ROOT, AN OBJECT ORIENTED DATA ANALYSISFRAMEWORK

René Brun, Fons Rademakers, Suzanne Panacek
CERN, Geneva, Switzerland

Abstract

ROQOT is an object-oriented framework aimed at solving the data anaysis
challenges of high-energy physics. Here we discuss the main components of
the framework. We begin with an overview describing the framework's
organization, the interpreter CINT, its automatic interface to the compiler and
linker ACLIC, and an example of a first interactive session. The subsequent
sections cover histogramming and fitting. Then, ROOT's solution to storing
and retrieving HEP data, building and managing of ROOT files, and designing
ROQOT trees. Followed by a description of the collection classes, the GUI
classes, how to add your own classes to ROOT, and PROOF, ROOT's parallel
processing facility.

1 INTRODUCTION

In the mid 1990's, the designers of ROOT had many years of experience developing interactive data
analysis tools and simulation packages. They had lead successful projects such as PAW, PIAF, and
GEANT, and they knew the twenty-year-old FORTRAN libraries had reached their limits. Although still
very popular, these tools could not scale up to the challenges offered by the Large Hadron Collider,
where the data is a few orders of magnitude larger. At the same time, computer science had made leaps
of progress especialy in the area of Object Oriented Design, and the time had come to take advantage of
it.

The first version or ROOT, version 0.5, was released in 1995, and version 1.0 was released in
1997. Since then it has been released early and frequently to expose it to thousands of eager users to
pound on, report bugs, and contribute possible fixes. More users find more bugs, because more users add
different ways of stressing the program. By now, after six years, many users have stressed ROOT in
many ways, and it is quiet mature.

ROQT is an object-oriented framework. A framework is a collection of cooperating classes that
make up a reusable solution for a given problem. The two main differences between frameworks and
classlibraries are:

Behavior versus Protocol: A class library is a collection of behaviors that you can call when you
want those individual behaviorsin your program. A framework, on the other hand, provides not only
behavior but also the rules for behaviors that can be combined.

Implementation versus Design: With class libraries programmers reuse only implementations,
whereas with frameworks they reuse design. A framework embodies the way a family of related
classes work together.

Object-Oriented Programming offers considerable benefits compared to Procedure-Oriented
Programming:

Encapsulation enforces data abstraction and increases opportunity for reuse.
Sub classing and inheritance make it possible to extend and modify objects.

Class hierarchies and containment hierarchies provide a flexible mechanism for modeling real -world
objects and the relationships among them.

Complexity is reduced because there is little growth of the global state, the state is contained within
each aobject, rather than scattered through the program in the form of global variables.

Objects may come and go, but the basic structure of the program remains relatively static, increases
opportunity for reuse of design.

1.1 Main Componentsof ROOT

e A hierarchical object-oriented database (machine independent, highly compressed,
supporting schema evolution and object versioning)

e A C++interpreter

e Advanced statistical analysis tools (classes for multi-dimensional histogramming, fitting and
mi ni mi zati on)

» Visuadization tools (classes for 2D and 3D graphics including an OpenGL interface)

» Advanced query mechanismsto sdlect information in very large data sets (ROOT Trees)

e Arrich set of container classes that are fully 1/0 aware (list, sorted list, map, btree, hashtable,
object array, €etc.)

e Anextensive set of GUI classes (windows, buttons, combo-box, tabs, menus, item lists, icon
box, tool bar, status bar and many more)

e Anautomatic HTML documentation generation facility

* Run-time object inspection capabilities

e Client/server networking classes

e Shared memory support

e Multi-threading support

* Remote database access either via a special daemon or via the Apache web server

e Ported to al known Unix and Linux systems and also to Windows 95 and NT
1.2 TheOrganization of the ROOT Framework

The ROOT framework has about 460 classes grouped by functionality into shared libraries. The libraries
are designed and organized to minimize dependencies, such that you can include just enough code for
the task at hand rather than having to include all libraries or one monolithic chunk.

The core library (I i bCor e. so) contains the essentials; it needs to be included for all ROOT
applications. | i bCor e is made up of Base classes, Container classes, Meta information classes (for
RTTI), Networking classes, Operating system specific classes, and the ZIP agorithm used for
compression of the ROOT files.

The CINT library (I i bGi nt . so) isaso needed in al ROOT applications, but | i bCi nt can be
used independently of | i bCor e, in case one only needs the C++ interpreter and not ROOT.

Figure 1shows the libraries and their dependencies. For example, a batch program, one that does
not have a graphic display, which creates, fills, and saves histograms and trees, only needs the core
(libCoreandlibCint),libH st and | i bTree. If other libraries are needed ROOT loads them
dynamically. For example if the Tr eeVi ewer is used, | i bTreePl ayer and al the libraries the
TreePl ayer box below has an arrow to, are loaded aso. In this case: GPad, Gr af 3d, G af,
H st Pai nter, Hi st,and Tr ee. The difference between | i bHi st and | i bHi st Pai nt er isthat the
former needs to be explicitly linked and the latter will be loaded automatically at runtime when needed.
In the diagram, the dark boxes outside of the core are automatically loaded libraries, and the light
colored ones are not automatic. Of course, if one wants to access an automatic library directly, it has to
be explicitly linked also.

Root CORE classes |

Base |Cont|meta |WI Cint
Tree | [Hist
— x

Graf
/-@ 7 A
[EGPythia | [EGVenus |

Graf3d || GPad

TreePlayer

Gui
GWin32 |

Figure 1: The ROOT libraries and their dependencies

Here is a short description for each library, the ones marked with a* are only installed when the
options specified them.

» libCint.so isthe C++ interpreter (CINT).

* libCore.so isthe Base classes.

* |libEG.s0 isthe abstract event generator interface classes.

» *[ibEGPythia.so io the Pythiab event generator interface.

» *[ibEGPythia6.s0 is the Pythiab event generator interface.

* |libEGVenus.so isthe Venus event generator interface.

* libGpad.so isthe pad and canvas classes which depend on low level graphics.
* libGraf.so isthe 2D graphics primitives (can be used independent of libGpad.so).
* |libGraf3d.so isthe3D graphics primitives.

* libGui.soisthe GUI classes (depends on low level graphics).

* |libGX1l.soisthelow level graphicsinterface to the X11 system.

* *[ibGX11TTF.soisan add on library to libGX11.s0 providing TrueType fonts.
* libHist.so isthe histogram classes.

* libHistPainter.so is the histogram painting classes.

* libHtml.so isthe HTML documentation generation system.

* libMatrix.so is the matrix and vector manipulation.

* libMinuit.so - The MINUIT fitter.

* libNew.soisthe special global new/delete, provides extra memory checking and interface
for shared memory (optional).

» libPhysics.so is the physics quantity manipulation classes (TLorentzVector, etc.).

» libPostscript.so is the PostScript interface.

* libProof.so isthe parallel ROOT Facility classes.

* *|ibRFIO.s0 isthe interface to CERN RFIO remote I/O system.

* *[ibRGL.s0 isthe interface to OpenGL.

* libRint.so isthe interactive interface to ROOT (provides command prompt).

* *libThread.so isthe Thread classes.

» libTree.so isthe TTree object container system.

» libTreePlayer.so isthe TTree drawing classes.

* libTreeViewer.so isthe graphical TTree query interface.

* 1ibX3d.s0 isthe X3D system used for fast 3D display.

1.3 CINT: The C/C++ Interpreter

A key component of the ROOT framework is the CINT C/C++ interpreter. CINT, written by Masaharu
Goto of Hewlett Packard Japan, covers 95% of ANSI C and about 85% of C++ (template support is
being worked on, exceptions are still missing). CINT is complete enough to be able to interpret its own
70,000 lines of C and to let the interpreted interpreter interpret a small program.

The advantage of a C/C++ interpreter is that it allows for fast prototyping since it eliminates the
typical time-consuming edit/compile/link cycle. Once a script or program is finished, you can compile it
with a standard C/C++ compiler (gcc) to machine code and enjoy full machine performance. Since CINT
is very efficient (for example, for/while loops are byte-code compiled on the fly), it is quite possible to
run small programs in the interpreter. In most cases, CINT out performs other interpreters like Perl and
Python.

Existing C and C++ libraries can easily be interfaced to the interpreter. This is done by generating
a dictionary from the function and class definitions. The dictionary provides CINT with all necessary
information to be able to call functions, to create objects and to call member functions. A dictionary is
easily generated by the program r oot ci nt that uses as input the library header files and produces as
output a C++ file containing the dictionary. Y ou compile the dictionary and link it with the library code
into a single shared library. At run time, you dynamically link the shared library, and then you can call
the library code via the interpreter. This can be a very convenient way to quickly test some specific
library functions. Instead of having to write a small test program, you just call the functions directly from
the interpreter prompt.

The CINT interpreter is fully embedded in the ROOT system. It allows the ROOT command line,
scripting and programming languages to be identical. The embedded interpreter dictionaries provide the
necessary information to automatically create GUI elements like context pop-up menus unigue for each
class and for the generation of fully hyperized HTML class documentation. Further, the dictionary
information provides complete run-time type information (RTTI) and run-time object introspection
capabilities.

On the ROOT command line, you can enter C++ statements for CINT to interpret. You can aso
write and edit ascript and tell CINT to execute the statementsin it with the .x command:

[root[] .x MyScript.C

1.4 ACLIC: The Automatic Compiler of Librariesfor CINT

Instead of having CINT interpret your script there is away to have your scripts compiled, linked and
dynamically loaded using the C++ compiler and linker. The advantage of thisisthat your scriptswill run
with the speed of compiled C++ and that you can use language constructs that are not fully supported by
CINT. On the other hand, you cannot use any CINT shortcuts and for small scripts, the overhead of the
compile/link cycle might be larger than just executing the script in the interpreter.

ACLIC will build a CINT dictionary and a shared library from your C++ script, using the compiler
and the compiler options that were used to compile the ROOT executable. You do not have to write a
makefile remembering the correct compiler options, and you do not have to exit ROOT.

To build, load, and execute a script with ACLiIC you append a"++" at the end of the script file
name, and use the CINT .x command.

root[] .x MyScript.C++

ACLIC executes two steps and a third one if needed. These are:
1. Cadlingr oot ci nt tocreateaCINT dictionary.
2. Caling the compiler to build the shared library from the script

3. If thereare errors, it calls the compiler to build a dummy executable to clearly report
unresolved symbols.

1.5 First Interactive Session

In this first session, start the ROOT interactive program. This program gives access via a command-line
prompt to al available ROOT classes. By typing C++ statements at the prompt, you can create objects,
cal functions, execute scripts, etc. Go to the directory $ROOTSYS/tutorials and type

bash$ root

root [0] 1+sqrt(9)

(doubl e) 4. 000000000000e+00
root [1] for (int i =0; i <5; i++) printf("Hello %\n", i)
Hello O

Hello 1

Hello 2

Hello 3

Hello 4

root [2] .q

bash $

As you can seg, if you know C or C++, you can use ROOT, and there is no new command-line or
scripting language to learn. To exit use . g, which isone of the few "raw" interpreter commands. The dot
is the interpreter escape symbol. There are also some dot commands to debug scripts (step, step over, set
breakpoint, etc.) or to load and execute scripts. Let's now try something more interesting. Again, start
root:

bash$ root

root [0] TF1 f1("funcl","sin(x)/x", 0, 10)
root [1] f1.Draw)

root [2] fl.Integral (0, 2)

root [3] f1.Dunp()

root [4] .q

Here you create an object of class TF1, a one-dimensiona function. In the constructor, you
specify a name for the object (which is used if the object is stored in a database), the function and the
upper and lower value of x. After having created the function object you can, for example, draw the
object by executing the TF1: : Dr aw() member function.

B e [
Eile Edit Miew Oplions Inspect Classes Help

sin{x)ix

1

0.

&

0.

o

L

0.

[

=

-0

s

=
N
o
L
bl
n:
~
&
=]
a

Figure 2: Theresult of TF1:Draw

Now, move the mouse over the picture and see how the shape of the cursor changes whenever you cross
an object. At any point, you can press the right mouse button to pop-up a context menu showing the
available member functions for the current object. For example, move the cursor over the function so
that it becomes a pointing finger, and then press the right button. The context menu shows the class and
name of the object. Select item Set Range and put 10,10 in the dialog box fields. (Thisis equivalent to
executing the member function f 1. Set Range(10, 10) from the command-line prompt, followed by
f1.Draw().) Using the Dunp() member function (that each ROOT class inherits from the basic
ROOT class T(hj ect), you can see the complete state of the current object in memory. The
I ntegral () function shows the function integral between the specified limits.

1.6 TheObject Browser

BN ROOT Object Browser TE %
File View Options Help
(Z Current dir - | Egl",':
|AII Folders |Cnmems
(EQ Crasses [homedrdmiroot tutorials () Canvases
(22 Global Variaies [Clagses [Colors
[canvases [Functions [Geometries
(Dceametries [Global Variables [Memary Mapped Files
D Colors D Metwork Connections D ROOT Files
D Styles D Styles
[Functions

D Metywork Connections
DMemury’ Mapped Files
(LA 1 ihomedrdmirootitutorials
[CIROOT Files

[11 Objects. [4

Figure 3: the Object Browser

Using the ROOT Object Browser al objectsin the ROOT framework can be browsed and inspected. To
create a browser object, type:

[root [] new TBrowser |

The browser displays in the left pane the ROOT collections and in the right pane the objects in the
selected collection. Double clicking on an object will execute a default action associated with the class
of the object. Double clicking on a histogram object will draw the histogram. Right clicking on an object
will bring up a context menu (just asin a canvas).

2 HISTOGRAMSAND FITS

Let's start ROOT again and run the following two scripts. Note: if the above doesn't work, make
sure you are in the tutorials directory.

bash$ root

root [] .x hsinple.C

root [] .x ntuplel.C

/1 interact with the pictures in the canvas

root [] .q
==t The Hiuple canvas - B X
FEile Edit ¥iew DOptions |nspect Classes Help
e o
. MWerd - 1504 o 1trd = dvmim
BGan - 123381 . u} 1 1 1 1 1 RALAT = ¥ U] UF P E
__RHE-—].S-B'! ;r'__:___:__T__:__-:__mbillllﬂ'l
______ 1] ‘"‘Er——|———|——1-——|——-|——|-——|——”
1 1 1 1 1 1 1

e -===J44d 0 57 Fd-===-=-4

TR R R Rl

i E==2== doclhbockbodacbM

T OP OETLT

1
-
'

w
-
-

Fuus i inkeracheelu motle e vivain 2 ways

= With The BulpkeeCad+ inalickingin thisn nd

= e anling Fiva wlh i e Vies goees

s b b b b b Do Laga s L g
-4+ -3 -t - L 1 2 k| 4q

Figure 4: ROOT Histograms

Script hsi npl e. C(see $ROOTSYS/ t ut ori al s/ hsi npl e. C) creates some 1D and 2D histograms
and an Ntuple object. (An Ntuple is a collection of tuples; atuple is a set of humbers.) The histograms
and Ntuple are filled with random numbers by executing a loop 25,000 times. During the filling the 1D
histogram is drawn in a canvas and updated each 1,000 fills. At the end of the script, the histogram and
Ntuple objects are stored in a ROOT database.

Thent upl el. Cscript uses the database created in the previous script. It creates a canvas object
and four graphics pads. In each of the four pads a distribution of different Ntuple quantitiesis drawn.
Typically, dataanalysisis done by drawing in a histogram with one of the tuple quantities when some of
the other quantities pass a certain condition. For example, our Ntuple contains the quantities px, py, pz,

random and i . This command will fill a histogram containing the distribution of the px valuesfor al
tuplesfor whichpz < 1.

[root[] ntuple->Draw("px", "pz< 1")

2.1 TheHistogram Classes
ROOT supports the following histogram types:

1-D histograms:

+ THIC: histograms with one byte per channel. Maximum bin content = 255

e THA1S: histograms with one short per channel. Maximum bin content = 65535
e THI1F: histograms with one float per channel. Maximum precision 7 digits

e TH1D : histograms with one double per channel. Maximum precision 14 digits

2-D histograms:
e TH2C: histograms with one byte per channel. Maximum bin content = 255
e TH2S: histograms with one short per channel. Maximum bin content = 65535
e TH2F: histograms with one float per channel. Maximum precision 7 digits
e TH2D : histograms with one double per channel. Maximum precision 14 digits

3-D histograms:
e TH3C: histograms with one byte per channel. Maximum bin content = 255
» THS3S: histograms with one short per channel. Maximum bin content = 65535
* THS3F: histograms with one float per channel. Maximum precision 7 digits
e TH3D : histograms with one double per channel. Maximum precision 14 digits

Profile histograms: (TProf i | e and TPr of i | e2D)

Profile histograms are used to display the mean value of Y and its RMS for each bin in X. Profile
histograms are in many cases an elegant replacement of two-dimensional histograms. The inter-relation
of two measured quantities X and Y can always be visuaized by two-dimensional histogram or scatter-
plot; If Y is an unknown (but single-valued) approximate function of X, this function is displayed by a
profile histogram with much better precision than by a scatter-plot.

All histogram classes are derived from the base class TH1.

TH1
TH1C TH1S TH1F TH1D
TH3 TH2 TProfile
TH3C TH3S TH3F TH3D TH2C TH2S TH2F TH2D
TProfile2D

Figure 5: The Histogram Classes

The TH*C classes also inherit from the array class TAr r ayC.
The TH* S classes a so inherit from the array class TAr r ay S.
The TH*F classes aso inherit from the array class TAr r ayF.
The TH*D classes aso inherit from the array class TAr r ayD.

2.2 Creating histograms

Histograms are created by invoking one of the constructors:

TH1F *hl
TH2F *h2

new THLF("h1","hl title", 100,0, 4. 4);
new TH2F("h2","h2 title", 40,0, 4, 30, -3, 3);

Histograms may al so be created by:

Calling the A one method, see below
Making a projection from a 2-D or 3-D histogram, see below
Reading a histogram from afile

2.3 Fixed or variablebin size

All histogram types support either fixed or variable bin sizes. 2-D histograms may have fixed size
bins dong X and variable size bins along Y or vice-versa. The functions to fill, manipulate, draw or
access histograms are identical in both cases. Each histogram always contains three objects TAxi s:
f Xaxi s, f Yaxi s, andf Zaxi s. To access the axis parameters, do:

TAXi s *xaxis = h->Get Xaxi s();
Doubl e_t binCenter = xaxis->GetBi nCenter(bin);

See class TAxi s for adescription of all the access functions. The axis range is always stored internally
in double precision.

2.4 Bin numbering convention
For all histogram types:. nbins, xlow, xup

bin=0; underflow bin

bin=1; first bin with low-edge xlow INCLUDED
bin=nbins; last bin with upper-edge xup EXCLUDED
bin = nbins+1; overflow bin

In case of 2-D or 3-D histograms, a"global bin" number is defined. For example, assuming a 3-D
histogram with binx, biny, binz, the function returns a global/linear bin number.

[Int_t bin = h->GetBi n(binx, bi ny, bi nz);

This global binis useful to access the bin information independently of the dimension.
25 Filling Histograms
A histogram istypically filled with statements like:

h1l->Fill(x);

hl->Fill(x,w); //with weight
h2->Fi Il (x,y)

h2->Fi Il (x,y,w)

h3->Fill (x,y, z)

h3->Fill (x,y,z,w)

The Fi I | method compute the bin number corresponding to the given x, y or z argument and
increment this bin by the given weight. The Fi | I method return the bin number for 1-D histograms or

global bin number for 2-D and 3-D histograms. If TH1: : Sumw2 has been called before filling, the sum of
squares is aso stored. One can also increment directly a bin number via TH1: : AddBi nCont ent or
replace the existing content via THL: : Set Bi nCont ent . To access the bin content of a given bin, do:

[Doubl e_t binContent = h->Get Bi nCont ent (bin);

By default, the bin number is computed using the current axis ranges. If the automatic binning
option has been set via: h- >Set Bi t (THL: : kCanRebi n); then, the Fi I | method will automatically
extend the axis range to accommodate the new value specified in the Fi | | argument. The method used
is to double the bin size until the new value fits in the range, merging bins two by two. This automatic
binning options is extensively used by the TTr ee: : Dr aw function when histogramming Tree variables
with an unknown range. This automatic binning option is supported for 1-d, 2-D and 3-D histograms.

During filling, some statistics parameters are incremented to compute the mean value and root
mean sguare with the maximum precision. In case of histograms of type TH1C, TH1S, TH2C, TH2S,
TH3C, TH3 acheck is made that the bin contents do not exceed the maximum positive capacity (127 or
65535). Histograms of all types may have positive or/and negative bin contents.

26 Re-binning

At any time, an histogram can be re-binned via TH1: : Rebi n. This method returns a new histogram with
the re-binned contents. If bin errors were stored, they are recomputed during the re-binning.

2.7 Associated Error

By default, for each bin, the sum of weights is computed at fill time. One can also call THL: : Suma2 to
force the storage and computation of the sum of the square of weights per bin. If Sumn2 has been called,
the error per bin is computed as the sgrt(sum of squares of weights), otherwise the error is set equal to
the sgrt(bin content). To return the error for a given bin number, do:

\Doubl e_t error = h->GetBinError(bin);

2.8 Associated function

One or more object (typicaly a TF1*) can be added to the list of functions (f Funct i ons)
associated to each histogram. When TF1: : Fi t isinvoked, the fitted function is added to thislist. Given
an histogram h, one can retrieve an associated function with:

[TFL *nyfunc = h->Get Function("nyfunc");

2.9 Operationson histograms

Many types of operations are supported on histograms or between histograms:
e Addition of ahistogram to the current histogram
« Additions of two histograms with coefficients and storage into the current histogram
e Multiplications and Divisions are supported in the same way as additions.

e The Add, Divide and Multiply functions also exist to add, divide or multiply a histogram
by afunction.

If a histogram has associated error bars (TH1: : Sumw2 has been called), the resulting error bars are
also computed assuming independent histograms. In case of divisions, binomia errors are also
supported.

2.10 Fitting histograms

Histograms (1-D, 2-D, 3-D, and Profiles) can be fitted with a user specified function via
THL: : Fi t . When a histogram is fitted, the resulting function with its parameters is added to the list of
functions of this histogram. If the histogram is made persistent, the list of associated functions is also
persistent. Given a pointer (see above) to an associated function nyfunc, one can retrieve the
function/fit parameters with calls such as:

Doubl e_t chi 2
Doubl e_t parO
Double t err0

myf unc- >Get Chi squar e() ;
myf unc->Cet Paraneter(0); // value of 1st paraneter
myfunc->Get ParError(0); // error on first paraneter

2.11 Projectionsof Histograms
One can:

« make a 1-D projection of a 2-D histogram or Profile see functions TH2: : Pr oj ecti onX, Y,
TH2: : ProfileX, Y, TProfile::ProjectionX

« make a 1-D, 2-D or profile out of a 3-D histogram see functions TH3: : Proj ecti onZ,
TH3: : Proj ect 3D.

One can fit these projectionsvia: TH2: : Fit SlicesX, Y, TH3::FitSlicesZ
2.12 Random numbersand histograms

THL: : Fi | | Random can be used to randomly fill an histogram using the contents of an existing
TF1 function or another THL histogram (for al dimensions). For example the following two statements
create and fill a histogram 10000 times with a default gaussian distribution of mean 0 and sigma 1:

THLF h1("h1","histo froma gaussi an", 100, -3, 3);
h1l. Fi || Randon("gaus", 10000);

THL: : Get Randomcan be used to return arandom number distributed according the contents of an
histogram.

2.13 Making a copy of a histogram

Like for any other ROOT object derived from TObj ect , one can use the Cl one method. This makes an
identical copy of the original histogram including all associated errors and functions:

THLF *hnew = (THLF*) h->C one();
hnew >Set Nane(" hnew'); // recommended ot herwi se you
/1 get 2 histograns with the sanme nane.

2.14 Normalizing histograms
One can scale an histogram such that the bins integral is equal to the normalization parameter via

| THL:: Scal e(Doubl e_t normnj;

2.15 Drawing histograms

Histograms are drawn via the THi st Pai nt er class. Each histogram has a pointer to its own pointer (to
be usable in a multithreaded program). Many drawing options are supported. See TH1: : Dr aw for more
details.

The same histogram can be drawn with different optionsin different pads. When a histogram
drawn in apad is deleted, the histogram is automatically removed from the pad or pads where it was
drawn. If ahistogram is drawn in a pad, then filled again, the new status of the histogram will be
automatically shown in the pad next time the pad is updated. One does not need to redraw the histogram.

To draw the current version of ahistogram in a pad, one can use

h- >Dr awCopy() ;

This makes a clone (see d one above) of the histogram. Once the clone is drawn, the original
histogram may be modified or deleted without affecting the aspect of the clone. One can use
THL: : Set Maxi mu and THL: : Set M ni mumto force a particular value for the maximum or the
minimum scale on the plot.

THL: : UseCur rent St yl e can be used to change al histogram graphics attributes to correspond
to the current selected style. This function must be called for each histogram. In case one reads and
draws many histograms from afile, one can force the histograms to inherit automatically the current
graphics style by calling before gROOT- >For ceSt yl e() ;

The TH1: : Draw() method has many draw options. Y ou can combine them in alist separated by
commeas. For the most up to date list of the draw options please see:
http://root.cern.ch/root/html/TH1.html#TH1:Draw

2.16 Setting Drawing histogram contour levels (2-D hists only)

By default, contours are automatically generated at equidistant intervals. A default value of 20
levelsis used. This can be modified viaTHL: : Set Cont our or THL: : Set Cont our Level . The contours

level info isused by the drawing options "cont *, "sur f ", and "l ego".
2.17 Setting histogram graphics attributes

The histogram classes inherit from the attribute classes: TAtt Li ne, TAttFill, TAtt Marker
and TAt t Text . See the member functions of these classes for the list of option.

2.18 Givingtheaxisatitle

h->Get Xaxi s()->SetTitle("X axis title");
h->Cet Yaxi s()->SetTitle("Y axis title");

The histogram title and the axis titles can be any TLat ex string. Thetitles are part of the
persistent histogram.

2.20 Saving/Reading histogramsto/from a Root file

The following statements create a ROOT file and store a histogram on the file. Because TH1 derives
from TNaned, the key identifier on the file is the histogram name:

TFile f("histos.root", "new');

THLF h1("hgaus","histo froma gaussi an", 100, - 3, 3);
h1. Fi |l Random "gaus", 10000);

hl->Wite();

To read this histogram in another ROOT session, do:

TFile f("histos.root");
THLIF *h = (TH1F*)f. Get ("hgaus");

One can save al histogramsin memory to the file by:

file->Wite();

2.21 Miscellaneous histogram operations

THL: : Kol nogor ovTest statistical test of compatibility in shape between two histograms.
THL: : Snoot h smoothes the bin contents of a 1-d histogram

THL: : I nt egral returns the integral of bin contentsin a given bin range
THL: : Get Mean(i nt axis) returnsthe mean value along axis

THL: : Get RMS(i nt axi s) returns the Root Mean Square along axis

THL: : GetEntries returns the number of entries

THL: : Reset () resets the bin contents and errors of an histogram.

3 COLLECTION CLASSES

Collections are a key feature of the ROOT framework. Many, if not most, of the applications you write
will use collections. A collection is a group of related objects. You will find it easier to manage a large
number of items as a collection. For example, a diagram editor might manage a collection of points and
lines. A set of widgets for a graphical user interface can be placed in a collection. A geometrical model
can be described by collections of shapes, materials and rotation matrices. Collections can themselves be
placed in collections. Collections act as flexible alternatives to traditional data structures of computers
science such as arrays, lists and trees.

3.1 General Characteristics
The ROQOT caollections are polymorphic containers that hold pointersto TChj ect s, so:

1) They can only hold objects that inherit from TCbj ect
2) They return pointersto TObj ect s that have to be cast back to the correct subclass

Callections are dynamic and they can grow in size as required. They are descendants of TObj ect
so can themselves be held in collections. It is possible to nest one type of collection inside another to any
level to produce structures of arbitrary complexity.

Callections don’t own the objects they hold for the very good reason. The same object could be a
member of more than one collection. Object ownership isimportant when it comes to deleting objects; if
nobody owns the object, it could end up as wasted memory (i.e. amemory leak) when no longer needed.
If acollection is deleted, its objects are not. The user can force a collection to delete its objects, but that
isthe user’'s choice.

3.2 Typesof Collections

TCollection
A
TSeqCollection THashTable TMap
JAY
TList TOrdCollection TObjArray TBtree
TSortedList THashList TClonesArray

Figure 6: the Collection Classes

The ROOT system implements the following basic types of collections. unordered collections, ordered
collections and sorted collections. This figure shows the inheritance hierarchy for the primary collection
classes. All primary collection classes derive from the abstract base class TCol | ect i on.

3.3 Ordered Collections (Sequences)

Sequences are collections that are externally ordered because they maintain interna elements according
to the order in which they were added. The following sequences are available: TLi st, THashLi st

TOrdCol | ecti on, TObj Array, and TCd onesArray. The TO dCol | ecti on,
TObj Array , aswell asthe TGl onesAr ray can be sorted using their Sort () member function (if
the stored items are sort-able). Ordered collections al derive from the abstract base class
TSeqCol | ecti on.

3.4 Sorted Collection

Sorted collections are ordered by an internal (automatic) sorting mechanism. The following sorted
collectionsare available: TSor t edLi st and TBtree. Thestoreditems must be sort-able.

3.5 Unordered Collection

Unordered collections don't maintain the order in which the elements were added, i.e. when you iterate
over an unordered collection, you are not likely to retrieve elements in the same order they were added to
the collection. The following unordered collections are available: THashTabl e and Trnap.

3.6 Iterators: Processing a Caollection

The concept of processing all the members of a collection is generic, i.e. independent of any specific
representation of a collection. To process each object in a collection one needs some type of cursor that
isinitialized and then steps over each member of the collection in turn. Collection objects could provide
this service but there is asnag: as there is only one collection object per collection there would only be
one cursor. Instead, to permit the use of as many cursors as required, they are made separate classes
called iterators. For each collection class there is an associated iterator class that knows how to
sequentialy retrieve each member in turn. The relationship between a collection and its iterator is very
close and may require the iterator to have full access to the collection (i.e. it isafriend). For example:
TLi st TListlter,and TMap TMapl ter.Ingenera, iterators will be used viathe TI t er wrapper
class.

3.7 A Collectable Class
The basic protocol the TCbj ect class defines for collection elements are:

| sEqual () Isused by the Fi ndChj ect () collection method. By default | sEqual ()
compares the two aobject pointers.

Conpar e() Returns—1, 0 or 1 depending if the object is smaller, equal or larger than the other
object. By default aTObj ect hasnot avalid Conpar e() method.

| sSortabl e() Returnstrueif theclassissortable (i.e. if it hasavalid Conpar e() method). By
default, aTObj ect isnot sortable.

Hash() Returns a hash value. This method needs to be implemented if an object hasto be
stored in a collection using a hashing technique, like THashTabl e,
THashLi st and TMap. By default Hash() returns the address of the object.
Itis essential to choose a good hash function.

3.8 TheTlter Genericlterator

As stated above, the Tl t er at or class is abstract; it is not possible to create Tl t er at or objects.
However, it should be possible to write generic code to process al members of a collection so thereis a
need for a generic iterator object. A Tl t er object acts as generic iterator. It provides the same Next ()

and Reset () methodsasTI t er at or but it has no idea how to support them! It works as follows:

TocreateaTIl t er object its constructor must be passes an object that inherits from
TCol | ecti on. TheTl t er constructor callsthe Makel t er at or () method of this collection to get
the appropriate iterator object that inheritsfrom Tl t er at or .

The Next () and Reset () methodsof Tl t er simply call theNext () and Reset () methods
of theiterator object. So Tl t er simply acts as awrapper for an object of a concrete class inheriting from
Tlterator. For example:

MyCl ass *nyobj ect;

TLi st *mnylist = GetPointerTolList();

Titer nmyiter(mylist);

while ((nyobject = (Myd ass) nyiter.Next())) {
/'l process mnyobj ect

}

4 THE GUI CLASSES

Embedded in the ROOT system is an extensive set of GUI classes. The GUI classes provide a full OO-
GUI framework as opposed to a simple wrapper around a GUI such as Matif. All GUI elements do their
drawing via the TGXWIlow-level graphics abstract base class. Depending on the platform on which you
run ROQT, the concrete graphics class (inheriting from TGXW is either TGX11 or TGW n32. All GUI
widgets are created from "first principles’, i.e., they only use routines like Dr awLi ne, Fi | | Rect angl e,
CopyPi xmap, etc., and therefore, the TGX11 implementation only needs the X11 and Xpm libraries.
The advantage of the abstract base class approach is that porting the GUI classes to a new, non
X11/Win32, platform requires only the implementation of an appropriate version of TGXW (and of
TSyst emfor the OS interface).

All GUI classes are fully scriptable and accessible via the interpreter. This alows for fast
prototyping of widget layouts. They are based on the XClass95 library written by David Barth and
Hector Peraza. The widgets have the well-known Windows 95 |ook and feel. For more information on
XClass'95, see ftp://mitacll.uia.ac.be/html-test/xclass.html.

5 INTEGRATING YOUR OWN CLASSESINTO ROOT

In this section, we'lll give a step-by-step method for integrating your own classes into ROOT. Once
integrated you can save instances of your class in a ROOT database, inspect objects at run-time, create
and manipulate objects via the interpreter, generate HTML documentation, etc. A very simple class
describing some person attributes is shown above. The Person implementation file Person.cxx is shown
here.

fndef __PERSON H

#define __ PERSON_H
#i ncl ude <TObj ect. h>

class Person : public TObject { // need to inherit from TQbj ect
private:

i nt age; /1 age of person

float height; // height of person
publi c:

Person(int a = 0, float h = 0) : age(a), height(h) { }

int get_age(void) const { return age; }

float get_height(void) const { return height; }

voi d set_age(int a) { age = a; }
voi d set_height(float h) { height = h; }

Cl assDef (Person, 1) // Person cl ass

L
#endi f

In this section, well give a step-by-step method for integrating your own classes into ROOT. Once
integrated you can save instances of your classin aROOT database, inspect objects at run-time, create
and manipulate objects viathe interpreter, generate HTML documentation, etc. A very simple class
describing some person attributes is shown above. The Person implementation file Person.cxx is shown
here.

#i ncl ude " Person. h"

/1 Classlnmp provides the inplenmentation of sone
/1 functions defined in the O assDef script

d assl np(Per son)

The scripts ClassDef and Classl mp provide some member functions that allow a classto access
itsinterpreter dictionary information. Inheritance from the ROOT basic object, TObj ect , providesthe
interface to the database and introspection services.

Now run therootcint program to create a dictionary, including the special 1/0 streamer and
introspection methods for class Per son:

bash$ rootcint -f dict.cxx -c Person.h

Next compile and link the source of the class and the dictionary into a single shared library:

bash$ g++ -fPIC -1$ROOTSYS/ i ncl ude -c¢ dict.cxx
bash$ g++ -fPIC -1 $ROOTSYS/ i ncl ude -c Person. cxx
bash$ g++ -shared -o Person.so Person.o dict.o

Now start the ROOT interactive program and see how we can create and manipulate objects of
class Person using the CINT C++ interpreter:

bash$ root
root [0] gSystem >Load("Person")
root [1] Person rdm(37, 181.0)
root [2] rdm get_age()
(int)37
root [3] rdm get_height()
(f1oat) 1. 810000000000e+02
root [4] TFile db("test.root", "new')
root [5] rdmWite("rdnm') // Wite is inherited fromtheTObject class
root [6] db.Is()
TFi l e** test.root
TFi l e* test.root
KEY: Person rdm 1
root [7] .q

Here the key statement was the command to dynamically load the shared library containing the
code of your class and the class dictionary.

In the next session, we access the rdm object we just stored on the databaset est . r oot .

bash$ root

root [0] gSystem >Load("Person")
root [1] TFile db("test.root")
root [2] rdm >get_age()

(int)37

root [3] rdn+>Dunp() /1 Dunp is inherited fromthe TObject class
age age of person

hei ght 181 hei ght of person

f Uni quel D 0 obj ect unique identifier

fBits 50331648 bit field status word

root [4] .class Person
[follows listing of full dictionary of class Person]
root [5] .q

Jlemmee o begin fill.C

gSyst em >Load(" Person");
TFile *f = new TFile("test.root","recreate");
Person *t;
for (int i =0; i < 1000; i++) {
char s[10];
t = new Person(i, i+10000);
sprintf(s, "to%", i);
t->Wite(s);
del ete t;

%->O ose();

A C++ script that creates and stores 1000 persons in a database is shown above. To execute this script,
do the following:

bash$ root
root [0] .x fill.C
root [1] .q

This method of storing objects would be used only for several thousands of objects. The special
Tree object containers should be used to store many millions of objects of the same class.

N begin find.C
void find(int begin_age = 0, int end_age = 10)
{

gSyst em >Load(" Person");
TFile *f = new TFile("test.root");
Tlter next(f->CGetListOKeys());
TKey *key;
while (key = (TKey*)next()) {
Person *t = (Person *) key->Read();
if (t->get age() >= begi n_ age && t - >get _age() <= end_age) {
printf("age = %, height = %\n", t->get_age(), t->get_height());

delete t;

Thislisting is a C++ script that queries the database and prints al personsin a certain age bracket.
To execute this script do the following:

bash$ root
root [0] .x find.C(77,80)

age = 77, height = 10077. 000000
age = 78, height = 10078. 000000
age = 79, height = 10079. 000000
age = 80, height = 10080. 000000
NULL

root [1] find(888, 895)

age = 888, height = 10888. 000000

age = 889, height = 10889. 000000

age = 890, height = 10890. 000000

age = 891, height = 10891.000000age = 892, height = 10892. 000000
age = 893, height = 10893. 000000

age = 894, height = 10894. 000000

age = 895, height = 10895. 000000

root [2] .q

With Person objects stored in a Tree, this kind of analysis can be done in a single command.

Finaly, asmall C++ script that prints all methods defined in class Per son using the information stored
in the dictionary is shown below:

. begi n net hod. C

gSyst em >Load(" Person");
Td ass *c = gROOT->Get O ass("Person");
TLi st *I m = c->CetLi st O Met hods();
Titer next(lm;
TMet hod *m
while (m= (TMethod *)next()) {
printf("% %%\n", m>CetReturnTypeNane(), m >GetNane(),
m >Cet Si gnature());

To execute this script, type:

bash$ root

root [0] .x nmethod.C

cl ass Person Person(int a = 0, float h = 0)
int get_age()

fl oat get _height()

void set_age(int a)

voi d set _height(float h)

const char* Decl Fi | eNanme()

i nt Decl Fil eLine()

const char* I npl Fil eNanme()

int InplFileLine()

Version_t C ass_Version()

class TC ass* C ass()

void Dictionary()

class T ass* |sA()

voi d ShowiMenber s(cl ass TMenber | nspector& i nsp, char* parent)
voi d Streaner(class TBuffer& b)

cl ass Person Person(class Persong&)

voi d ~Person()

root [1] .q

The above examples prove the functionality that can be obtained when you integrate, with a few
simple steps, your classesinto the ROOT framework.

6 OBJECT PERSISTENCY

Object persistency, the ability to save and read objects, is fully supported by ROOT. The TFi | e and
TTr ee classes make up the backbone of 1/0. The TFi | e is a ROOT class encapsulating the behavior of

a file containing ROOT objects, and the TTr ee is a data structure optimized to hold many same class
objects.

6.1 ROOT Files

A ROOT fileislikea UNIX filedirectory. It can contain directories and objects organized in
unlimited number of levels. It dso is stored in machine independent format (ASCII, IEEE floating point,
Big Endian byte ordering). Thisis an example to explain the physical layout of aROOT file. This

example creates a ROOT file and 15 histograms, fills each histogram with 1000 entries from a gaussian
distribution, and writes them to thefile.

TFile f("deno.root","recreate");

char nanme[10], title[20];

for (Int_t i =0; i < 15; i++) {
sprintf(nane, "ho%",i);
sprintf(title,’ h|sto nr: %"
THLF *h = new THlF(nan'e t|tIe 100 -4,4);
h- >F|IIRandon(gaus", 1000);
h->Wite();

}
f.d ose();

The example begins with acall to the TFi | e constructor. TFi | e isthe class describing the
ROQT file. In the next section, when we discuss the logical file structure, we will cover TFi | e in detail.
We can view the contents by creating a TBr owser object.

root [] TFile f("denmp.root")
root [] TBrowser browser;

ﬁ RO [hjizct BrassE

Elle Miww CQpliors Help

|_-]|1r:mnrv:\-.'|l _—J E E‘:_q-lEElrIHl

All Folders | Contants of “FOT Filasidenn ot

) ik =

G wwrkakodey | I | I | I

Ty h -h

(5} Ceometrias Bl REGT BRI RI2T 1D

e g] i

e Aa (B Ba [Ba A

—Furmtan higl REd o Rl RET b

_Mebaork ConrecSors

—JIMemiory kepped Fies | I | I | I

] FEATEighLpanacet] lnarx b h -k

__NRDOT FRles bl [| 1R
A

1 ¥

I5 D15

Figure 7: The Newly Created Histograms

In the browser, we can see the 15 histograms we created. Once we have the TFi | e object we can

cal the TFi | e: : Map() method to view the physical layout. . The first 64 bytes are taken by the file
header. What follows are the 15 histograms in records of various length. Each record has a header (a
TKey) with information about the object including its directory.

A ROOT file has a maximum size of two GB. It keeps track of the free space in terms of records
and bytes. This count also includes the deleted records, which are available again.

| v | ¥
T T T
=] (=] = =]
am 2o . B oam 2o 2.
= g E% Chject Eg eleted Eg E%
I: a2 |e= | e T sssssssrrias
£ Ed_ Data E-— ecl E__ E-—
= = = =
s 2 &
1 PR % jl S o
. TBEGIN ! s END
File Header Logical Record Header (TKEY)
‘root’: Root File ldentifier THhytes: Length of compressed object
fWersion: File version identifier MVersion: Key version identifier)
fBEGIN: Pointer to first data record FORILen: Lendin Of Uncompressed antect
fEND: Pointer to first free word at EOF GUIIIER LEUUUTII A0 WIAED U BT

fEeylen: Humber of hytes for the key
fCycle : Cycle number
TSeekkKey: Pointer to object on file

T3eekFree: Pointer to FREE data record
fHbytesFree: Number of hytes in FREE
U LEEE Ly B R0 GRE (2R fSeekPdir: Pointer to directory on file
THbytesHame: Humber of bytes in namertitle fClassMame: class name of the object
TUnits: Humber of bytes for pointers fHame: name of the object
fCompress: Compression level fTitle: title of the ohject

Figure 8: The ROOT file structure

6.2 FileRecovery

A file may become corrupted or it may be impossible to write it to disk and closeit properly. For
exampleif thefileistoo large and exceeds the disk quota, or the job crashes or a batch job reachesits
time limit before the file can be closed. In these cases, it isimminent to recover and retain as much
information as possible. ROOT provides an intelligent and elegant file recovery mechanism using the
redundant directory information in the record header.

If the file is not closed due to for example exceeded the time limit, and it is opened again, it is
scanned and rebuilt according to the information in the record header. The recovery algorithm reads the
file and creates the saved objects in memory according to the header information. It then rebuilds the
directory and file structure. If the file is opened in write mode, the recovery makes the correction on disk
when the file is closed; however if the file is opened in read mode, the correction can not be written to
disk. You can also explicitly invoke the recovery procedure by calling the TFi | e: : Recover ()
method. You must be aware of the 2GB size limit before you attempt a recovery. If the file has reached
this limit, you cannot add more data. You can still recover the directory structure, but you cannot save
what you just recovered to the file on disk.

6.3 Compression

The last parameter in the TFi | e constructor isthe compression level. By default, objects are
compressed before being written to afile. Datain the records can be compressed or uncompressed, but
the record headers are never compressed. ROOT uses a compression algorithm based on the well-known
gzip agorithm. This algorithm supports up to nine levels of compression, and the default ROOT usesis

one. Thelevel of compression can be modified by callingthe TFi | e: : Set Conpr essi onLevel ()
method. If the level is set to zero, no compression is done. Experience with this algorithm indicates a
compression factor of 1.3 for raw datafiles and around two on most DST filesisthe optimum. The
choice of one for the default is a compromise between the time it takes to read and write the object vs.
the disk space savings. The time to uncompress an object is small compared to the compression time
and is independent of the selected compression level. Note that the compression level may be changed at
any time, but the new compression level will only apply to newly written objects. Consequently, a
ROOT file may contain objects with different compression levels.

Compression Bytes 1 hetable shows four runs of the demo script that creates 15 histograms with

different compression parameters.

0 13797
1 6290
5 6103
9 5912

6.4 Thelogical ROOT File: TFileand TKey

Wesaw that the TFi | e: : Map() method reads the file sequentially and prints information about each
record while scanning thefile. It is not feasible to only support sequential access and hence ROOT
provides random or direct access, i.e. reading a specified object at atime. Todo so, TFi | e keepsalist
of TKeys, which is essentially an index to the objectsin the file. The TKey class describes the record
headers of objectsin thefile. For example, we can get thelist of keys and print them. To find a specific
object on thefilewe can usethe TFi | e: : Get () method.

root [] TFile f("denp.root")
root [] f.GetListOfKeys()->Print()
TKey Name = hO, Title = histo nr:0, Cycle =1

'.I'.key Nanme = hl14, Title = histo nr:14, Cycle =1
root [] THLF *h9 = (THLF*)f.Get("h9");

TheTFi | e: : Get () findsthe TKey object with name "h9".

Sincethe keys are availableinaTLi st of TKeys, we can iterate over thelist of keys:

{

TFile f("denp.root");
TIter next(f.GetListOKeys());
TKey *key;
while ((key=(TKey*)next())) {
printf(
"key: % points to an object of class: % at %il\n",
key->CGet Nane(),
key->CGet O assNane(), key- >Get SeekKey/()
)
}

}

6.5 ViewingtheLogical File Contents

TFi | e isadescendent of TDi r ect or y, which meansit behaveslikeaTDi r ect ory. We can list the
contents, print the name, and create subdirectories. In a ROOT session, you are alwaysin adirectory and
the directory you arein is called the current directory and is stored in the global variable gDirectory.

Here we open afile and list its contents:

root [] TFile f ("hsinple.root", "UPDATE")
root [] f.ls()

TFi | e** hsinpl e. root

TFi | e* hsinple.root

KEY: THLF hpx;1 This is the px distribution
KEY: TH2F hpxpy; 1l py vs px

KEY: TProfile hprof;1 Profile of pz versus px
KEY: TNtuple ntuple;1 Deno ntuple

It shows the two lines starting with TFi | e followed by four lines starting with the word "KEY".
The four KEYs tell us that there are four objects on disk in this file. The syntax of the listing is:

\KEY: <cl ass> <vari abl e>; <cycl e nunber> <title>

For example, thefirst line in the list means there is an object in the file on disk, called hpx. Itis of
the class TH1F (one-dimensional histogram of floating-point numbers). The object's title is "This is the
px distribution".

If the line starts with OBJ, the object isin memory. The <class> is the name of the root class (T-
something). The <variable> is the name of the object. The cycle number along with the variable name
uniquely identifies the object. The <title> is the string given in the constructor of the object astitle.

6.6 Retrieving Objectsfrom Disk

Multiple versions of an object with the same name, but unique cycle numbers can be in aROOT file.
ROOT automatically retrieves the one with the highest cycle number. To read an earlier version we have
to explicitly specify the cycle number.

6.7 Subdirectoriesand Navigation

TheTDi r ect or y class lets you organize its contents into subdirectories, and TFi | e being a
descendent of TDi r ect or y inherits this ability.

Cycle number

//.\\\\
- . legend
(k@bjA;])‘—/(mbjm'] [kogj'é;_]) (kObjD;HkObjC; 1)—m Objects on Disk

kCbiD; 1

(0K | mObiE |—{ mokl. | mobF

Ohbjects in Memory

{ o
| mOBIB|

Directories

(kobic; 1 kOij;]HkObjI;])—M m
[kObJ: 1)—(k0t|:.jk: 1)

Figure 9: Objects in memory and objects on disk

This picture shows a TFi | e with five objects in the top directory (kbj A; 1, kOoj A; 2,
kObj B; 1, kObj C; 1 and kObj D; 1). Obj Aison file twice with two different cycle numbers. It also
shows four objects in memory (mObj E, nthjeF, nmObjM ntbjL). It aso shows severa

subdirectories. Note that you could have the same named object, for example kOBJA , in a subdirectory
and it would be unique because the entire path name is considered when identifying an object.

6.8 ROOT Trees

We explained how objects could be saved in ROOT files. In case you want to save large quantities of the
same class objects, ROOT offersthe TTr ee and TNt upl e classes specifically for that purpose. The
TTr ee classis optimized to reduce disk space and enhance access speed. A TTr ee can hold all kinds of
data, such as objects or arraysin addition to all the ssimpletypes. A TNt upl e isaTTr ee that islimited
to only hold floating-point numbers.

We can use an example to illustrate the difference in saving individual objects vs. filling and
saving the tree. Let's assume we have one million events and we write each one to afile, not using atree.
The TFi | e, being unaware that an event is always an event and the header information is aways the
same, will contain one million copies of the header. This header is about 60 bytes long, and contains
information about the class, such as its name and title. For one million events, we would have 60 million
bytes of redundant information. For this reason, ROOT gives us the TTr ee class. A TTr ee is smart
enough not to duplicate the object header, and is able to reduce the header information to about four
bytes per object, saving 56 million bytesin our case.

When using a TTr ee, we fill its branch buffers with data and the buffer is written to file when it
is full. Branches and buffers are explained below. It isimportant to realize that not each object is written
out individually, but rather collected and written a bunch at a time. In our example, we would fill the
TTr ee with the million events and save the tree incrementally as we fill it. The TTr ee is aso used to
optimize the data access. A tree uses a hierarchy of branches, and each branch can be read independently
from any other branch.

Assume that our Event class has 100 data members and Px and Py are two of them. We would
like to compute Px? + Py? for every event and histogram the result. If we had saved the million events
without a TTr ee we would have to: 1) read each event in its entirety (100 data members) into memory,
2) extract the Px and Py from the event, 3) compute the sum of the squares, and 4) fill a histogram. We
would have to do that amillion times! Thisis very time consuming, and we really do not need to read the
entire event, every time. All we need are two little data members (Px and Py).

If we used a tree with one branch containing Px and another branch containing Py, we can read al
values of Px and Py by only reading the Px and Py branches. This is much quicker since the other 98
branches (one per data member) are never read. This makes the use of the TTr ee very attractive.

6.9 Branches

A TTr ee is organized into a hierarchy of branches. These typically hold related variables or 'leaves. By
now, you probably guessed that the class for a branch is called TBr anch. The organization of branches
allows the designer to optimize the datafor the anticipated use.

If two variables are independent, and the designer knows the variables will not be used together, they
should be placed on separate branches. If, however, the variables are related, such as the coordinates of a
point, it is most efficient to create one branch with both coordinates on it. A variableonaTBr anch is
called aleaf (yes- TLeaf). Another point to keep in mind when designing trees is the branches of the
same TTr ee can be written to separate files. Toadd aTBr anch toaTTr ee wecall the

TTree: : Branch() method. The branch type differs by what is stored in them. A branch can hold an
entire object, alist of simple variables, or an array of objects. Each branch has a branch buffer that is
used to collect the values of the branch variable (Ieaf). Once the buffer isfull, it iswritten to the file.
Because branches are written individually, it saves writing empty or half filled branches.

6.10 Autosave

Autosave gives the option to save all branch buffers every n bytes. We recommend using Autosave for
large acquisitions. If the acquisition fails to complete, you can recover the file and all the contents since
the last Autosave. To set the number of bytes between Autosave you can use the

TTr ee: : Set Aut osave() method. You canasocall TTr ee: : Aut osave in the acquisition loop every
n entries.

FARM Tree Data Structure
Collection
of Trees
fBranches = TObjArray of TBranch
Tree
fScanField & 5
raxeventioon [*—BFANCh-0—Branch 1—Branch 2—Branch 3}---
TMaxVirtual Size- i
fEntries i e 2
e e ,fieavc:s = TObjArray of Heaf
fSelectédRows e LeafO —> Leaf 1 —> Leaf2]-------
l : . TLen: number of fixed elements | ﬂype codes
fBasketSize 4 fLenType: number of hytes of data type C : a characker string
fEventOffsetlen 2 T0irzel: relative 1o LeafD- fAddress O : an 8 bit siyned integer
B THIyteslO: number of bytes usell for 0 I : an & bit nnsigned integer
TiaxBaskets : inder: Py) i i
) 4 ::snr‘omler,TTme.;flzu::er S : a 1G hit siyned short integer
UIETEES o flzuz:::adtu':r::e ifauu::p:adm"m £ ! & 16 bit insigned zhort interer
fAddress of Leafl : : - a it gi f
i *fLeafCouni: poinis to Leaf connter '3 61 322 (<2 e
, i: a 32 bit unsigned integer
THame: Branchnamg THame - Leaf name T 1 a 32 bit floating pond
fTitle: leaflist JJJ 1Tile - Leaf iype (see Type codes) D : a 64 hit floaling poini
, TAHKA @ a class name THRHCH
fBaskelEvent
First event of each basket
. Array of fidaxBaskets Integers
fBaskets = TObjArray of IBaske!
______ e [Basket 0 —)p |Basket 1|——p |Basket2|--------

fﬂ_llytes: Bize of compressed Daskel '
TOhLjLen: Size of uncompressed Daskel fEventOffset
1Datime: DatefMime when wnlten 1o slore " Oifael of crents in THulTer
TKeylen: Humber of bytes for the key H Arvay of fEventOffaciLen integers
i {if vaxiabc lenglh atruclure]
TCycle ! Cycle number ’
. .
fSeekKB_\;. F‘ufnter 1o [!a‘skel on file fBuifer
T5eeklir: Moinler to directory on file
1ClassName: TDaskel JJ—', Basket bu“_er
Mame: Branch neme : Array of fBasketSize chars
1Tille: Tree name I«'r 3 '
;| EipBuifer i
. 2
THewv Buf: Humber of evenis in Bazket & Baaket compizaaci barffer
. '
TLasl: poinier ta last used byte in Dasked | ¢ {f compreasian] BaSKetS

Stores

Figure 10 The Tree structure

6.11 Using Treesin Analysis

ROOT trees are not just optimized for access speed and data storage, but they also have a good set of
built in analysis methods. There are several ways to analyze data stored in a ROOT Tree
Using TTr ee: : Draw.
Thisisvery convenient and efficient for small tasks. A TTr ee: : Dr aw method produces one
histogram at the time. The histogram is automatically generated. The selection expression
may be specified in the command line.

Usingthe TTr eeVi ewer :
Thisisagraphical interfaceto TTr ee: : Dr awwith the same functionality.

Using the code generated by TTr ee: : MakeCl ass:
In this case, the user creates an instance of the analysis class. He has the control over the
event loop and he can generate an unlimited number of histograms.

Using the code generated by TTr ee: : MakeSel ect or:
Like for the code generated by TTr ee: : Maked ass, the user can do complex analysis.
However, he cannot control the event loop. The event loop is controlled by
TTree: : Process called by the user. This solution isillustrated in the example analysis
section at the end of this paper. The advantage of this method is that it can berunina
parallel environment using PROOF (the Parallel Root Facility).

6.12 TheTree Viewer
To bring up atree viewer call the TTree: : St art Vi ewer () method. This pictureshows the Tree
Viewer with several floating-point numbers | eafs.

Canvas Menu Leafs/Variables
@ TreeViewer: ; M [=] B3
File Edity ¥iew Options Inspect gpéses \4 Help

cal divisian

Break Button-——»

B *

Input Event List Box > | | Mtst] :
t

I

aervice

grade atep

I
[
[children
I
[

natior hrueel

o [
Variable Boxes - » | | i
N

4

Histogram Box — *
Output Event List Box — »| | Otist[_j
Draw Option Box-— —» | | Gept]

Draw Button-—» | | [Draw|
Scan Button-— » || [Sean|

| “ |
Selector Bar Recording Bufton Weight Box
Figure 11: The Tree Viewer

The tree viewer alows you to quickly histogram any variable in the tree by double clicking on the
leaf. With it, one can draw Lego plots, add cuts, select alist of events, and much more.
6.13 Simple Analysisusing TTree::Draw

To show the different Dr aw options, we create a canvas with four sub-pads. We will use one sub-pad for
each Dr aw command.

root [] TCanvas *myCanvas = new TCanvas("c","C', 0,0, 600, 400)
root [] myCanvas->Di vide(2, 2)

root [] myCanvas->cd(1)

root [] MyTree->Draw("fNtrack");

As you can see this signature of Dr aw has only one parameter. It is a string containing the leaf
name. We activate the second pad and use this version of Draw:

root [] myCanvas->cd(2)
root [] MyTree->Draw "sqrt (fNtrack): fNrack");

This signature still only has one parameter, but it now has two dimensions separated by a colon
(“x:y"). Theitem to be plotted can be an expression not just asimple variable. In general, this parameter
isastring that contains up to three expressions, one for each dimension, separated by a colon
(“el:e2:e3").

Change the active pad to 3, and add a selection to the list of parameters of the draw command.

root []nyCanvas->cd(3)
root []MyTree->Draw("sqrt(fNtrack):fNrack","fTenperature > 20.8");

Thiswill draw the fNtrack for the entries with atemperature above 20.8 degrees. In the selection
parameter, you can use any C++ operator, plus some functions defined in TFormula. The next parameter
is the draw option for the histogram:

root []nyCanvas->cd(4)
root []MyTree->Draw("sqrt(fNtrack): fNrack", "fTenperature > 20.8","surf2");

There are many draw options. Y ou can combine them in alist separated by commas. For the most
up to date list of the draw options please see: http://root.cern.ch/root/html/TH1.html#TH1:Draw

There are two more optional parameters to the Draw method: one is the number of entries and the
second one is the entry to start with.

Eie Edt Yirs Opliow jroperi Chwtes By
.| - J o]

=
e

L= wl (=] =] 1]

Figure 12: Draw Options

6.14 Creatingan Event List

TheTTr ee: : Draw method can also be used to build alist of the selected entries. When the first
argument is preceded by " >>" ROOT knows that this command is not intended to draw anything, but to
save the entriesin alist with the name given by the first argument. The resulting listisaTEvent Li st ,
and is added to the objectsin the current directory. For example, to createa TEvent Li st of al entries
with more than 600 tracks:

root [] TFile *f = new TFile("AFile.root")
root [] T->Draw(">> nyList", " fNtrack > 600")

Thislist contains the entry number of all entries with more than 600 tracks. To see the entry
numbersusethe TEvent Li st:: Print("all") method.

When using the " >>" whatever wasinthe TEvent Li st isoverwritten. The TEvent Li st can
be grown by using the " >>+" syntax. For example to add the entries, with exactly 600 tracks:

root [] T->Draw(">>+ nyList", " fNtrack == 600")

If the Draw command generates duplicate entries, they are not added to the list.
6.15 Usingan Event List

The TEvent Li st can beusedto limit the TTr ee tothe eventsin thelist. The Set Event Li st
method tells the tree to use the event list and hence limits all subsequent TTr ee methods to the entries
inthelist. In this example, we create alist with all entries with more than 600 tracks and then set it so
the Tree will usethislist. Toreset the TTr ee to use al events use Set Event Li st (0) .

In the code snipped below, the entries with over 600 tracks are saved in a TEvent Li st called
myLi st . We get thelist from the current directory and assign it to the variable | i st . Then we instruct
thetree T to use the new list and draw it again.

root [] T->Draw(">>nyList", " fNtrack >600")
root [] TEventList *list = (TEventList*)gDi rectory->CGet("nyList")
root [] T->SetEventList(list)
root [] T->Drawm("fNtrack ")
Fle Eot Jiew Cpoors ol Clasess Hep
%‘ | ntame
uE- Harl = 80
“ Meam = ED4.T
3 BMS = 3305 |

Figure 13: Histogram with the events from the Event list

6.16 Creating a Histogram
The TTree: : Draw method can aso be used to fill a specific histogram. The syntax is:

root [] TFile *f = new TFile("AFile.root")
root [] T->Draw("fNtrack >> nyHi sto")

root [] nmyHi sto->Print()

THL. Print Nane= nyHi sto, Total sune 200

As we can seg, this created a THL, called myHi st o. If you want to append more entries to the
histogram, you can use this syntax:

root [] T->Draw("fNtrack >>+ nyHisto")

If you want to fill a histogram, but not draw it you can usethe TTr ee: : Pr oj ect () method.

\root [T T->Project("quietHi sto","fNrack")

6.17 Treelnformation

Once we have drawn a tree, we can get information about the tree. These are the methods used to get
information from a drawn tree:

» Get Sel ect edRows: Ret ur ns the number of entries accepted by the selection expression.

In case where no selection was specified, it returns the number of entries processed.
e Get V1: Returnsapoi nt er to the double array of thefirst variable.
e Get V2: Returns apointer to the double array of second variable
e GetV3: Returnsapointer tot he double array of third variable.

e Get W Returns a pointer to the double array of weights where the weight equals the result of
the selection expression.

For a complete description and examples of these methods see:
http://root.cern.ch/root/html/T Tree.html#T Tree:Draw

6.18 More Complex Analysisusing TTree::MakeClass

The Dr aw method is convenient and easy to use, however it falls short if you need to do some
programming with the variable.

For example, for plotting the masses of all oppositely changed pairs of tracks, you would need to
write a program that loops over all events, finds all pairs of tracks, and calcul ates the required quantities.
We have shown how to retrieve the data arrays from the branches of the tree in the previous section, and
you could write that program from scratch. Since thisis avery common task, ROOT provides two
utilities that generate a skeleton class designed to loop over the entries of the tree. The
TTree: : MakeC ass andtheTTr ee: : MakeSel ect or methods. TTr ee: : MakeSel ect or is
explained and used in the next section with an example analysis.

6.19 Creating a Classwith MakeClass

We load the shared library | i bEvent . so to make the class definitions available, and open the ROOT
file. Inthefile, we seethe TTr ee, and we use the TTr ee: : MakeC ass method onit. Maked ass
takes one parameter, a string containing the name of the class to be made. In the command below, the
name of our class will be “MyClass’.

root [] .L libEvent.so
root [] TFile *f = new TFile ("Event.root");

root [] f->Is();

TFi | e** Event . r oot TTree benchmark ROOT file

TFi | e* Event . r oot TTree benchnmark ROOT file
KEY: THI1F htime;1 Real -Tine to wite versus tine
KEY: TTree T 1 An exanpl e of a ROOT tree
KEY: THI1F hstat;1 Event Hi stogram

root [] T->Maked ass("MC ass")
Files: Mydass.h and Myd ass. C generated from Tree: T
(Int_t)O0

Thecall to Maked ass created two files. My ass. h contains the class definition and several
methods, and MyCl ass. C contains MyCl ass: : Loop. The.C fileiskept as short as possible, and
contains only code that is intended for customization. The .h file contains all the other methods. Hereisa
description of each method.

« MU ass(TTree *tree=0): This constructor has an optional tree for a parameter. If you pass a
tree, Myl ass will useit rather than the tree from witch it was created.

« Void Init(TTree *tree): Initiscalled by the constructor to initialize the tree for reading. It
associates each branch with the corresponding leaf data member.

e ~Md ass(): Thisist he destructor, nothing special.

e Int t GetEntry(lnt _t entry): Thisloads the class with the entry specified. Once you
have executed Get Ent r y, the leaf datamembersin MyCl ass are set to the values of the entry. For

example, Get Ent ry(12) loads the 13" event into the event data member of MyClass (note that
thefirst entry is 0). Get Ent r y returns the number of bytes read.

e Int t LoadTree(lnt t entry)and void Notify():
These two methods are related to chains. LoadTr ee will load the tree containing the specified entry
fromachain of trees. Not i f y iscalled by LoadTr ee to adjust the branch addresses.

e void Loop(): Thisis the skeleton method that loops through each entry of the tree. This is
interesting to us, because we will need to customize it for our analysis.

6.20 CustomizingtheLoop

Here we see the implementation of My ass: : Loop() . Myd ass: : Loop consists of afor-
loop calling Get Ent ry for each entry. In the skeleton, the numbers of bytes are added up, but it does
nothing else. If we wereto execute it now, there would be no output.

void Myd ass: : Loop()
{
Int_t nentries = Int_t(fTree->CGetEntries());
Int_t nbytes = 0, nb = 0;
for (Int_t i=0; i<nentries;i++) {
if (LoadTree(i) < 0) break;
nb = fTree->CGet Entry(i); nbyt es += nb;
}
}

For analysis, we modify this method. For example, here we select the first 100 tracks of each event and
fill ahistogram with it.

void MyC ass: : Loop()

Track *track = 0; Int_t n_Tracks = O;
THLF *myHi sto = new TH1F("nyHi sto","fPx", 100, -5,5);
THLF *smal | Histo = new THIF("smal | ", "f Px", 100, -5,5);
for (Int_t i=0; i<nentries;i++) {
if (LoadTree(i) < 0) break;
GetEntry(i); n_Tracks = event->GetNtrack();
for (Int_t j =0; j < n_Tracks; j++){
track = (Track*) event->GetTracks()->At(j);
myHi sto->Fil |l (track->Get Px());
if (j <100){ smallHi sto->Fill(track->GetPx()); }

}
nyHi st o->Draw() ;
smal | Hi st o->Draw(" Sane") ;

Loading MyClass
To run the analysis the new class (MyC ass) needs to be loaded and instantiated.

root [] .L IibEvent.so
root [] .L MO ass.C
root [] MyOass m

Now we can call the methods of MyCl ass. For example, we can get a specific entry. In the code snipped
below, we get entry 0, and print the number of tracks (594). Then we get entry 1 and print the number of
tracks (597).

root [] mGetEntry(0)

(int)1

root [] mevent->Get Nt rack()
(I'nt_t)594

root [] mGetEntry(1)
(int)48045

root [] mevent->CetNtrack()
(Int_t)597

root [] m Loop()

1 d a : 1 B 1 H 1 i 1

Figure 14: Results of the event loop

7 PROOF: ROOT'SPARALLEL PROCESSING FACILITY

Building on the experience gained from the implementation and operation of the PIAF system we have
developed the parallel ROOT facility, PROOF. The main problems with PIAF were because its proper
parallel operation depended on a cluster of homogenous equally performing and equally loaded
machines. Due to PIAF's simplistic portioning of a job in N equa parts, where N is the number of
processors, the overall performance was governed by the slowest node. The running of a PIAF cluster
was an expensive operation since it required a cluster dedicated solely to PIAF. The cluster could not be
used for other types of jobs without destroying the PIAF performance.

In the implementation of PROOF, we made the dave servers the active components that ask the
master server for new work whenever they are ready. In the scheme the parallel processing performance
is afunction of the duration of each small job, packet, and the networking bandwidth and latency. Since
the bandwidth and latency of a networked cluster are fixed the main tunable parameter in this schemeis
the packet size. If the packet size is too small the parallelism will be destroyed by the communication
overhead caused by the many packets sent over the network between the master and the slave servers. If
the packet size is too large, the effect of the difference in performance of each node is not evened out
sufficiently.

Another very important factor is the location of the data. In most cases, we want to analyze alarge
number of data files, which are distributed over the different nodes of the cluster. To group these files
together we use a chain. A chain provides a single logical view of the many physical files. To optimize
performance by preventing huge amounts of data being transferred over the network via NFS or any
other means when anayzing a chain, we make sure that each slave server is assigned a packet, which is
local to the node. Only when a slave has processed al its local data will it get packets assigned that
cause remote access. A packet is a simple data structure of two numbers: begin event and number of
events. The master server generates a packet when asked for by a slave server, taking into account t the
time it took to process the previous packet and which files in the chain are local to the lave server. The
master keeps a list of al generated packets per slave, so in case a slave dies during processing, al its
packets can be reprocessed by the left over daves.

8 USEFUL LINKS

The ROOT websiteis at: http://root.cern.ch

Various papers and talks on ROOT: http://root.cern.ch/root/Publications.html
Documentation on each ROOT class:http://root.cern.ch/root/html/Classindex.html

Documentation on |O: http://root.cern.ch/root/l nputOutput.html

9 SUPPORTED PLATFORMSAND COMPILERS

ROQT isavailable on these platform/compiler combinations:
- Intel x86 Linux (g++, egcs and KAI/KCC)
- Intel Itanium Linux (g++)
- HPHP-UX 10.x (HP CC and aCC, egcsl.2 C++ compilers)
- IBM AIX 4.1 (xIc compiler and egcsl.2)
- Sun Solarisfor SPARC (SUN C++ compiler and egcs)
- Sun Solarisfor x86 (SUN C++ compiler)
- Compaqg Alpha OSF1 (egcsl.2 and DEC/CXX)
- Compaq AlphaLinux (egcsl.2)
- SGlI Irix (g++ , KAI/KCC and SGI C++ compiler)
- Windows NT and Windows95 (Visual C++ compiler)
- Mac MKkLinux and Linux PPC (g++)
- Hitachi HI-UX (egcs)
- LynxOS
- MacOS (CodeWarrior, no graphics)

