H14,
but it shows rather acceptable correlation with other Hq. When the statistics of the sample
is increased, the shape of the correlation pattern remains about the same, but it is weakened.
Also, the size of the overall correlation is decreased. With a statistics of half a million of
events (Fig. 6.2(b)), the correlations do not exceed 40%, with only one exception of about 70%
between H10 and H19. By increasing further the statistics (Fig. 6.2(c)), the correlation pattern
is further weakened and the size of the correlation is further decreased.

For a sample of 1 million events (Fig. 6.2(c)), similar to our data samples, the main correla-
tion is the correlation between adjacent Hq for q larger than 12. The size of these correlations
is only 40%. This is perfectly acceptable to carry out the analysis on the whole range of Hq.
For the 2 · 109 event sample (Fig. 6.2(d)), only the (anti-)correlations remain between adjacent
Hq for large q, which are in their maximum about the same size as for the 1 million sample
(40%). Other correlations have almost completely disappeared. Therefore, we can conclude in
view of the size of most our data samples (about 1 million), that correlations are rather small
and lie within an acceptable range for the whole range of q on which the analysis is carried out,
for q between 2 and 〈n〉(±D, where 〈n〉 is the mean charged-particle multiplicity and D the
dispersion). The b-quark sample, which has lower statistics (about 100.000 events) should be
more influenced by correlations for large q (q > 16). Nevertheless, since this sample also has a
larger mean charged-particle multiplicity than the other samples, it should be safe to present
the Hq moments on the same range of q as used for the other samples.

An important feature we will discuss in the next sub-section is the importance of statistical
fluctuations. Using the Poisson distribution of the million event sample, we determine the
effect of statistical fluctuation by adding one or two events in the tail of the distribution.
In Fig. 6.3(a), is shown that by adding two events in the tail of the distribution, the whole
correlation pattern is completely destroyed. It suddenly shows very strong correlations. Also
with only one event added in the tail of the distribution (Fig. 6.3(b)), we have relatively strong
correlations. The correlation pattern is minimal in the original distribution (Fig. 6.3(c)). In
Fig. 6.3(d) we apply a truncation in the tail of the distribution. This causes a slight increase
of the correlation between adjacent Hq, but gives practically no correlation elsewhere. This
is a trend, somehow, similar to the 2 · 109 events sample. Therefore, the truncation has the
advantage to decrease the sensitivity of the Hq to the statistics of the sample, which will make
easier the comparison of samples of different statistics.

In conclusion, from these studies, we find that our Hq analysis can be carried out up to a q
value about equal to the mean charged-particle multiplicity. Furthermore, in order to restore
the original correlation pattern and subsequently the Hq behavior, as well as uniformizing the
correlation pattern between samples of different statistics, it is important to get rid of the
statistical fluctuation. The whole procedure of truncation, as well as other aspects of the
truncation are discussed in the next section.
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Figure 6.2: Correlation matrices of Hq obtained from samples generated according to a Poisson dis-
tributions with 1 · 105 events (a), 5 · 105 events (b), 1 · 106 events (c) and 2 · 109 events (d).
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Figure 6.3: Effect of statistical fluctuation on the Hq correlation matrices obtained from various 1-
million event samples generated according to a Poisson distribution. In (a) 2 events have been added
at large multiplicities, in (b) only one, (c) none and (d) the distribution of (c) is truncated.



6.1.2 Hq and truncation

The first truncation we should talk about, as an experimentalist, is the truncation in the tail
of the charged-particle multiplicity distribution as a consequence of the finite statistics of our
samples. In any experimental multiplicity distribution, there is a maximum multiplicity nmax

above which no events are seen. Therefore, we should rewrite Eq. (1.3), the mathematical
definition of the factorial moment Fq in a more experimental way:

Fq =

nmax
∑

n=q

n(n − 1)....(n − q + 1)P (n)

nmax
∑

n=q

nP (n)
, (6.1)

where nmax is the largest multiplicity obtained for a given sample. But we should also worry
about the significance of high multiplicities which lack precision, as seen in Fig. 4.4 and Table 4.7
for the full sample where K0

s and Λ are assumed to be stable. Multiplicities larger than 48 have
relative errors larger than 78%, which clearly means that the knowledge we have of these
multiplicities is almost non-existent. They are statistical fluctuations, their presence or their
absence does not have any real physical meaning, and hence they should be removed. Although
their impact on the measurement of the mean of the charged-particle multiplicity distribution
is negligible, this is not the case for the measurement of the Hq moments. Previous analyses
have shown [46] that the Hq moments are very sensitive to the truncation of the tail of the
charged-particle multiplicity distribution. This sensitivity comes from the definition of the
factorial moment, Fq (Eq. (6.1)). For example, if we impose a truncation at nmax − 1, we can
write for the non-normalized factorial moments,

F̃q =
nmax−1
∑

n=q

n!

(n − q)!
P (n) +

nmax!

(nmax − q)!
P (nmax), (6.2)

and we see that the importance of the last term rises with the order q. Thus, we see that a
statistical fluctuation at very high multiplicity can have an important influence on the final
result. Since the Hq measurement is expected to perform a detailed analysis of the shape of the
charged-particle multiplicity distribution, such a high multiplicity statistical fluctuation can
destroy or mask part of the information we want to gather. Therefore, multiplicities which can
be considered as dominated by statistical fluctuations must be removed from the sample for
the Hq analysis. These multiplicities are characterized by the instability of their values and,
hence, have very large relative error. In Fig. 4.4, we noticed a large change in the relative
error between n = 48 (29%) and n = 50 (78%). Therefore, it seems reasonable to remove
multiplicities larger than 48. These relative errors, which take into account both statistical and
systematic errors, allow to take into account both aspects of the statistical fluctuation at high
multiplicities, one being due to, stricto sensus, the statistics, the other due to the sensitivity
to the choice of selection criteria of high multiplicity “boundary” events.

The problem of sensitivity of the Hq to the truncation of the tail of the multiplicity distri-
bution is not limited to multiplicities which are largely dominated by statistical fluctuations,
they are only the most astonishing example of this effect. As we know from the above pre-
liminary study of the Hq, truncating statistical fluctuation is fully justified by the fact that it
removes correlations introduced by such events, but we also know that truncating meaning-
ful information will introduce even further correlations. Anyhow, the truncation will always



have an influence on the result. Contrary to the study in the previous sub-section, which was
performed on a Poisson distribution, we cannot predict the theoretical behavior of the exper-
imental charged-particle multiplicity distribution. Therefore, we cannot precisely quantify the
bias of the Hq introduced by the use of the truncated distribution. To limit this bias, the trun-
cation must be limited to the elimination of multiplicities which are sensitive to large statistical
fluctuations.

The effects of the truncation are shown in Fig. 6.4, where the reference Hq sample (in
which multiplicities influenced by large statistical fluctuations are removed) for the full sample
without K0

s and Λ decay products is compared to the same distribution where no truncation
has been applied (Fig. 6.4(a)) and where the distribution has been exaggeratedly truncated
(Fig. 6.4(b)), removing multiplicities known with a rather good accuracy (and therefore assumed
to be statistically significant). At low q, we can also note an improvement of the statistical error,
obtained by removing multiplicities having large statistical error (and hence being influenced
by statistical fluctuation).
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Figure 6.4: (a) Comparison between the reference Hq moment (coming from the full sample truncated
at n = 48) and Hq moment obtained from the distribution before applying the truncation, (b) for a
strongly truncated (at n = 44) distribution. Only statistical errors are shown.

The effect of the truncation being part of our measurement, we have to make sure that all
distributions we want to compare are affected by the truncation in the same way. Therefore, it
is not possible to express the truncation as a fixed cut on the multiplicity distribution. It is very
unlikely that the sensitivity to statistical fluctuation of the multiplicities larger than 48 is the
same for the full sample without and with K0

s and Λ decay products. The second distribution
contains the same events, for which the K0

s and Λ have been allowed to decay. These events are
found to have on average two more charged particles than in the first place. In other words,
the multiplicity distribution can be described, in first approximation, as shifted by about 2
particles. So are the statistical fluctuations. Therefore, in order to remove these events in both



distributions, we remove the tail of the second charged-particle multiplicity distribution which
corresponds to the fraction of events removed by a truncation at 48 in the first.

Because of rather long lifetimes of K0
s and Λ’s, their decays take place at the end of the chain

of processes leading to the final state. Therefore, the q-particle correlations in which their decay
products (not the K0

s and Λ themselves, which are already taken into account) are involved are
certainly limited to their closest neighbors in momentum space. Therefore, it is reasonable to
expect correlations only between a small number of particles. In terms of q-particle correlation
functions, this means that the Hq moments obtained from the two distributions, with and
without K0

s and Λ decay products, should have rather similar values, except at low q (small
changes are nevertheless expected as a consequence of the correlation between the Hq moments,
which were found to be rather small in the previous section).

This is illustrated in Figs. 6.5 and 6.6, where we compare the full sample with and without
K0

s and Λ decay products. When we apply a truncation at n = 48 for both distributions, the
two distributions disagree. However, if the fraction of events corresponding to a truncation on
multiplicities larger than 48 for the full sample where K0

s and Λ are stable is removed from the
full sample including K0

s and Λ (which corresponds to a truncation on multiplicities larger than
52) we have good agreement between the two samples.

Now, if we apply the inverse, i.e. we fix the truncation on the multiplicity at n = 48 for
the full sample where the K0

s and Λ decay products are taken into account and remove the
corresponding fraction in the other sample (which corresponds to a truncation on multiplicities
larger than 44) we also have a good agreement between the two distributions. This shows us
(apart from the fact that the weakly decaying short life-time particles don’t have any influ-
ence on the shape of the charged-particle multiplicity distribution) that we have to define the
truncation in terms of an equal fraction of events to be removed in the tail of the multiplicity
distribution.

Only 0.005% of the events are in fact removed by this truncation.

We have seen in this sub-section that the amplitude of the oscillation is increased by the
truncation, thereby amplifying an already existing behavior. This is due to an increase in the
size of the correlations between Hq, which then amplifies the original Hq. On the other hand,
statistical fluctuation destroying the original correlation pattern will partly mask the original
Hq behavior as seen in the previous sub-section. This is illustrated in Fig. 6.4(a), where the
original data sample, having large statistical fluctuation in its tail, has much smaller oscillations
than the truncated one. Since the statistical fluctuation masks the oscillatory behavior, the
fact that we have small oscillation strongly suggests that the oscillatory behavior is not due
to the truncation. Nevertheless, too strong truncation may increase the oscillation size. This
is illustrated in Fig. 6.4 (b), where we have applied a truncation removing well measured and
hence statistically significant multiplicities and the size of the oscillation is increased.

6.1.3 Statistical errors

The statistical errors on the Hq are obtained by two different methods: The first one, an
analytical method, which we prefer, is error propagation, making use of the covariance matrix of
the charged-particle multiplicity distribution. The dependence of our estimate of the covariance
matrix on the statistics, together with the form of the derivative of the Hq moments, which
can emphasize even small changes in the covariance matrix, causes this method to give reliable
results only for high-statistics samples. At low statistics, the approximations and assumptions
used to estimate the covariance matrix are not valid anymore. Since it would be rather difficult
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to obtain a better estimate of the covariance matrix, a Monte Carlo based method is found
to be a rather advantageous alternative of treating the error, all terms being naturally taken
into account by this method. Therefore, the analytical method is used for the full and the
light-quark samples where large statistics makes it suitable, but the second method will be
used for the b-quark sample, which has smaller statistics.

Analytical method

In this method, the statistical errors are obtained by error propagation, which makes use of
the covariance matrix of the charged-particle multiplicity distribution, CoV(P (i), P (j)). The
variance of the Hq, Var(Hq), is given by

Var(Hq) =
∑

i,j

∂Hq

∂P (i)

∂Hq

∂P (j)
CoV(P (i), P (j)), (6.3)

where ∂Hq

∂P (i)
is a partial derivative of Hq as a function of the multiplicity P (i). These terms

can be easily obtained by writing Hq as a function of the non-normalized factorial moment F̃q

corresponding to:

F̃q =
nmax
∑

n=q

n(n − 1)....(n − q + 1)P (n) = FqF̃1
q
. (6.4)

It must be noted that F̃1 is nothing but the mean of the multiplicity distribution. Dividing
the cumulant factorial moment, Kq, (Eq. (1.4)) by Fq, we can express Hq as a sum of factorial
moments:

Hq = 1 −
q−1
∑

m=1

(q − 1)!

m!(q − m − 1)!
Hq−m

Fq−mFm

Fq

with H1 = F1 = 1. (6.5)

We see also that the normalization factor of the factorial moments, corresponding to the mean
of the multiplicity distribution cancels, leading to

Hq = 1 −
q−1
∑

m=1

(q − 1)!

m!(q − m − 1)!
Hq−m

F̃q−mF̃m

F̃q

. (6.6)

Therefore, the derivative of Hq is given by

dHq = −
q−1
∑

m=1

(q − 1)!

m!(q − m − 1)!
Hq−m

F̃q−mF̃m

F̃q

(
dHq−m

Hq−m

+
dF̃q−m

F̃q−m

+
dF̃m

F̃m

− dF̃q

F̃q

), (6.7)

where dF̃q =

{

n(n − 1)....(n − q + 1)dP (n) n ≥ q

0 n < q.
(6.8)

The first non-zero partial derivative, ∂H2

∂P (n)
, obtained from Eqs. (6.7) and (6.8) is given by:

∂H2

∂P (n)
= (H2 − 1)







2n
F̃1

− n(n−1)

F̃2

n ≥ 2
2n
F̃1

n = 1.
(6.9)

The partial derivatives of the higher Hq moments are found iteratively, starting with the H2

partial derivative, ∂H2

∂n
in Eq. (6.7).



This way of calculating statistical errors works well, unless the sample size becomes too
small. Samples which have less than 500.000 events cannot be processed by this method. At
that point, the combination of the deterioration in the precision of the covariance matrix,
together with the higher-order terms of the Hq derivative, cause the resulting statistical error
to significantly deviate from its real value and become larger. In order to obtain a reliable
estimation, we need to take into account all orders of correlation. It would be very difficult to
do this analytically. Therefore, we use a Monte Carlo based method.

Monte Carlo based error calculation

The principle of this method is very simple. A large number of multiplicity distributions are
generated from the experimental one by allowing random variation of the multiplicities which
compose it. Each of these generated multiplicity distributions gives an Hq value. The error is
then extracted from the distribution of the generated Hq.

In order to generate a multiplicity distribution as close as possible to the experimental
result, the generation process has to follow the same treatment and reconstruction process as
used for the experimental data. Since events are produced independently of each other, the
random variation of the multiplicity distribution is obtained by imposing Poisson fluctuation
of the number of events produced with a given multiplicity.

The generation process starts by imposing a Poisson fluctuation on the number of events
for each detected multiplicity N raw(i) of the data. This allows us to calculate a completely new
(but statistically consistent with the original distribution) probability distribution, P raw

1 (i).

Next, making use of the detector response matrix, M , we impose a Poisson fluctuation on
the number of events N(ndet, nprod) with ndet detected particles and nprod produced tracks. We
then obtain not only a completely new detector response matrix M1 but also new Monte Carlo
produced and detected multiplicity distributions, P1(nprod) and P1(ndet).

We then perform a reconstruction of the new data distribution, P raw
1 (i), by the Bayesian

unfolding method making use of the newly obtained probability matrix M1. A reconstructed
charged-particle multiplicity distribution of the data, P data

1 (nprod), is obtained. This distribu-
tion has, of course, to be corrected, like the normal data sample, for event selection, initial-state
radiation, K0

s and Λ decay products, light- or b-quark purities. Since all these corrective factors
have a statistical influence on the final result, Poisson fluctuations of the number of events of
each multiplicity are also imposed on all the multiplicity distributions which compose them.
We finally get a completely new fully reconstructed and corrected multiplicity distribution,
P data

1 (nprod), from which a new set of H
(1)
q moments is calculated. The whole operation is then

repeated 1000 times, in order to obtain H
(i)
q distributions. After having checked that the distri-

butions of H
(i)
q are close to Gaussian (see Fig. 6.7 as examples) centered around the original Hq

measurement, the statistical error on the Hq is taken to be the half-width of the distribution.

Since this procedure is rather time consuming, the number of generated multiplicity distri-
butions is chosen in such a way that the precision of the error (i.e. the error on the error) is
sufficiently accurate. For 1000 multiplicity distributions, the error is known within an accuracy
of 3.2%, which is sufficiently small. (For comparison, the error committed by giving the value
of the mean charged-particle multiplicity of the b-quark sample with a precision of 0.01 is 16%).
Furthermore, in view of the size of the systematic error, which is always the major contribution
to the error in this analysis, the accuracy of 3.2% for the statistical error is fine. A comparison
between the analytical method and this method given in Fig. 6.8, shows both the limitation of
the analytical method at low statistics and the advantage of the use of the analytical method.
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Figure 6.7: Distributions of the H2, (a), and H8, (b), obtained after the generation of 10.000 distri-
butions.
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Figure 6.8: Hq moments for light-quark sample (a) and b-quark sample (b). The error lines is for the
statistical error calculated by the analytical method, the error boxes for the statistical errors calculated
with the Monte Carlo based method.



For the light-quark sample (Fig. 6.8(a)) where the statistics is high (about 1,200.000 events
after corrections), the two methods give the same results, but for the b-quark sample, where
the statistics is smaller (about 300.000 events after corrections), the analytical method, which
is not able to insure a proper cancellation of the correlations introduced by the reduction of
the statistics, largely overestimates the statistical errors on the Hq.

6.1.4 Systematic errors

The estimation of the systematic errors is based on the systematic study of the charged-particle
multiplicity distribution described in Sect. 4.3, where we have determined charged-particle mul-
tiplicity distributions corresponding to the various checks of systematic effects. Here, we deter-
mine the Hq moments from these distributions. The resulting Hq moments are then compared
to the Hq moments of the reference sample in the same way as was described in Sect. 4.3,
replacing the charged-particle multiplicity distributions by the Hq moments. Contributions to
the systematic errors are then due to the track quality cuts, which are again the largest con-
tribution, the event selection, uncertainties in Monte Carlo modelling, the unfolding method
used to reconstruct the charged-particle multiplicity distribution, and the light- or b-tagging
method.

6.2 Results for the full, light- and b-quark samples

The Hq moments are measured for the full, light-quark and b-quark samples without and with
K0

s and Λ decay products. They are shown as a function of the order q in Figs. 6.9, 6.10
and 6.11, together with Hq moments calculated from charged-particle multiplicity distributions
obtained from events generated with JETSET, ARIADNE and HERWIG. The size of the Monte
Carlo samples is similar to that of the data, except for JETSET which contains 3 times more
events. For all the data samples, the Hq moments exhibit a first negative minimum at q = 5 and
quasi-oscillation for higher q. While JETSET and ARIADNE show relatively good agreement
for all the samples, the Hq moments calculated from events generated with HERWIG do not
agree with any of them. For all samples, they show a shift of at least one order for all extrema.
Furthermore, the Hq obtained for the HERWIG full and light-quark samples, have amplitudes
of oscillation which are much larger than those found in the data. For the b-quark sample,
apart from the one-order shift of the extrema, the amplitudes of the oscillation have about the
size of those of the data.

In Fig. 6.12, we can see that the full, light- and b-quark samples agree well with each other,
with only a small difference for small q (q < 5), between the b-quark sample and the other
samples. This indicates that the weak decay of the b quark does not have much influence on
the shape of the charged-particle multiplicity distribution. It must be noted that neither does
the weak decay of K0

s and Λ have much influence on the shape of the multiplicity distribution.

The Hq behavior observed for the data is qualitatively similar to that predicted by the
NNLLA assuming Local Parton-Hadron Duality. However, also JETSET agrees well with all
the data samples (and HERWIG, even if it does not agree with the data, predicts the same kind
of features, i.e. a first negative minimum followed by quasi-oscillation). However, none of the
parton showers used by those Monte Carlo models have implemented NNLLA. Rather, they use
parton showers which are close in form to the MLLA with, in addition, full energy-momentum
conservation.
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Figure 6.9: Hq as a function of q for the full samples (a) without and (b) with K0
s and Λ decay

products, together with JETSET, HERWIG and ARIADNE.
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Figure 6.10: Hq as a function of q for the light-quark samples (a) without and (b) with K0
s and Λ

decay products, together with JETSET, HERWIG and ARIADNE.
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Figure 6.11: Hq as a function of q for the b-quark samples (a) without and (b) with K0
s and Λ decay

products, together with JETSET, HERWIG and ARIADNE.
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Figure 6.12: Hq as a function of q for the full, light- and b-quark samples (a) without and (b) with
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Therefore, we attempt to find which aspect of the Monte Carlo generation is responsible for
this agreement.

6.3 Monte Carlo analysis of the Hq

In view of the good agreement of JETSET with the data for all samples, we vary several
options in JETSET and study their influence on the shape of the charged-particle multiplicity
distribution and hence, on the Hq behavior.

Since analytical QCD predicts the Hq behavior for partons, we tried first to change in
JETSET, options related to the parton production, keeping in all cases the Lund string frag-
mentation model for the hadronization. We try the following:

• No angular ordering in the parton shower. This makes it essentially an LLA shower
with, in addition, energy-momentum conservation. Removing this constraint allows more
partons to be generated. Therefore, the multiplicity distribution generated that way
should have a larger average number of particles and should be broader.

• Partons are generated according to O(αs) and O(α2
s ) matrix elements and even only qq̄.

Since only a small number of partons are generated under these models, the charged-
particle multiplicity distribution has smaller mean and dispersion.

For all four cases (i.e. multiplicity distribution generated with Lund string fragmentation
and partons according LLA parton shower, O(α2

s ), O(α1
s ), and qq̄ only), we find that the Hq

moments calculated from the corresponding charged-particle multiplicity distribution, have a
first negative minimum around q = 5 followed by quasi-oscillations as is seen in Fig. 6.13. Even
though, these various models do not reproduce the Hq behavior exactly, we find qualitative
agreement with the Hq oscillatory behavior seen in the data. The matrix element models have
slightly smaller oscillation size than the parton shower models. We notice that the depth of the
first negative minimum decreases with decreasing matrix element order. Also the amplitudes
of the oscillation are smaller for the distributions generated with partons according matrix
elements, but it must be noted that these distributions contain fewer particles than those
generated according to the parton shower implementation.

This shows us that the overall features of the Hq behavior do not depend on a particular
model for the generation of partons.

The next step is to consider that the oscillatory behavior may originate from the fragmen-
tation, which could simulate some higher-order aspects of pQCD. Therefore, we repeat the
previous study, replacing the Lund string model by the independent fragmentation model. We
also allow in both Lund string and independent fragmentation models, resonances to decay. As
a further test, we split the samples into light- and b-quark samples.

For the full samples (Fig. 6.14), most of what we try gives oscillations of about the size
of the data. However, the Hq moments obtained with a LLA parton shower and independent
fragmentation (with and without resonances) shows a different behavior. It has a first negative
minimum at q = 4 and, instead of smooth oscillation for higher q, the Hq moment oscillates
with a short period. In this particular case, the combination of the LLA parton shower and
independent fragmentation models gives birth to a very wide distribution with a dispersion
near 10 and a mean of the charged-particle multiplicity distribution of about 30.

Also for the light-quark samples (Fig. 6.15) we obtain for most of the samples Hq moments
which have a first negative minimum for q between 4 and 6 and oscillatory behavior for larger
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Figure 6.13: Hq moment of the full sample, together with events generated with JETSET (a) using
a LLA parton shower, (b) using O(α2

s ) matrix element, (c) using O(α1
s ) matrix element and (d)

generating a qq̄ pair only, and in all cases the Lund string fragmentation.
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Figure 6.14: Hq moment of the full sample compared to events generated (a) using LLA parton shower,
(b) with O(α2

s ) matrix element, (c) O(αs) matrix element and (d) only qq̄ for various fragmentation
options.



q, but these oscillations are usually smaller. More specifically, the Hq moments generated
from distributions obtained with LLA parton shower and independent fragmentation, without
resonance decays shows a first negative minimum at 4 followed by a positive maximum at 5
and small oscillation. With resonance decays, we have a similar behavior but shifted by one
order. For only qq̄ with both string and independent fragmentation without resonance decay,
we cannot see any oscillation but some erratic behavior. This seems to be related to the absence
of the resonances, since the model using independent fragmentation with resonances shows the
oscillatory behavior.

For the b-quark sample (Figs. 6.16), all the charged-particle multiplicity distributions give
Hq moments for which oscillatory behavior is seen. Except for the LLA parton shower, which
has a large amplitude compared to the data, the charged-particle multiplicity distributions for
which partons have been generated using matrix elements have relatively small oscillations.

Most of the models we have checked show a first negative minimum at about q = 5, followed
by an oscillatory behavior qualitatively similar to the one seen in the data, no matter which
model is used to generate the partons and for most of the options we tried for the fragmentation.

Concerning the absence of Hq oscillation in some samples, this cannot be related to a specific
aspect of the fragmentation. The two charged-particle multiplicity distributions in question
concern completely different, even opposite, models. One generating partons according to LLA
showers, the other using only qq̄. Furthermore, in the first case the two models which do not
have oscillation are those using independent fragmentation with and without resonance. But
in the second case, it is both string and independent fragmentation without resonances which
do not show the oscillation.

As an additional test, we also determined the Hq moments of the parton multiplicity dis-
tribution instead of the charged-particle multiplicity distribution. This test was performed on
the default parton shower of the JETSET model at the center-of-mass energy of 91 GeVand
of 910 GeV. The resulting Hq moments are shown in Fig. 6.17 together with that of the data.
We see that the Hq moments obtained from the partons at the Z0 energy do not present the
usual oscillatory behavior but has an erratic behavior. However its first negative minimum is at
q = 6. At 910 GeV, for which the parton multiplicity distribution has about the same mean as
the mean charged-particle multiplicity at the Z0 energy, the Hq moments display an oscillatory
behavior having about the same amplitude as the data, but shifted by one order.

It seems that there is no particular aspect of the Monte Carlo responsible for the presence
or the absence of the Hq oscillatory behavior, but that it is due to a collective effect, various
aspects of the Monte Carlo contributing to the oscillations in various models. From this Monte
Carlo study, even if we fail in finding a unique origin for these oscillations, we can nevertheless
conclude that these oscillations can be reproduced without the need of NNLLA of perturbative
QCD.

Therefore, in the next chapter, we will attempt to challenge more directly perturbative
QCD, by measuring the Hq moments for the jet multiplicity distribution at energy scales where
pQCD is the dominant mechanism.
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Figure 6.15: Hq moment of the light-quark sample compared to events generated (a) using LLA
parton shower, (b) with O(α2

s ) matrix element, (c) O(αs) matrix element and (d) only qq̄ for various
fragmentation options.
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Figure 6.16: Hq moment of the b-quark sample compared to events generated (a) using LLA par-
ton shower, (b) with O(α2

s ) matrix element, (c) O(αs) matrix element and (d) only qq̄ for various
fragmentation options.
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Chapter 7

Analysis of jet multiplicity
distributions with the Hq

In the previous chapter, we compared the Hq moments of the charged-particle multiplicity distri-
bution with various analytical QCD predictions and in particular with the NNLLA predictions.
Originally applying to partons, these predictions are made valid for final-state particles by the
use of the Local Parton-Hadron Duality (LPHD) assumption. This assumption may be sum-
marized from our point of interest as the hypothesis that the shape of the partonic distribution
is not distorted by the hadronization. Therefore, the Hq moments obtained for the partonic
distribution should be similar to those of the final-state particle multiplicity distribution and,
by extension, to those of the charged-particle multiplicity distribution. Therefore, the compari-
son of the Hq moments of the charged-particle multiplicity distribution to the pQCD prediction
rests strongly on the validity of LPHD.

In order to remove the dependence on LPHD, we use the jet multiplicity distribution instead
of the charged-particle multiplicity distribution. Since jets obtained for an energy scale above
1-2 GeV fall into the domain of validity of pQCD, they correspond to partons.

In the first section, the various steps needed to measure the jet multiplicity distributions
are briefly described, as well as the estimation of statistical and systematic errors. The next
section is dedicated to the measurement of the Hq moments for a wide range of energy scales
above and below the 1 GeV limit of the perturbative QCD region. The results are compared
to analytical QCD expectations.

7.1 Experimental procedures

The jet multiplicity distribution is defined as the distribution of the number of jets reconstructed
from an event at a given energy scale. These jets are built with the Durham algorithm [47] using
charged particles only. This has the advantage that the jet multiplicity distribution obtained
with ycut near zero corresponds to the charged-particle multiplicity distribution. Since most of
the comparison is done relative to the charged-particle multiplicity distribution, we know that
for very small ycut values, the jet multiplicity distribution will approach the charged-particle
multiplicity distribution.

The main disadvantage is that the method does not use the full event, but only charged
particles. This may affect the number of reconstructed jets. The effect will increase with
decreasing value of ycut (the effect will be maximal for ycut=0 where each particle is resolved
as a jet). However, particles are distributed in such a way that, at energy scales close to the
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domain of validity of pQCD, the number of reconstructed jets does not depend too much on
the fact that we use only the charged particles. Furthermore, since our main interest is the
shape of the distribution, it does not really matter that we use the charged-particle multiplicity
distribution instead of the multiplicity distribution of all particles. Both distributions have
equivalent shape. Therefore, even for low ycut where the bias is maximum, the difference will
not be large.

Using the Durham algorithm, the cut-off parameter value ycut defines a jet energy scale
which is closely related to the transverse energy Ejet

t of the jet,

Ejet
t = Ecm

√
ycut, (7.1)

where Ecm is the center-of-mass energy of the collision. Therefore, in this chapter we will prefer-
ably refer to the jet energy scale, Ejet

t , rather than to the cut-off parameter ycut. Nevertheless,
Table 7.1 shows the correspondence between the two parameters.

ycut 1.2 · 10−6 2.7 · 10−6 4.8 · 10−6 7.5 · 10−6 1.1 · 10−5 1.9 · 10−5

Ejet
t (GeV) 0.1 0.15 0.2 0.25 0.3 0.4

ycut 3 · 10−5 4.3 · 10−5 1.2 · 10−4 3.9 · 10−4 8.2 · 10−4 1.1 · 10−3

Ejet
t (GeV) 0.5 0.6 1 1.8 2.6 3

Table 7.1: Correspondence between the jet energy scale Ejet
t and the cut-off parameter ycut.

From the range of energy resolution given in Table 7.1, we are able to follow in great detail
the evolution of partons into hadrons, and hence we should be able to match any change in the
behavior of the Hq moments to any phase which could occur in the evolution of partons into
hadrons.

The jet multiplicity distributions are reconstructed in exactly the same way as the charged-
particle multiplicity distribution. The only difference is that we build the distribution of the
number of events with njet jets, N(njet), instead of the distribution of the number of events
with n charged-particles, N(n). As for the charged-particle multiplicity distribution, these dis-
tributions are corrected for detector inefficiencies by the Bayesian unfolding method. They are
also corrected for the selection procedures and initial-state radiation using bin-by-bin correction
factors. Since the Hq of the light- and b-quark samples are found to agree with the Hq of the
full sample, only results for the full sample are shown. Further, we limit our study to the case
where K0

s and Λ are assumed to be stable.
The estimation of both statistical and systematic errors follows the same procedures as al-

ready used for the charged-particle multiplicity distribution. In the estimation of the systematic
errors we include contributions from changing the track quality criteria and the event selection,
from the influence of the unfolding method and also a contribution coming from Monte Carlo
modelling uncertainties.

Furthermore, in the determination of the Hq moments from the jet multiplicity distribu-
tions, we use the same criteria for the truncation as used for the charged-particle multiplicity
distribution (i.e., we remove in the jet multiplicity distributions the same fraction of events as
removed by a cut on multiplicities larger than 48 in the charged-particle multiplicity distribu-
tion of the full sample). In this way we are able to directly compare the Hq moments obtained
from the jet multiplicity distributions to those obtained from the charged-particle multiplicity
distribution of the full sample. To estimate the statistical errors on the Hq moments, we use



the Monte Carlo based method described in the previous chapter. The systematic errors of the
Hq moments are obtained in the usual way.

7.2 Hq moments of the jet multiplicity distributions

The Hq moments determined from the jet multiplicity distributions are shown in Figs. 7.1
to 7.3, for the ycut values given in Table 7.1. For Ejet

t =100 MeV (Fig. 7.1(a)), the Hq moments
show a first negative minimum at q = 5 and oscillatory behavior for larger vales of q. This
behavior is similar to that observed for the charged-particle multiplicity distribution, but the
oscillations are smaller in amplitude. By increasing the energy resolution of the jet algorithm,
the amplitude of the oscillation decreases further. At Ejet

t =200 MeV (Fig. 7.1(c)), the first
negative minimum has shifted to q = 4, the oscillation has disappeared for q > 8 and is much
reduced between q = 6 and q = 8. Between Ejet

t =200 MeV and Ejet
t =300 MeV (Fig. 7.2(a)),

the first negative minimum at q = 4 deepens sharply. The same sharp decrease is also seen for
q = 2 in the insert. For q > 6, Hq remains as it was at lower energy scales. At Ejet

t =400 MeV
(Fig. 7.2(b)), a new first minimum appears at q = 2 with a much deeper value than for q = 4,
and for q < 5 Hq alternates between positive and negative values. For larger q values, the Hq

remain roughly constant about 0.
At Ejet

t =500 MeV (Fig. 7.2(c)), we have a complete change of the Hq: the smooth quasi-
oscillations we see for the lowest energy scales have disappeared and Hq alternates between
positive and negative values for all q. We notice also that this sign-changing behavior has an
amplitude almost twice as large as than at Ejet

t =400 MeV. As we increase the energy scale
further, there is no noticeable change in the Hq with respect to Ejet

t =500 MeV. The only
difference is that the absolute value of each Hq has increased. At Ejet

t =1 GeV (Fig. 7.3(a)),
we enter the domain of validity of the perturbative region and the behavior is similar to that
already observed for Ejet

t > 500 MeV, but the amplitude is much larger.
It seems that the increase in the scale of the Hq values is due to the decrease of the mean

jet multiplicity. Increasing the energy scale further does not bring anything new. We still have
the sign-changing behavior as we already observed, but again the Hq moments have greater
values.

In these figures we also find an overall good agreement with JETSET. HERWIG is seen to
disagree with the data at small energy scales (Ejet

t < 250 MeV). Nevertheless, this disagreement
diminishes with the increase of the energy scale, and for larger energy scales and in particular
in the perturbative region, HERWIG agrees well with the data.

We can summarize the evolution of the Hq behavior with the energy scale in three main
steps. At low energy scale, Ejet

t < 200 MeV, the Hq behavior is qualitatively similar to that
of the charged-particle multiplicity distribution, with a first negative minimum around q = 5
and oscillatory behavior for larger values of q. The second step, 200 MeV < Ejet

t < 500 MeV,
can be described as a transition phase where the oscillation disappears and a first negative
minimum appears at q = 2. Finally, in the third step, Ejet

t > 500 MeV, a completely different
behavior is observed where the Hq alternates between negative and positive values.

The details of this evolution are easier to see, in particular for the transition phase, when
the Hq is plotted as a function of Ejet

t . Fig. 7.4(b) illustrates the beginning of the transition
phase. It is characterized by the appearance of a minimum at Ejet

t =200 MeV in H3, which also
marks the end of the step of the Hq oscillatory behavior similar to that of the charged-particle
multiplicity distribution. Fig. 7.4(a) represents the evolution of H2 with the energy scale and
illustrates one of the major changes in the Hq behavior which occurs during the transition
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Figure 7.1: Hq moments of jet multiplicity distribution obtained with (a) Ejet
t =100 MeV, (b)

Ejet
t =150 MeV, (c) Ejet

t =200 MeV and (d) Ejet
t =250 MeV.
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Figure 7.2: Hq moments of jet multiplicity distribution obtained with (a) Ejet
t =300 MeV, (b)

Ejet
t =400 MeV, (c) Ejet

t =500 MeV and (d) Ejet
t =600 MeV.
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Figure 7.3: Hq moments of jet multiplicity distribution obtained with (a) Ejet
t =1 GeV, (b)

Ejet
t =1.8 GeV,(c) Ejet

t =2.6 GeV and (d) Ejet
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Figure 7.4: Evolution of H2, (a), H3, (b), H6, (c), and H13, (d), with the jet energy scale.



phase. This is the appearance of the first negative minimum at q = 2 and the first sign of
the sign changing Hq behavior which characterize the Hq at large Ejet

t and in the perturbative
region. Fig. 7.4(c) shows the evolution of H6 with the energy scale. We can see that all the
transition phase is located around the maximum value. The end of this transition phase and the
beginning of the full sign-changing Hq behavior at large q is easily seen, e.g. H13 in Fig. 7.4(d).
The whole transition phase is characterized by a plateau where H13 has a stable value near 0,
up to an energy scale of 500 MeV.

7.3 Comparison with theoretical expectations

Assuming that the Hq behavior is described by analytical QCD, then we should expect to find
this behavior for partons. Assuming that the jets correspond to the partons, we should find the
Hq behavior predicted for partons for the jets produced at an energy scale of 1-2 GeV. But as
we have discussed above, in the perturbative region we see a sign-changing Hq behavior which
is not described by any of the analytical QCD predictions, and in particular is not described
by the NNLLA.

The oscillatory behavior appears only in the final stages of the hadronization process, far
away from the perturbative region. Therefore, it is not possible to link this oscillatory behavior
to the NNLLA. We can conclude that the Hq oscillatory behavior observed for the charged-
particle multiplicity distribution and for jet multiplicity distributions obtained at very low
energy scales has no relation with the Hq behavior predicted by the NNLLA.



Chapter 8

2- and 3-jet event multiplicity
distributions

In search of an alternative way of describing the shape of the charged-particle multiplicity dis-
tribution, we test, in this chapter, phenomenological approaches [29, 30] by making use of the
charged-particle multiplicity distributions of the 2-jet and 3-jet events taken from the full sam-
ple, as well as the light- and b-quark samples. Two main approaches are tested experimentally
in this chapter:

In the first one, we assume that the dominant influence on the shape of the charged-particle
multiplicity distribution of the full sample comes from the jet configuration of the events.
Assuming that the charged-particle multiplicity distribution of both the 2-jet and the 3-jet
events can be described by a negative binomial distribution, the full sample would be described
by a weighted sum of the negative binomial distributions of the 2-jet and 3-jet events [29]. (We
first assume here that we have only 2-jet and 3-jet events, the 3-jet events being the events
which are not classified as 2-jet events). The parametrization describing the full sample would
then be

ffull(n) = R2f
NB
2-jet(n, 〈n2〉, k2) + (1 − R2)f

NB
3-jet(n, 〈n3〉, k3), (8.1)

where the parameter of the NBDs are found from the means and dispersions measured from
the experimental charged-particle multiplicity distribution of these two samples. A previous
analysis [48] found it possible to describe simultaneously the charged-particle multiplicity dis-
tributions 2-, 3- and 4-jet events by NBDs for certain ycut values of the JADE algorithm. This
gave credit to this approach.

As an extension, we also investigate this approach for the charged-particle multiplicity
distributions of the light- and b-quark samples, assuming they can be related in the same way
as the full sample to the jet configurations of their events.

The second approach relies on the flavor composition of the full sample. It assumes that both
the charged-particle multiplicity distributions of the 2-jet and the 3-jet events can be described
by a weighted sum of negative binomial distributions related to the flavor composition of these
2-jet and 3-jet events [30].

f2,3-jet(x) = Rbf
NB
2,3-jet light-quark(x, 〈nlight〉, klight) + (1 − Rb)f

NB
2,3-jet b-quark(x, 〈nb〉, kb), (8.2)

where Rb is the relative hadronic cross section of the b-quark system.
This hypothesis is also tested on the full sample, trying in this case to parametrize it

using negative binomial distribution to describe individually the charged-particle multiplicity
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distributions of the light- and b-quark samples.

In order to test all these hypotheses, we decompose the full, light- and b-quark samples
into 2-jet and 3-jet events obtained for different values of the cut-off parameter ycut of the
Durham algorithm. Their corresponding charged-particle multiplicity distributions are then
reconstructed and used to calculate the means and dispersions which are used as parameters
of the NBD parametrizations.

In the first section, we describe briefly the various steps needed to reconstruct the charged-
particle multiplicity distributions of the 2-jet and 3-jet events. In the next section, we present
the determination of the moments (including the Hq moments) of the 2-jet and 3-jet events
obtained from the full, light- and b-quark samples. In the penultimate section, the two phe-
nomenological approaches are confronted with the experimental results discussed. Finally, in
the last section, we present an extension of the phenomenological approaches, by decomposing
the full sample into well defined jet topologies such as pencil-like 2-jet and Mercedes-like 3-jet
events with, in addition, the remaining events coming from 3-jet events having a softer gluon
jet. This approach seems to explain the origin of the Hq oscillatory behavior of the charged-
particle multiplicity distribution of the full sample, as due to the diversity of jet topologies and
hard gluon radiation which coexist at the Z0 energy.

8.1 Experimental procedures

In this section are briefly summarized all the procedures needed for our measurements. Since
most of the corrections and error estimations have already been discussed in previous chapters,
the various steps needed for the present measurements will be just indicated.

The classification into 2-jet and 3-jet events is achieved using the Durham jet algorithm.
We define as 2-jet event, an event which has been classified at a given value of the cut-off
parameter, ycut as 2-jet event. Events not classified as 2-jet are called 3-jet.

Since the charged particles represent only a fraction of the particles produced (and of the
energy radiated) during an e+e− collision, it is preferable, as we do, to apply the jet algorithm
to the whole event and not only to charged particles. While most of the events are not affected
by this change, some of the events, having y23 values (y23 is the value of ycut for which a 2-jet
event becomes a 3-jet event) close to the ycut value used for a particular 2-jet definition, will
be rather sensitive to whether the neutral particles are included in the jet algorithm.

Once the event has been classified as a 2- or 3-jet event, its number of charged particles is
extracted. The charged-particle multiplicity distributions of the 2- or 3-jet events are then built
from the distribution of the number of charged particles in the same way as in the previous
chapters. Also reconstruction and corrections as well as the estimation of the statistical and
systematic errors are identical (see Chapter 4 for more details).

In order to have a more flexible definition of 2-jet events and to avoid any strong dependence,
in our analysis, on a particular ycut value, we use six different values of the cut-off parameter.
This also enables us to study the evolution of the the charged-particle multiplicity distribution
with the cut-off parameter. The six ycut values have been chosen such that both the 2-jet
and the 3-jet sub-samples always have enough statistics to allow simultaneously both types
analyses. The fraction of 2-jet events, R2, obtained for the ycut values used in our analysis are
given in Table 8.1 for the full, light- and b-quark samples, respectively. While, in general, we
observe rather similar 2-jet fraction for the full, light- and b-quark samples for each ycut, we
see a depletion in 2-jet events obtained with ycut=0.002 for the b-quark sample. This may be



explained by some mis-assignment between 2-jet and 3-jet events due to the weak decay of the
b quark at such a low ycut value.

ycut full sample light-quark sample b-quark sample
0.030 82.0% 81.2% 83.0%
0.015 71.5% 71.1% 73.3%
0.010 64.6% 64.1% 66.7%
0.006 55.1% 54.6% 57.0%
0.004 46.5% 46.4% 46.8%
0.002 29.3% 31.3% 22.0%

Table 8.1: Fraction of 2-jet events, R2, for the full, light- and b-quark samples obtained for the 6 ycut

values used in this analysis.

The fully corrected charged-particle multiplicity distributions of the 2- and 3-jet events
obtained from the full, light- and b-quark samples are then used for our analysis. We restrict
the analysis to the charged-particle multiplicity distributions where K0

s and Λ are considered
stable.

Since the fraction of identified 2- or 3-jet events varies with the cut-off parameter value, ycut,
it is interesting to link this number of reconstructed jets to the number of primary partons.
To check that, we use Monte Carlo events generated in a relatively simple case. We use
JETSET to generate events according to the O(αs) matrix element followed by the Lund
string fragmentation. In this simple case, the particles produced in the final state come from
a maximum of 3 partons. We use the Durham algorithm with the same ycut values used in
our analysis to reconstruct jets from the final-state particles and we compare the result to the
number of initial partons generated by JETSET. Fig. 8.1 shows the fraction of events with 2-
and 3-parton final states which have been identified as 2- or 3-jet events by the jet algorithm.

We first note that the 2-parton events represent only a small fraction (16%) of the events.
We find that these events are almost always reconstructed as 2-jet events by the jet-algorithm
for the range of ycut used in the analysis even for small ycut values. At ycut=0.002, the fraction
of events mistaken as 3-jet events is only 1.6%. For this ycut value about 80% of the 3-parton
events are identified as 3-jet, however this fraction will decrease when the ycut value will be
increased. The remaining 3-parton events correspond to pencil-like events accompanied by
a very low transverse momentum gluon, collinear to the quark-jet direction. These events
cannot be identified as 3-jet events by the jet algorithm even at very low ycut value. Using
a value smaller than 0.002 would increase the fraction of 2-parton events mistaken as 3-jet
but would not have any effect in reducing the fraction of 3-parton events mistaken as 2-jet
events. Therefore, changing the ycut value will act only on the identification of 3-parton events
as 2- or 3-jets. By changing the ycut value, we mainly change the “hardness” criterion of the
primary gluon. This is illustrated in Fig. 8.2, which shows the transverse momentum of the
gluon in 3-parton events which have been identified as 2-jets at the different ycut values. Since
the cut-off parameter of the Durham algorithm is linked to the transverse momentum of the
jet, the gluon will be considered part of the quark jet if the transverse momentum of the gluon
is smaller than Ecms

√
ycut. Therefore, the jet configuration depends mainly on the hardness of

the primary gluon.
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Figure 8.1: Fraction of events generated with
JETSET O(αs) with 2 or 3 partons and classified
as 2- or 3-jet.

Figure 8.2: Transverse momentum of the gluon
jet in JETSET O(αs) 3-parton events classified as
2-jet events for several ycut values.

8.2 Moments of the 2- and 3-jet events

Examples of charged-particle multiplicity distributions measured for 2-jet and 3-jet events are
shown in Fig. 8.3(a) and (b) for the full sample with ycut=0.03 and ycut=0.01, in Fig. 8.4 for the
light-quark sample with ycut=0.006 and in Fig. 8.5 for the b-quark sample with ycut=0.004. We
note that JETSET agrees with the data in all cases, but HERWIG shows large disagreement for
high multiplicities in the 2-jet events of all samples. The agreement is rather good for the 3-jet
events of the full sample and of the light-quark sample, but it is bad for the b-quark sample.

We determined the mean, 〈n〉, and the dispersion, D, for all the 2- and 3-jet event charged-
particle multiplicity distributions. They are given in Table 8.2 for the 2-jet events and in
Table 8.3 for the 3-jet events.

We further determined the Hq moments for the 2- and 3-jet events in the full, light- and b-
quark samples. We used the same truncation criteria as in the previous chapters. A comparison
between the Hq for the full sample and the Hq for the 2-jet and 3-jet events obtained from the
full sample with a ycut=0.015 is given in Fig. 8.6. It shows that even the largest Hq oscillations
obtained from any 2- or 3-jet event samples (what we see in Fig. 8.6 for ycut=0.0015 is also true
for any other ycut) are much smaller than those in the full sample.

Fig. 8.8 shows the Hq moments for 2- and 3-jet events obtained from the full sample for
the 6 ycut values. For the 2-jet events we find that the size of the oscillations decreases with
decreasing ycut. For ycut=0.030, where the 2-jet fraction represents 82% of the full sample and
can include rather broad 2-jet events, the oscillations have about half the amplitude of those of
the full sample. They further decrease gradually until ycut=0.004, where the oscillations have
almost completely disappeared.
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Figure 8.3: Charged-particle multiplicity distributions of 2-jet and 3-jet events obtained from the full
sample with (a) ycut=0.03 and (b) ycut=0.01.
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Figure 8.5: Charged-particle multiplicity distribu-
tions of 2-jet and 3-jet events obtained from the
b-quark sample with ycut=0.004.



full sample light-quark sample b-quark sample
0.03 〈n〉 17.51 ± 0.01 ± 0.08 16.95 ± 0.01 ± 0.07 19.44 ± 0.02 ± 0.11

D 5.24 ± 0.01 ± 0.04 5.10 ± 0.01 ± 0.04 5.15 ± 0.01 ± 0.04
0.015 〈n〉 16.94 ± 0.01 ± 0.07 16.36 ± 0.01 ± 0.07 18.90 ± 0.02 ± 0.10

D 4.95 ± 0.01 ± 0.04 4.80 ± 0.01 ± 0.04 4.88 ± 0.02 ± 0.03
0.01 〈n〉 16.57 ± 0.01 ± 0.07 15.99 ± 0.01 ± 0.06 18.55 ± 0.02 ± 0.10

D 4.78 ± 0.01 ± 0.03 4.62 ± 0.01 ± 0.04 4.71 ± 0.02 ± 0.03
0.006 〈n〉 16.07 ± 0.01 ± 0.07 15.48 ± 0.01 ± 0.06 18.07 ± 0.01 ± 0.09

D 4.56 ± 0.01 ± 0.03 4.39 ± 0.01 ± 0.03 4.48 ± 0.03 ± 0.03
0.004 〈n〉 15.62 ± 0.01 ± 0.06 15.04 ± 0.01 ± 0.06 17.64 ± 0.01 ± 0.09

D 4.38 ± 0.01 ± 0.03 4.20 ± 0.01 ± 0.04 4.33 ± 0.03 ± 0.04
0.002 〈n〉 14.65 ± 0.01 ± 0.06 14.21 ± 0.01 ± 0.05 16.90 ± 0.01 ± 0.08

D 4.07 ± 0.01 ± 0.04 3.90 ± 0.01 ± 0.05 4.12 ± 0.06 ± 0.05

Table 8.2: Mean 〈n〉 and dispersions D of the 2-jet events.

full sample light-quark sample b-quark sample
0.03 〈n〉 23.74 ± 0.02 ± 0.13 23.14 ± 0.02 ± 0.12 25.80 ± 0.09 ± 0.15

D 5.96 ± 0.01 ± 0.07 5.83 ± 0.02 ± 0.08 5.81 ± 0.05 ± 0.05
0.015 〈n〉 22.91 ± 0.01 ± 0.12 22.32 ± 0.01 ± 0.12 24.97 ± 0.06 ± 0.15

D 5.89 ± 0.01 ± 0.07 5.75 ± 0.01 ± 0.07 5.75 ± 0.04 ± 0.06
0.01 〈n〉 22.41 ± 0.01 ± 0.13 21.82 ± 0.01 ± 0.12 24.48 ± 0.05 ± 0.16

D 5.85 ± 0.01 ± 0.06 5.71 ± 0.01 ± 0.07 5.71 ± 0.04 ± 0.06
0.006 〈n〉 21.79 ± 0.01 ± 0.13 21.22 ± 0.01 ± 0.12 23.77 ± 0.05 ± 0.15

D 5.81 ± 0.01 ± 0.06 5.67 ± 0.01 ± 0.07 5.71 ± 0.03 ± 0.06
0.004 〈n〉 21.28 ± 0.01 ± 0.14 20.74 ± 0.01 ± 0.13 23.06 ± 0.04 ± 0.15

D 5.77 ± 0.01 ± 0.06 5.64 ± 0.01 ± 0.06 5.71 ± 0.03 ± 0.05
0.002 〈n〉 20.31 ± 0.01 ± 0.14 19.86 ± 0.01 ± 0.13 21.54 ± 0.03 ± 0.16

D 5.74 ± 0.01 ± 0.06 5.62 ± 0.01 ± 0.06 5.77 ± 0.02 ± 0.06

Table 8.3: Mean 〈n〉 and dispersion D of the 3-jet events.



For the 3-jet events, we have the opposite trend. For ycut=0.03 and ycut=0.015, the Hq mo-
ments do not show any oscillation. As ycut decreases, the amplitude of the oscillation increases
to reach about half the size of those of the full sample at ycut=0.002.

We must also note that the absence of oscillations in the 2-jet samples and in the 3-jet
samples are obtained for completely different jet configurations. The low ycut values for which
the absence of oscillation occurs for 2-jet events, identify as 2-jet events only those events which
have narrow jets, almost back to back (pencil-like 2-jet events). For the 3-jet events, it is for
large ycutvalues that the oscillations disappear. For these ycut values, the events selected as
3-jet can have a very broad jet configuration, and hence they have a configuration close to the
Mercedes-like 3-jet events. In both configurations, the energy is shared almost equally among
the jets.

We also measure the Hq moments of the charged-particle multiplicity distributions of the
2-jet and 3-jet events obtained from the light- and b-quark samples. The Hq behavior does not
exhibit any significant difference from that of the Hq moments derived from the 2- and 3-jet
events obtained from the full sample. Two examples are given in Fig. 8.9 for the light-quark
sample and two in Fig. 8.10 for the b-quark sample. The major differences, we found, are
confined to low q values (q < 5). This is further illustrated in Fig. 8.7, where H2 and H6 are
plotted as a function of ycut for the 2- and 3-jet events obtained from the light- and b-quark
samples. For H2, we see a rather large difference for both 2- and 3-jet between the light- and
b-quark samples, while for H6, differences between light- and b-quark samples have almost
disappeared.
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8.3 The phenomenological approach

This approach views the shape of charged-particle multiplicity distribution of the full sample as
the result of the superposition of distributions originating from various processes related to the
topology of the events, e.g., 2-jet and 3-jet or light-quark and heavy-quark events. Assuming
that each of these processes can be described by a relatively simple parametrization such as
the NBD, the charged-particle multiplicity distribution of the full sample would then be a
weighted sum of all the contributions. Altogether, these various contributions would explain
the shape of the charged-particle multiplicity distribution and ultimately its Hq behavior. In the
framework of this approach, we investigate two hypotheses. In the first hypothesis we assume
that the shape of the charged-particle multiplicity distribution of the full sample arises from the
superposition of 2-jet and 3-jet events [29]. In the second hypothesis we assume that the full
sample and also those of the 2-jet and the 3-jet events can be parametrized by superposition
of flavor related distributions [30].

8.3.1 2- and 3-jet superposition

In this hypothesis we assume that the main features of the shape of the charged-particle multi-
plicity distribution of full, light- and b-quark samples responsible for the oscillatory behavior of
the Hq moments, can be described by a weighted sum of two NBDs (Eq. (8.1)), the two NBDs
themselves describing the charged-particle multiplicity distributions of the 2-jet and of the 3-
jet events, respectively. The parameters of the 2 NBD’s are obtained from the experimental
charged-particle multiplicity distributions of the 2-jet and 3-jet events (Tables 8.2 and 8.3 for
the 2-jet and the 3-jet events, respectively), the weight between the 2 NBD’s is taken as the
2-jet fraction obtained for a given ycut value (Table 8.1). This fraction can also be calculated
from the means of the charged-particle multiplicity distributions of the 2-jet, 3-jet events and
of the full samples.

We first compare the data and the single NBDs, fNB
2-jet(n, 〈n2〉, k2) and fNB

3-jet(n, 〈n3〉, k3) where
the parameters 〈n2,3〉 and k2,3 are taken from the experimental 2- and 3-jet charged-particle
multiplicity distributions according to Eq. (1.9). The corresponding χ2 confidence levels are
given in Table 8.4. We find good agreement for the 2-jet events obtained for ycut smaller than
0.01. We note also that the agreement increases gradually with decreasing ycut value.

For the 3-jet events, i.e., non-2-jet events, we observe the opposite of what is observed for
the 2-jet events. The agreement with the single-NBD parametrization improves with increasing
ycut value. We have good agreement with the charged-particle multiplicity distribution of the
3-jet events for ycut values larger than 0.06.

A few examples of the single-NBD parametrization, together with the charged-particle mul-
tiplicity distributions of 2-jet events and of 3-jet events are given in Figs. 8.11, 8.13 and 8.15 for
the full, light- and b-quark samples, respectively. The same behavior is observed in the same
proportion for the full, light- and b-quark samples. It seems there is a strong relation between
the agreement with the single-NBD expectation and the jet configuration of the events.

For the 2-jet events we see that agreement is obtained at low ycut values. For these values,
the jet algorithm resolves fewer and fewer events as 2-jet events, which means that the remaining
2-jet events have a less ambiguous 2-jet status than those of the previous ones (these events
have relatively narrow jets, and may be described as pencil-like 2-jet events).

For the 3-jet events, the agreement with the single-NBD is obtained at large ycut value. This
means that the fraction of events not considered as 2-jet events is small and these events have



topologies very different from the 2-jet topologies (they are close to Mercedes-like 3-jet events).
Thus, agreement with a single-NBD is obtained for events which have completely different jet
configurations and also completely different charged-particle multiplicity distributions, namely
pencil-like 2-jet and Mercedes-like 3-jet events. This would suggest that the mixture of jet
configurations plays an important role in the origin of the oscillatory behavior of the Hq,
since the Hq moments obtained from the charged-particle multiplicity distributions of these jet
configurations themselves (multiplicity distributions obtained from 2-jet with ycut smaller than
0.006 and 3-jet with ycut larger than 0.01) do not show this oscillatory behavior (Fig. 8.8). This
will be discussed in more detail in the next section.

Although we both conclude that the jet configuration plays an important role, what we find
is rather in contradiction with DELPHI analysis [48]. This collaboration claimed good agree-
ment between charged-particle multiplicity distributions and the single-NBD parametrization
simultaneously for the 2-jet, 3-jet and 4-jet obtained at the same ycut. This is never the case in
our analysis, since where there is good agreement with the 2-jet events, there is poor agreement
for the 3-jet events (and vice versa).

Next, we compare the charged-particle multiplicity distribution of the full, light- and b-
quark samples with the distribution ffull(x, ycut) obtained from the weighted sum of the two
NBDs (Eq. (8.1)), one corresponding to the charged-particle multiplicity distribution of the
2-jet events, the other to the 3-jet events both obtained at the same ycut value. This proce-
dure gives us a fully constrained two-NBD parametrization of the charged-particle multiplicity
distributions. The χ2 confidence levels are given in Table 8.5.

We find an overall good agreement between these two-NBD parametrizations and the
charged-particle multiplicity distribution of the full, light- and b-quark samples. The charged-
particle multiplicity distributions of the full, light- and b-quark samples are shown in Figs. 8.11,
8.13 and 8.15, together with the parametrizations for various values of ycut. This agreement is
also reflected in the Hq. The Hq calculated from the two-NBD parametrization is seen to agree
quite well with the data for the full sample as well as for both light- and b-quark samples, as
seen in Figs. 8.12, 8.14 and 8.16, respectively. This agreement is rather odd since, as we have
seen previously, for a given ycut value, only one of the two distributions can be well described
by a NBD. Therefore, we cannot conclude that the two-NBD hypothesis in terms of 2-jet and
non-2-jet events is a success.

However, as we cannot claim the success of this two-NBD parametrization, we cannot ignore
that very singular jet configurations as the ones observed above are well described by a single-
NBD parametrization. This gives some indication of where the aspect of the charged-particle
multiplicity distribution, responsible for the oscillatory behavior of the Hq, might lie. We
have already identified two (non overlapping) components of the charged-particle multiplicity
distribution which do not have this oscillatory behavior. As it will be discussed later in this
chapter, the answer might lie in the multijet part of the charged-particle multiplicity distribution
which is ignored in this parametrization, so far.

8.3.2 Light- and b-quark superposition

Instead of viewing the origin of the main features of the shape and of the Hq oscillatory behavior
of the charged-particle multiplicity distribution of the full sample as due to the superposition
of the 2-jet and 3-jet events, the other hypothesis relates these features to the flavor content of
the sample [30].

Therefore, with this hypothesis, we attempt to describe the charged-particle multiplicity
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Figure 8.11: Charged-particle multiplicity distri-
butions of the full sample and of 2-jet and 3-jet
events obtained with ycut=0.01 fitted by various
two-NBD and single-NBD parametrizations, re-
spectively.

Figure 8.12: Hq moments of the full sample, to-
gether with the Hq moments calculated from the
two-NBD parametrization.
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Figure 8.13: Charged-particle multiplicity distri-
butions of the light-quark sample and of 2-jet and
3-jet events obtained with ycut=0.01 fitted by var-
ious two-NBD and single-NBD parametrizations,
respectively.

Figure 8.14: Hq moments of the light-quark sam-
ple, together with the Hq moments calculated
from the two-NBD parametrization.
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Figure 8.15: Charged-particle multiplicity distri-
butions of the b-quark sample and of 2-jet and
3-jet events obtained with ycut=0.01 fitted by var-
ious two-NBD and single-NBD parametrizations,
respectively.

Figure 8.16: Hq moments of the b-quark sample,
together with the Hq moments calculated from the
two-NBD parametrization.

full sample light-quark sample b-quark sample
ycut 2-jet event 3-jet event 2-jet event 3-jet event 2-jet event 3-jet event
0.03 10−6 0.89 10−9 0.90 10−8 0.94
0.015 10−4 0.34 10−6 0.36 10−6 0.60
0.01 0.002 0.02 10−3 0.04 10−4 0.21
0.006 0.42 10−5 0.11 10−4 0.34 0.05
0.004 0.83 10−9 0.65 10−8 0.49 10−4

0.002 0.82 10−14 0.97 10−13 0.81 10−5

Table 8.4: χ2 confidence level between the NBD parametrization and their experimental counterpart.

ycut full sample light-quark sample b-quark sample
0.03 0.04 10−3 10−3

0.015 0.57 0.19 0.15
0.01 0.74 0.42 0.56
0.006 0.48 0.19 0.86
0.004 0.03 0.01 0.54
0.002 10−12 10−11 10−4

Table 8.5: χ2 confidence level between the 2-jet, 3-jet parametrizations and their experimental coun-
terpart.



distributions of the 2-jet events and the 3-jet events of the full sample themselves as a weighted
sum of two NBDs, using parameters taken from the charged-particle multiplicity distribution
of the 2-jet (or 3-jet) events of the light- and b-quark samples (Eq. (8.2)). Knowing that the
Hq moments of the full, light- and b-quark samples have oscillations of about the same size
(see Fig. 6.12), as it is the case for 2-jet and 3-jet obtained from the full, light- and b-quark
samples, we can also test, as a consistency check, this hypothesis on the full sample.

Results are summarized in Table 8.6 for the charged-particle multiplicity distributions of the
2-jet and 3-jet events. The parametrization of the charged-particle multiplicity distributions

ycut 2-jet events 3-jet events
1 1 · 10−18

0.03 8 · 10−12 0.56
0.015 2 · 10−9 0.04
0.01 1 · 10−5 2 · 10−4

0.006 0.01 8 · 10−8

0.004 0.24 3 · 10−12

0.002 7 · 10−5 1 · 10−16

Table 8.6: χ2 confidence level between the charged-particle multiplicity distributions of the 2-jet, 3-jet
events of the full sample and the light, b-quark parametrization.

of the 2-jet and 3-jet events are mainly found to be in disagreement with the data, except for
the 2-jet sample for ycut=0.006 and ycut=0.004. But this seems to be more related to the fact
that for these ycut values, the 2-jet or 3-jet events of the full sample are already described by
single-NBDs (see Table 8.4).

The parametrization of the charged-particle multiplicity distribution of the full sample by
two NBD’s representing the light- and b-quark contributions is found not to describe the data
(χ2 confidence level of 1 · 10−18). Therefore, the shape of the charged-particle multiplicity
distribution of the full sample, or even of the 2- and 3-jet events cannot be described in terms
of light- and b-quark superposition. Examples of that were already given in terms of the Hq

moments for the full, light- and b-quark samples (Fig. 6.12 in Chapter 6) and for the 2-jet
and 3-jet samples in Fig. 8.7, which show that the oscillatory behavior is very similar for the
three samples. We can deduce from that, that if there is a phenomenon responsible for the
oscillations, it plays the same role in the full sample as in both light- and b-quark samples and
consequently cannot be due to the flavor composition of the sample.

8.4 Origin of the Hq oscillatory behavior

In the previous sections, we found that extreme 2- or 3-jet configurations did not show the Hq

oscillatory behavior seen in the full sample and that they were quite well described by single
NBD’s.

Since both these extreme 2- and 3-jet configurations co-exist in the full sample, in this
section, we try to isolate simultaneously these configurations from the full sample. As seen
in the Monte Carlo study at parton level in the previous section, the remaining events, which
can neither be categorized, undoubtfully, as 2-jet nor as 3-jet events, can be identified as 3-jet
events where the third jet is a gluon-jet with energy smaller than that of the two quark-jets.
In the following, we will call these events, soft-jet events.



Following Eq. (1.6), we can write the charged-particle multiplicity distribution in terms of
these three components as

P (n) = R2(y2-jet)P2-jet(n) + R3(y3-jet)P3-jet(n) + (1 − R2(y3-jet) − R2(y2-jet))Psoft-jet(n), (8.3)

where the P2-jet(n), P3-jet(n) and Psoft-jet(n) are the charged-particle multiplicity distributions of
the extreme 2- and 3-jet events and of the soft-jet events, respectively. R2(y2-jet) and R3(y3-jet)
are the rate of the 2-jet and 3-jet events obtained for the ycut values y2-jet and y3-jet, respectively.

The charged-particle multiplicity distribution of the soft-jet events is reconstructed from
events remaining once we have identified the 2-jet and 3-jet events having charged-particle
multiplicity distributions which do not show the Hq oscillatory behavior. From our choice of
ycut, we use for the pencil-like 2-jet events the charged-particle multiplicity distributions ob-
tained with ycut=0.004 or ycut=0.002. For the Mercedes-like 3-jet events, the charged-particle
multiplicity distributions are obtained with ycut=0.03 or ycut=0.015. Therefore, we have four
different possible charged-particle multiplicity distributions for soft-jet events. These distri-
butions are corrected and reconstructed in the same way as any other distributions used in
this analysis. The production rates, means and dispersions of the charged-particle multiplicity
distributions of soft-jet events are given in Table 8.7. We also include, the χ2 confidence levels
of the comparison of the charged-particle multiplicity distribution with the single-NBD. The
agreement is rather bad, except for the case with ycut values of 0.004 and 0.015, respectively.
As an extension to the phenomenological approach tested in the previous section, we also test
for this case the agreement between charged-particle multiplicity distribution of the full sample
and its parametrization obtained by the use of 3 NBD’s describing the 2-, 3- and soft-jet events,
as given in Eq. (1.7). With a χ2 confidence level of 0.96, the three-NBD parametrization is
found to be in very good agreement with the charged-particle multiplicity distribution of the
full sample.

Also the Hq moments of the soft-jet charged-particle multiplicity distributions are deter-
mined. They are shown together with the Hq moments of the 2-jet and 3-jet events in Fig. 8.17.
We see that the amplitudes of the oscillations are comparable to the residual oscillations seen
in the 2-jet and 3-jet samples.

Rsoft-jet mean Dispersion χ2 C.L. with NBD
y2-jet = 0.002 52.7% 19.12 ± 0.01 ± 0.11 5.145 ± 0.005 ± 0.053 7 · 10−8

y3-jet = 0.030
y2-jet = 0.004 35.5% 20.01 ± 0.01 ± 0.11 5.236 ± 0.006 ± 0.052 1 · 10−4

y3-jet = 0.030
y2-jet = 0.004 25% 19.41 ± 0.01 ± 0.10 5.014 ± 0.006 ± 0.047 0.02
y3-jet = 0.015
y2-jet = 0.002 42.2% 18.53 ± 0.01 ± 0.10 4.891 ± 0.005 ± 0.048 2 · 10−5

y3-jet = 0.015

Table 8.7: Mean 〈n〉 and dispersion D and χ2 confidence level with a NBD parametrization of the
soft-jet events, for four different definitions

For the charged-particle multiplicity distribution of the soft-jet events obtained by excluding
2-jet events with ycut=0.004 and 3-jet events with ycut=0.015 (Fig. 8.17(c)), the oscillation
has almost completely disappeared, as for the 2- and 3-jet events. Therefore, we are able



-0.3

-0.2

-0.1

0

0.1

0.2

x 10
-3

ra
tio

 H
q

full sample

(a)

2-jet (ycut=0.002)

3-jet (ycut=0.03)

soft-jet

(b)

2-jet (ycut=0.004)

3-jet (ycut=0.03)

soft-jet

-0.3

-0.2

-0.1

0

0.1

0.2

x 10
-3

4 6 8 10 12 14 16 18
order q

ra
tio

 H
q

(c)

2-jet (ycut=0.004)

3-jet (ycut=0.015)

soft-jet

4 6 8 10 12 14 16 18
order q

(d)

2-jet (ycut=0.002)

3-jet (ycut=0.015)

soft-jet

Figure 8.17: Hq moments of the charged-particle multiplicity distribution of the 2-, 3- and soft-jet
events obtained with (a) ycut=0.002 for the 2-jet and ycut=0.03 for the 3-jet, (b) ycut=0.004 for the
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Figure 8.18: Transverse momentum of the gluon
in the thrust frame for events which have been
resolved as 2-jet and 3-jet with ycut=0.015, to-
gether with 2-jet events resolved with ycut=0.004
and soft-jet events.

Figure 8.19: Comparison with the Hq moments
of the full sample and the Hq moments calculated
from the three-NBD parametrization.

to decompose charged-particle multiplicity distribution of the full sample into three charged-
particle multiplicity distributions characterizing different jet configurations, whose Hq moments
do not show oscillatory behavior (or show only very faint oscillations). It seems clear that the
origin of the Hq oscillatory behavior is the co-existence of the various jet configurations in the
full sample.

The effect of the co-existence of the various jet configurations is also illustrated by the
gluon jet energy in the O(αs) ME Monte Carlo events we have studied previously. In Fig. 8.18,
which shows transverse momentum of the gluon jets in the thrust frame, for both 2-jet and
3-jet samples obtained with ycut=0.015, where the 3-jet sample does not have Hq oscillation,
the 2-jet distribution of the gluon momentum has a completely asymmetric behavior showing
a structure around 6 GeV. Now, if this 2-jet sample is decomposed into 2-jet events obtained
with ycut=0.004 whose Hq do not show oscillatory behavior and the remaining events (i.e., the
soft-jet events), we see that this structure in the gluon momentum has been resolved as the peak
of the momentum distribution of the gluon for soft-jet events. Furthermore, all three samples
have now a rather symmetric distribution of the gluon momentum with clearly differentiated
peak positions.

Without arguing about the origin of the structure in the transverse momentum distribution,
since it is only a events generated with O(αs) ME Monte Carlo, this illustrates that the Hq

oscillations disappear only in samples composed of events representing relatively similar jet
topologies (and hence of similar gluon energies). If we try to group together jet topologies
which are rather different, as it is the case, e.g., in 2-jet events resolved with ycut=0.015, the Hq

oscillatory behavior does not disappear completely, even if it is smaller than in the full sample.
This may also explain the difference with the DELPHI analysis [48]. The decomposition into



2-, 3- and 4-jet samples is rather different (besides the difference in jet algorithm) from our
2-jet, soft-jet and 3-jet event decomposition. This is because the 4-jet events with their high
multiplicities would rather be classified by the jet algorithm as part of our 3-jet events than
of our soft-jet events, which have a low multiplicity compared to 3-jet events. Therefore, the
DELPHI collaboration tempts to concentrate their effort on the study of an upper tail of the
3-jet multiplicity, which, in our analysis is already described in its whole by a single-NBD.
In our analysis we found that the meaningful information is rather located at the boundary
between 2-jet and 3-jet events, where a jet-topology different from that of the 2-jet and 3-jet
events has an important role in the charged-particle multiplicity distribution.

Using the three-NBD parametrization, we calculate the Hq moments and compare them
to those of the full sample (Fig. 8.19). We find that it reproduces the oscillatory behavior of
the measured Hq moments. Therefore, we can conclude that the phenomenological approach is
successful when three distinct jet topologies are assumed to be responsible for the shape of the
charged-particle multiplicity distribution.

Besides this conclusion, one can also make a statement on the physical origin of the os-
cillation of the Hq moments. As we have seen in the previous chapters, the oscillations by
themselves are not related to pQCD and are mainly caused by the soft hadronization process.
Here we see that we are able to decompose the full sample into three different samples which
do not have Hq oscillatory behavior. Among all the different tests we tried in order to get rid
of this oscillatory behavior, this is the only one which gives samples which do not have Hq

moments showing oscillations (even though they still show the first minimum).
Therefore, it seems clear that the origin of the Hq oscillatory behavior is related to the

co-existence of the various jet topologies in the full sample, in e+e− related to the interplay of
soft physics and hard gluon radiation.



Chapter 9

Multiplicity distributions in restricted
rapidity windows

In this chapter, the charged-particle multiplicity distribution is analysed in restricted phase
space, namely in various central intervals of pseudo-rapidity and in their outside complement
regions.

As for the charged-particle multiplicity distribution in full phase space, several attempts
have been made to describe the charged-particle multiplicity distributions in restricted rapidity
interval using the negative binomial distribution, in e+e− annihilation [49] as well as in hadron-
hadron and lepton-nucleon [50] collisions. However, in e+e− the description by a single negative
binomial distribution has been ruled out at LEP energies [51, 52]. In the first section of this
chapter we measure the charged-particle multiplicity distributions and their basic moments in
both central and non-central rapidity intervals. After having verified that the negative binomial
distribution cannot describe our data, in the second section, we concentrate our effort on the
study of the shape of these charged-particle multiplicity distributions using the Hq moments.

9.1 The charged-particle multiplicity distributions

In this analysis we define six rapidity intervals. For each interval, we build two charged-particle
multiplicity distributions, the first one obtained by taking the charged particles which have a
rapidity value inside intervals centered at 0, [−|ηi|, |ηi|], the second one by taking the remaining
charged particles. We will refer to the first type of intervals as central intervals, and the second
as outside intervals.

For simplicity, by rapidity, we mean, in fact, pseudo-rapidity. The pseudo-rapidity is equiv-
alent to the rapidity when massless particles are assumed and is more appropriate to our
measurements since we do not determine the mass of the particle. It is defined as

η =
1

2
ln

(

p + p‖
p − p‖

)

, (9.1)

where p is the momentum of the particle and p‖ its longitudinal component in the thrust frame.
The rapidity distribution obtained for the raw data and JETSET at detector level are given in
Fig. 9.1.

The charged-particle multiplicity distributions are reconstructed in the same way as in
Chapter 4, using a Bayesian unfolding method, and corrected for acceptance, event selection
and initial-state radiation. Also the statistical and systematic errors on the charged-particle
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Figure 9.1: Rapidity distribution obtained for the raw data and JETSET at detector level.

multiplicity distributions are determined similarly to what we did in Chapter 4. We limit this
analysis to the full sample and we assume stable K0

s and Λ.

A few examples of charged-particle multiplicity distributions obtained in central rapidity
intervals and in the outside regions are shown in Fig. 9.2. The odd-even fluctuation in Fig. 9.2(a)
and (b) are due to the fact that the full sample only has even n. The case of Fig. 9.2(c) (|η| < 1.5
and |η| > 1.5) is particularly interesting since this rapidity value divides the charged-particle
multiplicity distribution of the full sample into two distributions having rather similar means.
But as we can see, the two distributions have completely different shape. In the central rapidity
interval, the charged-particle multiplicity distribution is highly asymmetric and has a shoulder
around n = 24. In the outside rapidity region, the distribution is much more symmetric and
has a slightly higher peak value. The basic moments, such as the mean, dispersion, skewness
and kurtosis in both central interval and outside region are summarized in Table 9.1.

For the central rapidity intervals, the skewness and kurtosis increase sharply when the size
of the interval is decreased, characterizing the highly asymmetric distribution seen in small
rapidity intervals.

For the outside region, the kurtosis and skewness also reflect rather important changes
in the charged-particle multiplicity distribution with an increasing size of the outside region.
However, these changes are much smaller than those observed in the central rapidity intervals.

As already observed in previous analyses [51,52], we see for medium central rapidity intervals
(Fig 9.2(b) and (c)) a peculiar shoulder structure in the upper tail (near n = 24) of the charged-
particle multiplicity distribution. This shoulder has been associated to a deviation from the
shape of a negative binomial distribution [51]. We tried to parametrize these distributions with
the negative binomial distribution. Our results with confidence level close to 0, confirm the
results of previous analyses, thus showing again that the single negative binomial distribution
does not describe the charged-particle multiplicity distributions in central or outside intervals.
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Figure 9.2: Charged-particle multiplicity distributions for both central and non-central rapidity inter-
vals.



central interval |η| < ηi outside region, |η| > ηi

ηi = 3 〈n〉 16.536 ± 0.006 ± 0.094 2.158 ± 0.001 ± 0.071
D 6.581 ± 0.004 ± 0.047 1.458 ± 0.001 ± 0.036

〈n〉/D 2.513 ± 0.001 ± 0.011 1.481 ± 0.001 ± 0.025
S 0.590 ± 0.002 ± 0.014 1.881 ± 0.003 ± 0.055
K 0.289 ± 0.008 ± 0.033 2.53 ± 0.01 ± 0.17

ηi = 2.5 〈n〉 14.50 ± 0.01 ± 0.10 4.216 ± 0.002 ± 0.014
D 6.720 ± 0.004 ± 0.048 2.248 ± 0.001 ± 0.049

〈n〉/D 2.157 ± 0.001 ± 0.013 1.876 ± 0.001 ± 0.014
S 0.751 ± 0.003 ± 0.016 0.888 ± 0.002 ± 0.014
K 0.46 ± 0.01 ± 0.05 0.383 ± 0.005 ± 0.031

ηi = 2 〈n〉 11.854 ± 0.006 ± 0.092 6.879 ± 0.002 ± 0.094
D 6.433 ± 0.005 ± 0.049 2.993 ± 0.002 ± 0.047

〈n〉/D 1.843 ± 0.001 ± 0.013 2.299 ± 0.002 ± 0.082
S 0.991 ± 0.003 ± 0.018 0.402 ± 0.002 ± 0.014
K 0.97 ± 0.01 ± 0.070 0.014 ± 0.004 ± 0.028

ηi = 1.5 〈n〉 8.892 ± 0.005 ± 0.076 9.867 ± 0.002 ± 0.074
D 5.558 ± 0.005 ± 0.047 3.532 ± 0.002 ± 0.026

〈n〉/D 1.600 ± 0.001 ± 0.013 2.794 ± 0.002 ± 0.008
S 1.281 ± 0.003 ± 0.019 0.310 ± 0.002 ± 0.015
K 1.93 ± 0.02 ± 0.11 0.110 ± 0.005 ± 0.015

ηi = 1 〈n〉 5.804 ± 0.004 ± 0.062 12.949 ± 0.002 ± 0.064
D 4.087 ± 0.004 ± 0.041 4.086 ± 0.003 ± 0.014

〈n〉/D 1.420 ± 0.001 ± 0.014 3.169 ± 0.002 ± 0.018
S 1.607 ± 0.004 ± 0.042 0.405 ± 0.003 ± 0.010
K 3.27 ± 0.03 ± 0.27 0.226 ± 0.007 ± 0.010

ηi = 0.5 〈n〉 2.731 ± 0.002 ± 0.051 15.961 ± 0.003 ± 0.074
D 2.164 ± 0.003 ± 0.035 4.920 ± 0.003 ± 0.030

〈n〉/D 1.262 ± 0.001 ± 0.016 3.244 ± 0.002 ± 0.021
S 2.279 ± 0.006 ± 0.066 0.472 ± 0.003 ± 0.006
K 5.871 ± 0.06 ± 0.60 0.307 ± 0.008 ± 0.015

Table 9.1: Means and dispersions, skewness and kurtosis of the charged-particle multiplicity distribu-
tion in both central rapidity interval and outside regions.



9.2 Hq moments

We also measure the Hq moments the various rapidity intervals. The Hq moments found in
central rapidity intervals are shown in Fig. 9.3. As for the sample in full phase space (Fig. 6.9),
we see an oscillatory behavior with a first negative minimum near q = 5. This minimum shifts
to higher values of q when the rapidity interval is decreased. We also note a sharp increase in
the amplitude of the oscillations, as well as of the depth of the first negative minimum.

For the outside rapidity regions shown in Fig. 9.4, Hq moments with a first negative min-
imum near q = 5 and quasi-oscillations are observed only for |η| > 1 and |η| > 0.5, which
correspond to rapidity intervals where the majority of the charged particles are found. Fur-
thermore, as shown in Fig. 9.5, the amplitude of these oscillations is about the size of those of
the full sample

For smaller outside rapidity regions, the Hq behavior changes drastically, the first negative
minimum is no longer at q = 5 but at q = 3 (visible only in Fig. 9.6). The smooth oscillatory
behavior observed until now is replaced by a more erratic behavior. We still see quasi-oscillations
but their period is somewhat shortened. There is also an increase of the amplitude as less and
less particles are included.

For ηi = 1.5, where central and outside intervals have comparable mean multiplicity, we find
that the Hq moments in the two regions are completely different both in scale and behavior as
seen in Fig. 9.6.

In all cases, the JETSET generator agrees well with the data.

9.3 Discussion

The so-called shoulder seen in medium central rapidity intervals has been associated in a previ-
ous analysis [51] to the presence of various jet topologies, thus reflecting the number of primary
partons produced. The restriction imposed by the central rapidity interval enhances the dif-
ference between the charged-particle multiplicity distributions of the different jet topologies,
causing this shoulder to appear. This may be explained in a very simple way. Since the rapid-
ity is calculated in the thrust frame, the difference between the various topologies is enhanced,
especially between 2-jet and non-2-jet events.

In the case of a 2-jet event (Fig. 9.7(a)), the thrust axis is collinear with the jet axes.
Therefore, selecting particles within a central rapidity interval, will select particles located in
the phase space region between the two jets, which is depleted (see Fig. 9.1). The charged-
particle multiplicity distribution of 2-jet events will contain on average a rather small number
of charged particles. Since 2-jet events represent the majority of the events, the peak position
will mainly be determined by the 2-jet events.

For the 3-jet events (Fig. 9.7(b)), the jet axes can deviate from the thrust axis, depending
on the energy taken by the third jet. If the energy of the third jet is not too important, the
thrust axis will still have the direction of the most energetic jet. However, depending on the
energy of the third jet, the central rapidity region can overlap with the cone of one of the two
other jets. The charged-particle multiplicity distribution of the 3-jet events will contain more
particles than that of the 2-jet events, since it will not only pick up particles in the intra-jet
regions but also from inside the jet cone. This will be responsible for an enhancement of the
difference between the different jet topologies. The more energetic the third jet, the larger will
be the difference with the charged-particle multiplicity distribution of other jet topologies. In
the case of spherical events, with 4 or more jets, which somehow randomizes the direction of the
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Figure 9.3: Hq moments measured from charged-particle multiplicity distributions obtained with (a)
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thrust axis, the number of particles included in the charged-particle multiplicity distribution of
small central rapidity intervals will be maximum.

In the previous chapter, we have seen that the appearance or the disappearance of the
oscillatory behavior was due to the mixture of at least 3 different jet topologies. Resolving the
various jet topologies into individual samples causes the Hq oscillations to disappear in these
individual samples. But, as we know, there is no visible shoulder structure in the charged-
particle multiplicity distribution in full phase space. By increasing the difference in the general
characteristics between the various jet topologies leads to the appearance of a clearly visible
shoulder structure. The Hq oscillations of these samples have much larger amplitude. The
reason may well be associated to the shoulder effect and hence to the increase in the difference
between the different jet topologies.

In order to verify that, one might want to find another experimental way of increasing the
difference between the various final states composing the charged-particle multiplicity distribu-
tion. For example, one can look at Hq moments for other processes such as hadronic or even
heavy-ion collisions where both the diversity in final states and their number are tremendously
increased. Such a review of Hq moments has already been taken [27]. The Hq moments mea-
sured in these samples clearly show an increase of the size of the oscillation with the number
of possible final states. Going from e+e− to heavy-ion collisions indeed increases the size of the
oscillation. Therefore, it is the same phenomenon which causes the oscillation to increase or to
decrease. The Hq moments obtained from charged-particle multiplicity distributions of events
which have relatively similar jet topologies (such as in the previous chapter) do not show the
oscillatory behavior. Combining events from different jet topologies (as it is the case for the full
sample) will lead the Hq moments to exhibit this oscillatory behavior. Combining events from
jet topologies which are even more different, as it is the case in a restricted central rapidity
interval, will increase the size of the Hq oscillations.

In this chapter, we confirm the conclusion of the previous chapters associating the origin of
the Hq oscillation in e+e− at the Z0 energy, as due to non-perturbative effects initiated by the
diversity in jet topologies.

The origin of the Hq oscillation may be different at higher energies or for other process.
In Fig. 6.17, we see that the Hq moments of partons generated at 900 GeV by the parton
shower of the JETSET Monte Carlo model show the oscillatory behavior but not at 90 GeV.
Furthermore, in heavy-ion collision, the Hq oscillation cannot be associated to jet topologies
and neither to perturbative QCD. The large number of fragments produced during this type
of collision won’t take parts to the reactions and will evolve independently. therefore we will
not have jets but many aggregates of particles to which will be associated the diversity in final
states. Furthermore, the size of these cluster prevent any perturbative QCD prediction.

The only property in common between these different type of reactions are the fact that
they all have the ability to produced a large variety of final states, which may explain this Hq

oscillatory behavior.





Conclusions

The charged-particle multiplicity distribution and its moments as well as the inclusive charged
particle momentum distribution have been measured for the full sample and for the light- and
b-quarks samples with an accuracy never reached before.

A detailed study of the shape of the charged-particle multiplicity distribution has been
performed for the full, light- and b-quark samples using the Hq moments. As a property of the
full sample, the Hq moments, when plotted as a function of the order q, exhibit an oscillatory
behavior. This property is usually interpreted as a confirmation of NNLLA of pQCD. However,
we find that this oscillatory behavior, which is observed not only in e+e− collisions but also for
hadronic as well as heavy-ion collisions, is reproduced by a wide range of Monte Carlo models.
Investigations performed on different models of parton generation with both parton shower and
matrix elements and for different fragmentation models have displayed oscillatory behavior in
all cases. But as there is no implementation of NNLLA in these Monte Carlo models, it appears
that there is no need of NNLLA to produce charged-particle multiplicity distributions having
Hq oscillatory behavior.

In view of this rather inconclusive result, we question the validity of the prediction. Since
for charged particles the prediction relies strongly on the assumption of local parton-hadron
duality, we extend the analysis to the jet multiplicity, assuming that jets obtained for energy
scales above 1–2 GeV fall into the domain of validity of perturbative QCD. We thus avoid
any assumption concerning the evolution of partons into hadrons such as local parton-hadron
duality. The analysis of the Hq moments of the jet multiplicity distributions reveals that this
oscillatory behavior appears only for very small ycut, corresponding to energy scales . 100 MeV,
i.e., far from the perturbative region. At Z0 energies, the Hq oscillatory behavior appears only
during hadronization. Therefore, we conclude that at the present energies the Hq oscillatory
behavior observed in the charged-particle multiplicity distribution is not related to the NNLLA
of pQCD, but rather to the hadronization.

In search of an alternative origin of this Hq behavior, we have investigated a more phe-
nomenological approach which assumes that the shape of the multiplicity distribution results
from a superposition of various types of events. This was investigated, using a superposition of
negative binomial distributions (NBDs). The charged-particle multiplicity distribution of each
individual topology was parametrized using a NBD with parameters (the mean and dispersion)
measured in the corresponding experimental charged-particle multiplicity distribution.

We found that it was possible to decompose the full sample into a minimum of three samples
characterized by charged-particle multiplicity distributions for which the Hq moments do not
exhibit oscillations. These samples are characterized by the fact that they represent completely
different jet topologies as pencil-like 2-jet events, Mercedes-like 3-jet events and what we call
soft-jet events, i.e., 3-jet events with a low momentum gluon-jet. Furthermore, each of these
samples appears to be well described by a NBD, while the charged-particle multiplicity distribu-
tion of the full sample is found to be well described by a weighted sum of the three NBDs. Also
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the Hq moments calculated from the three-NBD parametrization are found to agree rather well
with those of the full sample. Thus, we find that this phenomenological approach is successful
in describing the full sample as a superposition of three NBDs.

Furthermore, the decomposition in terms of jet topology appears to be the only way to find
samples which do not have Hq oscillation. We also tried to separate the full as well as the 2-jet
and 3-jet samples into light and b-quark samples, but neither the period of the oscillation nor
its amplitude are influenced by these decompositions.

By studying the charged-particle multiplicity distribution in restricted central rapidity in-
tervals, which have the property of enhancing the difference between jet topologies, we found
that the size of the amplitude of the oscillation is linked to the compositeness (in jet topology)
of the sample. In other words, by isolating 2-jet or 3-jet events, we group together in these
samples, events having rather similar jet topologies and hence without Hq oscillation. On the
other hand, restricting to central rapidity windows, which causes an enhancement of the dif-
ference between the jet topologies, increasing the difference between the events grouped into a
same sample, will increase the size of the oscillation.

Therefore, we conclude that the origin of the oscillatory behavior is mainly an artifact
appearing during the hadronization, but whose existence is linked to the diversity in jet topology
and hence is related to the wide energy range available to the gluon.

At Z0 energies, the oscillatory behavior is a non-perturbative phenomenon, but caused by
the difference in topology initiated by hard gluon radiation.

It must also be noted that since the Hq moments are rather similar for extreme 2-jet and
3-jet events, the shape of the multiplicity distribution seems not influenced by the jet topology
itself, but by the mixture of jet topologies.

Therefore, the main features in the shape of the charged-particle multiplicity still visible
in the final states is related to the number of primary partons, more precisely to the energy
shared by the primary partons and to the hadronization.
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Summary

In this thesis, we perform an analysis on e+e− hadronic Z0 decays recorded in 1994 and 1995 by
the L3 detector of LEP at center-of-mass energy corresponding to the Z0 mass. The analysis is
performed in parallel for all hadronic events, and for selected b-quark and light-quark events.

The distribution of two variables, the charged-particle multiplicity n and the inclusive
charged-particle momentum ξ are measured, from which all the analysis is carried out.

Measuring the inclusive charged-particle momentum ξ distribution is of interest since, under
local parton-hadron duality, the ξ distribution is assumed to be directly related to the amount of
gluons produced at low momentum during the perturbative cascade as predicted by perturbative
QCD. Furthermore, measuring the ξ distribution for the full, light- and b-quark samples allows
to quantify the effect of the weak decay of the b-quark which is not accounted for by perturbative
QCD prediction.

From the measurement of the charged-particle multiplicity distribution, which is the main
study of the thesis, it is possible to extract information concerning the dynamics of the in-
teraction. By studying the moments of the charged-particle multiplicity distribution, one can
obtain informations on particle correlation. For this purpose, we measure the Hq moments of
the charged-particle multiplicity distribution giving the relative amount of genuine q-particle
correlation. These Hq moments are known to display oscillations when plotted versus the order
q. An explanation for these oscillations has been given by perturbative QCD. In the frame-
work of the next-to-next to leading logarithm approximation (NNLLA), one predicts such an
oscillatory behavior for the Hq moments calculated from the parton multiplicity distribution.
Under the assumption of the local parton-hadron duality, which claims that the shape of the
multiplicity distribution is not distorted by hadronization, this behavior is also predicted for
Hq calculated from the final-state particle multiplicity distribution, such as the charged-particle
multiplicity distribution.

However, further studies performed on Monte Carlo show that this oscillatory behavior can
be reproduced without the need for the NNLLA, thus suggesting the need of an explanation
different from that provided by perturbative QCD. Therefore further tests are conducted in
order to get a more definitive answer, this time using the jet multiplicity distribution. When
using jets, we assume that jets obtained at energy scales above 1–2 GeV are described by
perturbative QCD, thereby decreasing the role of local parton-hadron duality. However, we
find that the oscillatory Hq behavior is observed only for jets obtained at very low scales,
far away from the 1–2 GeV limit of validity of perturbative QCD. This leads us to conclude
that this oscillatory behavior observed in the Hq moments measured from the charged-particle
multiplicity distribution is not related to that predicted by NNLLA of perturbative QCD.

Therefore, in the absence of confirmation of pQCD, we search for an alternative explanation
using a more phenomenological approach. We investigate the possibility that the features in the
shape of the charged-particle multiplicity distribution responsible for oscillatory Hq behavior
could be due to the fact that the charged-particle multiplicity distribution derives from a
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superposition of final states of differing event topology, such as 2-jet, 3-jet events or light-
and b-quark events. Assuming we are able to parametrize the charged-particle multiplicity
distribution of each of these samples, the charged-particle multiplicity distribution of the full
sample would be parametrized by a weighted sum of the individual parametrizations. This is
investigated using a negative binomial distribution (NBD), which has been used in the past
to parametrize the charged-particle multiplicity distribution of a large number of processes at
various energies. The charged-particle multiplicity distributions of individual topologies are
parametrized by a NBD with parameters measured from the experimental charged-particle
multiplicity distributions. We try two approaches, an approach which describes the charged-
particle multiplicity distribution of the full sample as a mixture of various jet topologies and
another one which describes it as a mixture of light- and b-quark events.

We find that the charged-particle multiplicity distribution of the full sample, as well as its
oscillatory Hq behavior, is successfully described by a mixture of 3 different jet topologies. Fur-
thermore, Hq measured from the charged-particle multiplicity distribution of these topologies,
themselves, do not show the oscillatory behavior. This suggests that the oscillatory behavior in
the Hq of the full sample originates from the diversity of jet topologies. This lets us conclude,
that the Hq oscillatory behavior observed at the Z0 energy is a non-perturbative phenomenon
due to the diversity of topologies of hard gluon production and soft mechanisms. This conclu-
sion is further supported by a study of the Hq using particles in restricted rapidity intervals,
which enables the difference of jet topologies to be enhanced.



Samenvatting

In dit proefschrift wordt een analyse gedaan op de hadronische Z0-vervallen uit e+e−, opgenomen
in 1994 en 1995 met de L3 detector van Lep bij een massamiddelpuntsenergie overeenkomend
met de Z0 massa. De analyse is in parallel uitgevoerd voor alle hadronische gevallen, en voor
speciaal geselecteerde b-quarks of lichte quarks. Gemeten zijn verdelingen van twee variabelen,
de geladen multipliciteit n en de inclusive impuls van de geladen deeltjes ξ, die als uitgangspunt
voor de verdere analyse zijn genomen.

Het meten van de inclusieve impuls van de geladen deeltjes ξ is van belang, omdat bij locale
parton-hadron dualiteit wordt aangenomen, dat de ξ-verdeling direct gekoppeld is aan het
aantal gluonen, dat wordt geproduceerd bij lage impuls, zoals door quantum chromo dynamica
in storingsrekening (QCDS) wordt voorspeld. Verder staat het meten van de ξ-verdeling voor
alle gevallen en voor de lichte- en b-quark gevallen toe om het effect te bepalen van het zwakke
verval van het b-quark, dat niet in rekening wordt gebracht door QCDS.

Uitgaande van de geladen multipliciteitsverdeling is het mogelijk informatie te verkrijgen
over de dynamica van de wisselwerking. Dit is het belangrijkste onderzoek in dit proefschrift.
Door de momenten van de multipliciteitsverdeling van geladen deeltjes te bestuderen, kan men
informatie verkrijgen betreffende de deeltjescorrelatie. Hiertoe meten we de Hq-momenten van
de verdeling van geladen deeltjes, die de relatieve hoeveelheid correlatie van de werkelijke q-
deeltjes geven.

Het is bekend, dat deze Hq momenten van de verdeling van geladen deeltjes oscillaties laten
zien, als ze worden uitgezet tegen de orde q. Een verklaring voor deze oscillaties kan worden
gegeven door QCDS. In het kader van de ”next to next to leading logarithm” (NNLLA) benader-
ing wordt een dergelijk oscillerend gedrag berekend uit de parton multipliciteitsverdeling. Met
de veronderstelling van locale parton-hadron dualiteit, dat de vorm van de multipliciteitsverdel-
ing niet verandert door hadronisatie, wordt dit gedrag ook voorspeld voor de Hq berekend uit
een multipliciteitsverdeling van de deeltjes in de eindtoestand, zoals de multipliciteitsverdeling
van de geladen deeltjes.

Echter verdere Monte Carlo studies laten zien, dat dit oscillerend gedrag kan worden gere-
produceerd zonder dat de NNLLA nodig is, aangevend, dat er een andere uitleg nodig is, dan die
gegeven door QCDS. Om hierop een definitiever antwoord te krijgen zijn verdere tests uitgevo-
erd, deze keer met hulp van de multipliciteitsverdeling van jets (deeltjesbundels). Als we deze
jets gebruiken nemen we aan, dat ze verkregen bij energieschalen boven 1–2 GeV beschreven
worden door QCDS, waarbij de rol van locale parton-hadron dualiteit vermindert. Toch vinden
we, dat het oscillerend gedrag voor Hq alleen voor jets bij zeer lage energieschalen wordt gevon-
den ver van de 1–2 GeV geldigheidlimiet van QCDS. Hieruit concluderen we, dat het oscillerend
gedrag waargenomen in de Hq momenten en afgeleid uit de multipliciteitsverdeling van geladen
deeltjes niets te maken heeft met datgene, wat door NNLLA in QCDS wordt voorspeld.

Daarom zoeken we bij afwezigheid van de bevestiging van QCDS naar een alternatieve verk-
laring met behulp van een fenomenologischer benadering. We onderzoeken de mogelijkheid, dat
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de kenmerken in de vorm van de multipliciteit van de geladen deeltjes, die het oscillatiegedrag
van Hq veroorzaken, zou kunnen komen door het feit, dat deze multipliciteitsverdeling wordt
afgeleid uit de superpositie van eindtoestanden van verschillende topologie, zoals uit 2 jet en 3
jet gevallen of uit lichte quarks en b quarks. Onder de aanname, dat we in staat zijn de multi-
pliciteitsverdeling van geladen deeltjes voor al deze types te parametriseren, wordt de verdeling
voor de gehele verzameling gevormd door een gewogen som van de individuele parametrisaties.
Dit is onderzocht met behulp van een negatieve binomiaalverdeling (NBV), in het verleden
gebruikt om de multipliciteitsverdeling van geladen deeltjes van een groot aantal processen
bij verschillende energieën te beschrijven. De multipliciteitsverdelingen van geladen deeltjes
van individuele topologieën zijn geparametriseerd met een NBV met parameters gemeten in de
overeenkomstige experimentele distributies. We proberen twee benaderingen, een eerste, die
de multipliciteitsverdeling van geladen deeltjes beschrijft als een mengsel van verschillende jet
topologieën en een andere, die het beschrijft als een mengsel van lichte en b quark gevallen.

We vinden, dat de multipliciteitsverdeling van geladen deeltjes van de complete verdel-
ing tezamen met zijn oscillerend karakter in Hq succesvol kan worden beschreven met een
mengsel van drie verschillende jet topologieën. Daarbij vertonen de Hq’s gemeten met de mul-
tipliciteitsverdeling van geladen deeltjes van deze topologieën zelf geen oscillerend gedrag. Dit
geeft aan, dat het oscillerend gedrag in de Hq van de complete verzameling een gevolg kan zijn
van de verschillende jet topologieën. Dit laat ons concluderen, dat het oscillerend gedrag bij de
Z0 energie een niet verstorings effect is ten gevolge van de diversiteit van de topologieën van
harde gluonen productie en zachte mechanismen. Deze conclusie wordt ook nog ondersteund
door een studie van de Hq’s met gebruik van deeltjes in beperkte rapiditeitsintervallen, die het
mogelijk maken om de verschillen van de jet topologieën te versterken.
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