
ar
X

iv
:h

ep
-l

at
/0

10
20

11
v1

 2
5

Fe
b

20
01

apeNEXT: A MULTI-TFLOPS LQCD COMPUTING PROJECT

R. Alfieri, R. Di Renzo, E. Onofri

Dipartimento di Fisica, Università di Parma, and
INFN, Gruppo collegato di Parma, Parco Area delle Scienze, I-43100 Parma,

Italy.

A. Bartoloni, C. Battista, N. Cabibbo, M. Cosimi,

A. Lonardo, A. Michelotti, F. Rapuano, B. Proietti,

D. Rossetti, G. Sacco, S. Tassa,

M. Torelli, P. Vicini

Dipartimento di Fisica, Università di Roma ‘La Sapienza’ and
INFN, Sezione di Roma, P.le A. Moro 2, I-00185 Roma, Italy.

Ph. Boucaud, O. Pène

Laboratoire de Physique Théorique
Université de Paris-sud (Orsay), France.

W. Errico, G. Magazzù, L. Sartori, F. Schifano, R. Tripiccione

INFN, Sezione di Pisa, Via Livornese 1291, I-56010 San Piero a Grado, Italy.

P. De Riso, R. Petronzio

Dipartimento di Fisica, Università di Roma II ‘Tor Vergata’ and
INFN, Sezione di Roma II, Via della Ricerca Scientifica, 1 - 00133 Roma,Italy.

C. Destri, R. Frezzotti, G. Marchesini

Dipartimento di Fisica, Università di Milano-Bicocca and
INFN, Sezione di Milano, Via Celoria 16, I-20100 Milano, Italy.

U. Gensch, A. Kretzschmann, H. Leich,

N. Paschedag, U. Schwendicke, H. Simma,

R. Sommer, K. Sulanke, P. Wegner

DESY, Platanenallee 6, D-15738 Zeuthen, Germany.

D. Pleiter, K. Jansen

NIC@DESY, Platanenallee 6, D-15738 Zeuthen, Germany.

A. Fucci, B. Martin, J. Pech

CERN, CH-1211 Geneva 23, Switzerland.

1

http://arxiv.org/abs/hep-lat/0102011v1

E. Panizzi

Dipartimento di Ingegneria Elettrica, Università de l’Aquila and
INFN, Sezione di Roma, P.le A. Moro 2, I-00185 Roma, Italy.

A. Petricola

Dipartimento di Ingegneria Elettrica, Università de l’Aquila and
INFN, Laboratori Nazionali del Gran Sasso, Assergi, Italy.

2

ABSTRACT

This paper is a slightly modified and reduced version of the proposal of the
apeNEXT project, which was submitted to DESY and INFN in spring 2000.
It presents the basic motivations and ideas of a next generation lattice QCD
(LQCD) computing project, whose goal is the construction and operation of
several large scale Multi-TFlops LQCD engines, providing an integrated peak
performance of tens of TFlops, and a sustained (double precision) performance
on key LQCD kernels of about 50% of peak speed. The software environment
supporting these machine is organized in such a way that it allows relatively
easy migration between apeNEXT and more traditional computer systems.
We describe the physics motivations behind the project and the hardware and
software architecture of the new LQCD engine.

3

1 Introduction

Several research groups in the Lattice QCD (LQCD) community have devel-
oped LQCD optimized massively parallel processors [1]. These systems have
provided in the last decade a significant fraction of all compute cycles available
all over the world for lattice simulations. In this framework, INFN and DESY
have developed the APEmille parallel processor. APEmille is a LQCD oriented
massively parallel number-cruncher [2], providing peak performance of several
hundred Gflops. The first APEmille systems have been commissioned in late
1999. More machines have become available since then and yet a few more will
be built in the near future (see later for details).

We expect APEmille machines to become the work-horse for LQCD com-
puting in several laboratories in Europe in the next few years. It is however
clear (and explained in detail in a following section) that APEmille is unable to
support serious LQCD simulations at the level expected after the year 2003.

The continuing physics motivation to pursue numerical studies of lattice
QCD and the level of needed computing resources have been analyzed in detail
by a review panel appointed by the European Committee for Future Accelerator
(ECFA) [3]. We fully endorse the conclusions of the ECFA report (which can
be regarded as an ideal introduction to the present document). In this paper we
present a proposal for a new lattice QCD project that builds on the experience
of the previous generation APE machines and tries to implement several of the
recommendations of the ECFA panel. This paper is an enlarged and improved
version of a preliminary proposal [4], submitted to the INFN Board of Directors
in summer 1999.

The new project (that we refer to as apeNEXT) is characterized by the
following architectural goals:

• an expected peak performance for large machines in excess of 5 TFlops,
using double precision floating point arithmetics.

• a sustained (double precision) efficiency of about 50% on key LQCD ker-
nels (such as the inversion of the Dirac operator).

• a large on-line data storage (512 GByte to 1 TByte for large machines).

• input/output channels able to sustain a data-rate of 0.5 MByte/sec/GFlops.

• a programming environment that allows relatively straightforward and
easy migration of physics codes between apeNEXT and more traditional
computer systems.

4

From the point of view of the organization of the project, the following points
are in order:

• the apeNEXT architecture will be very closely optimized to LQCD sim-
ulations. In other words, apeNEXT will be more tuned towards LQCD
than APEmille.

• The general know-how of APEmille, as well as several important building
blocks, will be heavily reused in the new project (properly rescaled to keep
technology advances into account). This is a key point that we plan to
leverage on, in order to shorten development time.

• We plan from the beginning the installation of several large machines at
approximately the same time at several collaboration sites. (Collaboration
membership is also somewhat enlarged in comparison with APEmille).
Stated otherwise, we plan to build up very high processing performance
for LQCD (of the order of several tens of TFlops) by operating in a loosely
coordinated way several machines.

• Provisions to facilitate an industrial exploitation of the project are not one
of the stated goals of the project. We do see however that several building
blocks of the project (most notably in the area of inter-node communi-
cations) may have an important impact on other areas of computing for
physics (and, more generally, for cluster computing or farming). We will
do our best to make our results reusable.

This paper describes the hardware and software architecture that we plan to
develop. It does not cover the organization of the project, the proposed schedule
of our activities and any financial issues. These points are considered elsewhere.
The paper is organized as follows:

• Section 2 discusses the physics goals of the project and their correspond-
ing computing requirements (in terms of processing performance, data
storage, bandwidth).

• Section 3 briefly summarizes the APEmille architecture and substantiates
the need for a new project.

• Section 4 reviews similar planned or started projects.

• Section 5 surveys the status and prospects of some enabling technologies
for our project.

• Section 6 discusses advantages and disadvantages of custom versus off-
the-shelf technologies for the processing element of the new computer.

5

• Section 7 presents the global architecture of our new massively parallel
LQCD machine.

• Section 8 describes the details of the processing node.

• Section 9 covers the architecture of the interconnection network.

• Section 10 discusses several possible options for the topology and the
mechanical set-up of the system.

• Section 11 is the first section on software. Here we describe the pro-
gramming environment that we plan to develop for apeNEXT.

• Section 12 is a matching section discussing the operating system and
other system-software issues.

• Section 13 reviews the design method that we plan to follow in the
development of the system.

• Section 14 contains our conclusions.

2 Physics Requirements

In the definition of the new project we keep a clear focus on a very limited
number of important physics simulation areas, that set the requirements for the
new project.

The translation of physics requirements into machine parameters requires
certain assumptions about the algorithms to be used. We base our consider-
ations on tested algorithms such as SSOR-preconditioned BiCGstab and Hy-
brid Monte Carlo, for Wilson fermions with improved action [5]. New theoreti-
cal developments (domain wall fermions, Wilson-Dirac operators satisfying the
Ginsparg-Wilson relation, etc.) are likely to be implemented in a way which has
computational characteristics very similar to the standard Dirac operator.

We expect that in the years 2003-2006, large production LQCD simulations
will be mainly focused on the following lines:

• full QCD simulations (including dynamical fermions) on lattices with sizes
of the order of 483×96 (a physical system of L = 2÷4 fm and a = 0.1÷0.05
fm). Dynamical quark masses should also decrease, with a reasonable
target corresponding to mπ/mρ ≃ 0.35 (although it is not realistic to
expect that both goals are obtained in the same simulation).

6

• simulations in the quenched approximation on very large lattices (1003 ×
100 ÷ 200) and large β (L = 1.5 ÷ 2.0 fm and a = 0.1 ÷ 0.02 fm) for the
study of b physics with as little extrapolation as possible in the mass of
the heavy quark.

The first item is heavily CPU limited, since one has to solve the Dirac
equation repeatedly during the updating process. The second item is basically
memory limited, due to very large lattice size. In both cases, our target is a
resolution about two-times better than currently possible (implying, as discussed
later on, an increase in computing power of two orders of magnitude).

As a guideline to define a new LQCD engine for these classes of problems,
we require that:

1. The node-topology and communication network is optimized for the lattice
sizes required in full QCD simulations. Since for many problems of LQCD
it is important to perform a finite-size scaling analysis, it is desirable that
the machine performs efficiently not only on large but also on compara-
tively small lattices, e.g., in full QCD one may think of N3

L ×NT lattices
with NL = 16, 20, ..., 32 and 48, and NL ≤ NT ≤ 2NL. For smaller lat-
tices, as the required computing performance decreases, more traditional
machines (such as PC clusters) or previous generation dedicated systems
can be used.

2. The communication network has enough bandwidth to handle the large
degree of data exchange between neighbouring sites (and hence compute
nodes) needed in LQCD computations. The interconnect architecture
should support the natural (APE-like) programming model with direct
remote data access [6]. This approach minimizes software and memory
overhead (and coding effort) for pre-loading of remote data.

3. The processing nodes sustain high performance on the execution of the
arithmetic and control operations which are relevant for the codes (or
at least their basic kernels) of full-QCD algorithms, in particular double
precision floating point arithmetics, memory access to field variables of
composed data structures, local and global program-flow control, etc.

To obtain a good floating-point efficiency for the execution of a given com-
putation, the compute power and memory bandwidth should be balanced
accordingly. This balance is usually measured in term of the parameter R,
defined as the ratio between the number of floating-point operations and
the corresponding memory accesses (in the corresponding data format).
A processor is balanced for a given algorithm if the R value required by
the algorithm is roughly equal to the R value allowed by the processor

7

itself. In the case of the Dirac operator, which usually dominates the cost
in LQCD computations, a typical value is R ≃ 4.

4. Memory size, disk space and disk-bandwidth match each other and are well
suited to the problems we want to study. This means that all compute
intensive kernels must not be slowed significantly because required data is
not available in main memory. We must keep all data in physical memory
as long as possible. In all cases in which this is not possible (e.g., for light-
fermion propagators on very large lattices) we must be able to temporarily
store on (and retrieve from) disk with large enough bandwidth.

These requirements shape the global architecture of the machine:

1. We consider architectures based on three dimensional grids of processors,
with nearest neighbour data-links. Reasonable sizes of the mesh of pro-
cessors that will be used for the simulation of large lattices are somewhere
in the range 83 · · · 123 · · · 163 nodes, where a physical lattice of 483 × 96
points can be readily mapped. For finite size analysis on small lattices, a
mesh of 43 · · · 63 processors may be considered.

The size of the processor mesh dictates a lower bound on the communica-
tion bandwidth between neighbouring processors. We define by ρ the ratio
of local memory accesses (transfers between processor and its memory)
over remote memory accesses (transfers between neighbour processors),
which depends on the lattice size and the algorithm. Under the assump-
tion of balanced local bandwidth (i.e., processors are able to access enough
data in local memory to sustain their potential performance, see later for
details), effective bandwidth1 for remote communications must not be
lower than 1/ρ times the local bandwidth. Estimates of the required ratio
for a naive implementation of the Dirac operator using Wilson fermions
are given in table 1 for a sub-lattice of n3

L ×NT physical points and local
time direction per processor (note that, to first approximation, ρ ≃ 2nL).

A nice and simple trick can be used in the computation of the Dirac
operator to reduce the number of remote accesses. For the negative di-
rections the Dirac operator involves terms of the type U †

µ(x− µ)ψ(x− µ)
where the fermion term ψ and the corresponding gauge matrix (U) must
be fetched from the same place. We can therefore evaluate the product
Uµ(x − µ)ψ(x − µ) on the remote node and transfer the result only. In
brief, all remote accesses involving gauge fields disappear. Table 2 contains
the ρ values corresponding to the evaluation of the Dirac operator using
the above mentioned technique. We consider the comfortably increased
ρ values as an useful safety margin, that could be exploited to increase

1 including the effect of the start-up latency for typical packet lengths.

8

Linear lattice size ρ
33 5.8
43 7.8
63 11.6
83 15.5

Table 1: Local vs. remote memory access patterns: ρ is the ratio of memory
accesses to local memory over memory accesses to neighbour nodes in a simple
implementation of the solver for the Dirac operator. ρ is estimated as a function
of the linear size of the sub-lattice mapped onto each processor.

the floating point performance of each node, at fixed remote bandwidth.
Clearly the actual values of ρ which can be accepted must be studied more

Linear lattice size ρ
33 7.5
43 10
63 15
83 20

3 × 6 × 6 11.25
3 × 4 × 4 9

Table 2: Local vs remote memory accesses: this table is the same as the previous
one, except that ρ is estimated taking into account the trick, described in the
text, that reduces remote accesses. The last two entries refer to non-square
sub-lattices that might be used when simulating a lattice of spatial size 483 on
large machines with 16 × 8 × 8 or 16 × 12 × 12 nodes.

carefully (possibly simulating architectural details of the mechanisms that
hide remote communications)

2. To discuss memory-size requirements in more details, one has to distin-
guish between the case of full QCD simulations and calculations in the
quenched approximation.

In full QCD simulations, by far the largest amount of time is spent in
the updating process. In this case, on-line memory has to be large enough
to allow for the implementation of efficient algorithms. State-of-the-art
update algorithms need a large number of auxiliary fields on each lattice
site. We use as unity the amount of memory associated to one fermion
field (24 data words, corresponding to 192 Bytes in double precision. We
call this quantity a fermion equivalent - feq - in the following). A generous

9

Uab(x, µ) gauge fields 72 W 3 feq

Sαβ
ab (x, 0) fermion propagator 288 W 12 feq
ψα

a (x) (pseudo-) fermion field 24 W 1 feq

(σ · F)αβ
ab (x) Pauli term for improvement 72 W 3 feq

Table 3: Data structures used in LQCD and corresponding memory require-
ments (in words and fermion equivalent storage) per lattice point. Greek indices
run from 1 to 4 and Latin indices from 1 to 3. The first three entries are general
complex matrices, while the Pauli term is hermitian: (σ · F)αβ

ab = [(σ · F)βα
ba]∗.

estimate, leaving space for more sophisticated, presumably more memory
intensive algorithms, is about ≃ 200 feq per site.

On the other hand, in the case of the quenched approximation, the up-
dating process may be neglected for both computing power and memory
requirements (less than 10 feq per lattice site are needed). Instead, we have
to consider the memory requirement originating from the measurement of
a heavy-light form-factor. The database needed for such a calculation
consists of one gauge field configuration, one Pauli term, Nl +Nh fermion
propagators (Nh and Nl are the numbers of heavy and light fermions
respectively), each replicated for the number of momenta and operator
insertions used and for each lattice site (typical cases, being Nh = Nl = 4,
3 momenta and one operator insertion). Quenched QCD will be used es-
sentially for heavy quark phenomenology. Here the real problem is the
extrapolation to the b quark mass. To be safe one should have a physical
cutoff much larger than the masses that enter the simulation. Then large
lattices, of the order of 1004, are necessary.

We summarize our memory requirements in table 3 (where the size of the
relevant data structures are presented) and in table 4, where actual mem-
ory sizes are collected, under the assumptions of using double precision2

throughout. From the first two lines of table 4, we see that we cannot ex-
pect to keep the whole data-base in physical memory when large lattices
are considered. However, if only two propagators at the time are kept
in memory, for ease of programming, while the others are either recalcu-
lated (the heavy ones) or stored and reloaded from disk (the light ones),
memory requirements reduce sharply (third line in the table).

We conclude that, by judiciously swapping data to disks, a memory size
of the order of ≥ 1 TByte is a good compromise for both our case studies.
Alternatively, one might consider two memory options: a small memory

2The necessity of double precision arithmetic in full QCD has been investigated in the
literature [7] and will not be discussed here.

10

machine (≃ 500 GByte) for full QCD and a large memory version (1 ÷ 2
TByte) for quenched studies.

Case updating measurement
small lattice, full QCD 400 G 1.4 T

large lattice, quenched QCD 200 G 13 T
large lattice + disk 200 G 1.8 T

Table 4: Total memory requirements for the case studies discussed in the text.
The line labeled + disk refers to the case in which two propagators only are
kept in memory (all others being swapped onto disk or recomputed).

3. Fast input-output is mandatory, as obvious from the previous point, for
studies on large lattices. As a rule of thumb, we may want to load or
store one (large lattice) propagator (≃ 250 GBytes) in little more than one
minute. This requires a global bandwidth of the order of 2−3 GBytes/sec.

For full QCD permanent storage of the configurations is required due to
the computing effort needed to generate them. This is a storage-density
(as opposed to bandwidth) problem which is independent of the machine
architecture and should be discussed in a different context, with potential
links with the GRID [8] project, likely to be supported by the European
Commission. In the case of large lattices in quenched QCD the strategy
of computing on the fly without saving configurations is the best. Only
the final correlation functions are saved and this means at most a few tens
of MBytes per configuration.

Processing performance is strictly speaking not a clear-cut requirement: the
more is available, the better. We can estimate how much is enough, however,
by extrapolating the present state of the art. A sustained performance of 300
GFlops (with perhaps 40% efficiency) is now heavily used for full QCD simu-
lations on lattices of size 243 × 48 [9]. If we assume a critical slowing down
where computer time grows like a−7 [10], we would like to have a sustained
performance two orders of magnitude higher if we want to halve a.

An ambitious target for our project is therefore a total installed performance
in the order of 10÷ 30 TFlops. From the point of view of physics requirements,
it is not important that this computing power be sustained on a single system.
Several smaller machines can perform equally well (or perhaps better), as long
as each of them is able to handle large enough lattices.

Also, we must envisage the operation of some lower performance (and cor-
respondingly smaller memory) machines, where small lattices are handled and

11

algorithms, programs and physical parameters are tuned before a large calcula-
tion is moved onto a large production machine.

3 The APEmille Project

In this section we briefly review APEmille.

APEmille is the present generation APE project. It is based on the standard
structure of a large array of processing nodes arranged at the edges of a three
dimensional mesh and operating in SIMD mode.

At present (November 2000), several medium-size installations are up and
running, while several larger units are under construction (see table 5). Consid-
ering all large and small machines, the integrated peak performance available at
the end of the year 2000 will be about 1 TFlops at INFN and about 400 Gflops
at DESY. The largest single system will have a peak performance of 250 (possi-
bly 500 Gflops). Other institutions in Europe are procuring (or considering to
procure) APEmille machines.

Site peak performance status
Rome 260 Gflops running
Zeuthen 130 Gflops running
Rome II 65 Gflops running
Bielefeld 80 Gflops running
Milano/Parma 130 GFlops planned, Dec. 2000
Pisa 130 Gflops planned, Dec. 2000
Rome II + 65 Gflops planned, Dec. 2000
Rome + 260 Gflops planned, Dec. 2000
Zeuthen + 260 Gflops planned, Spring 2001

Table 5: A short list of some large APEmille existing installations and of plans
for the near future.

In a typical critical LQCD kernel (a solver for the Dirac operator) coded in
the high level TAO programming language, measured sustained performance in
single precision is about 44% of peak performance and in double precision it
is about 19% of peak single precision (i.e. 80% of peak performance in double
precision). Higher efficiency can be obtained with more careful programming:
we have pushed single precision performances up to about 58% of peak speed
writing the key portions of the Dirac solver in assembly.

In a later section, we will claim that an architecture à la APEmille continues

12

to be a very good choice for LQCD computing. We see however a number of
problems in APEmille, all pointing to the development of a new generation
system:

• Peak Performance APEmille machines can be made larger than we plan
to build, but not too large. The largest system that can be assembled with
the present hardware building blocks is a configuration of 8×8×32 nodes,
corresponding to 1 TFlops peak performance (APEmille systems can be
configured in principle as 8×8×2n arrays). Still larger systems would need
some minor hardware development and would probably be not convenient
in LQCD, since they have an unordinately large number of nodes along
one dimension.

• Memory Size The very large APEmille machine described above has 64
GBytes memory. This is still several times lower than discussed in the
section on requirements.

• Floating-point precision APEmille is basically a single precision ma-
chine (performance decreases by factors from 2 to four in double preci-
sion). However, in future large LQCD simulations double precision will
be necessary in an increasing number of cases.

• Little space for improvements APEmille is architecturally very sim-
ple, since it relies on accurate and rigid hardware synchronization. This
style of synchronization is difficult to support if the system clock is in-
creased significantly. For this reason, we see little space for incremental
improvements in performance.

4 A Review of Similar Projects

In this section, we gather some information on similar projects, carried out
by other groups. To the best of our knowledge, the following activities are in
progress:

• CP-PACS

The CP-PACS collaboration have made a feasibility study of a future
project which follows the CP-PACS project. Extrapolating the data of
the performance obtained in recent full QCD simulations on the CP-PACS
computer, they have estimated the computer time required for a large-
scale full QCD calculation, with the quality of data comparable to that
of the present quenched QCD study on the CP-PACS. They assume that
lattice action and the simulation algorithm are identical to the present

13

simulation on the CP-PACS. Their estimate, ≃ 100 TFlops ·year [11],
is somewhat larger than the one of the ECFA panel. In addition to their
feasibility study, CP-PACS are carrying out basic research on the following
two topics, that they consider as very important technologies for the next-
generation of massively parallel computers:

– Development of an architecture of high-performance memory-inte-
grated processor for the next generation massively parallel comput-
ers.

– Establishment of a model of parallel I/O, parallel visualization and
man-machine interface, which can process efficiently and flexibly the
enormous amount of data generated by massively parallel computers.

CP-PACS hope they will have a chance to develop a next-generation com-
puter using the results of their basic research in the near future, but they
do not have a project at the present time.

• Columbia The Columbia group have officially embarked on the design
and construction of their next machine [12]. The design effort is still on a
fairly high level with choice of processor and communications technology
being the first questions that have been resolved. Most significant is the
choice of microprocessor, which is provided by an IBM PowerPC core.
This follows from an arrangement with IBM that permits to exploit pro-
prietary technology to construct a full processing node (memory included)
on a single chip. This feature provides the name to the new project QCD
on a Chip (QCDOC). The node will contain a PowerPC 440 core, one
64-bit, 1 Gflops FPU (an integrated part of the PowerPC architecture),
4 MBytes of embedded DRAM and 8 bi-directional serial inter-processor
links, each operating at 0.5 Gigabits/sec. If they are able to achieve this
frequency, this would give a total off-node communications bandwidth of
1 GBytes/sec.

The group is now busy to determine the other details of the project and
begin the detailed design of the node.

We also include an arbitrary selection of two (out of the many) interesting
examples of PC-based cluster architectures for comparison.

• The Wuppertal Cluster ALiCE

The ”Institut für Angewandte Informatik” at Wuppertal University has
installed the first half of the Alpha-Linux-Cluster-Engine (ALiCE) in 1999.
When the system is fully installed, in May 2000, it will consist of 128 DS10
uni-processor workstations connected by a Myrinet multi-stage crossbar

14

switch. All CPUs will be upgraded to 600 MHz Alpha 21264 EV67 chips
with 2 MBytes second level off-chip cache [13].

The cluster is intended to perform efficiently in several HPC application
profiles at the University of Wuppertal, including computational chem-
istry, electrical engineering, scientific computing and simulations of quan-
tum field theories.

Of particular interest is the operability of this self-made system in a Uni-
versity’s multi-user environment. In computer lab courses, the emphasis
is on ”Physics by High Performance Computers”. Several student groups
use the system simultaneously in interactive mode much alike a desk-top
system.

A forward looking ALiCE-project, to be carried out together with the de-
velopers of the ParaStation communication software from Karlsruhe uni-
versity, deals with optimization of efficiency and data organization for AL-
iCE under real life conditions, in particular with the goal to make parallel
I/O and file system functionalities available.

• PMS, The Poor Man’s Supercomputer A PC cluster has also been
developed at Eötvös University in Budapest [15]. The current version of
PMS has 32 PC’s. Contrary to the previous example, the PMS project
has developed QCD-optimized communication hardware. They use dedi-
cated add-on boards to establish physical communications between nearest
neighbour PC’s in a three dimensional array. The actual configuration of
32 PC’s can be imagined as a 2 × 4 × 4 mesh of processors. The system
uses a standard Linux operating system and the favoured programming
style is the well tested SIMD paradigm.

The present version of PMS is shaped by the requirement to reduce costs
as much as possible. Indeed, PMS uses cheap AMD K6-2 processors (de-
livering only 225 MFlops each) while the special purpose communication
interface has a bandwidth of just 2 MBytes/sec. We consider the PMS as
a very good trade-off between the advantages offered by the use of general
purpose systems and the performance boost that dedicated hardware is
able to provide.

• The MIT-Jefferson Lab project This project is organized in two
phases. Phase I has been submitted to DOE in march 1999 [14] for a 256-
processor cluster at JLab and a 64-processor cluster at MIT. The building
block is a 4-processor Compaq SMP node with a 750 MHz Alpha 21264
chip, 4 MB cache/processor and 1 Gbyte memory/SMP. The communica-
tion network is based on Myrinet switches. They plan to achieve a cost per
sustained MFlops lower than $10. The collaboration currently operates a
12 node prototype cluster equipped with 667 MHz Alpha 21264 at MIT.
They plan to complete phase I by 2001. The collaboration has a quite

15

intensive physics program mainly devoted to nucleon structure. Phase II
of the project, not approved yet, foresees, in the years 2002-2005, multi-
Teraflop machines from a combination of QCDOC and clusters. They
are collaborating with Compaq to explore resources available at that time
(EV7 and EV8).

5 Technological Scenarios

In this section we discuss forecasts about the state of the art for several enabling
technologies in the years 2001-2002. We cover the following points:

1. basic digital VLSI technology.

2. memory technology.

3. data-links.

4. Off-the-shelf processors.

5. The Crusoe architecture.

We conclude the section with a discussion of the architectural implications of
the technology-driven choice of overcoming the strictly synchronous operation
of APE100 and APEmille.

5.1 VLSI Technology

APEmille is based on a chip-set designed with a 0.5µ digital CMOS technology.
A second source for the chip-set has been established, using a more advanced
0.35µ technology. In the next few years, 0.25µ and 0.18µ CMOS technologies
will be readily available.

A comparison of some key features of the silicon technologies used in APE-
mille and of a representative of both 0.25µ and 0.18µ technologies is made in
table 6.

The figures quoted in the table refer to processes that are (or will be) readily
available through the same European silicon broker that helped us develop the
second source of the APEmille chip set.

Let us consider a scaled version of the APEmille processor. If we use a 0.18µ
process, it should be easy to reach a clock speed between three to five times

16

Feature ES2 0.5µ Alcatel 0.35µ UMC 0.25µ UMC 0.18µ
VDD 3.3 V 3.3 V 2.5 V 1.8 V
Gate delay 180 ps 100 ps 75 ps 36 ps
Gate density 10 K/mm2 20 K/mm2 45 K/mm2 90 K/mm2

Memory (1P) 11 Kb/mm2 25 Kb/mm2 44 Kb/mm2 85 Kb/mm2

Memory (2P) 6 Kb/mm2 8 Kb/mm2 16 Kb/mm2 30 Kb/mm2

Power/gate 0.5µW/MHz 0.4µW/MHz 0.2µW/MHz 0.1µW/Mhz

Table 6: A summary of some key parameters for digital silicon technologies used
in APEmille and proposed for apeNEXT. All values are directly obtained from
the relevant silicon foundries, except for the bit density of 1 Port or 2 Ports
memory arrays in the UMC technology. The latter are based on conservatively
applied scaling rules

higher than in APEmille, while we may expect to squeeze up to 9 times more
transistors onto the same silicon area. We can stay on the safe side planning to
use a clock frequency of 200 MHz. An LQCD optimized processor running at this
clock frequency with one floating-point pipeline would peak at 1.6 Gflops , using
the well known normal operation a × b + c, performed on complex operands.
A chip three times more complex than J1000 (and three times faster) would
dissipate less than two times more power.

5.2 Memory Technology

We limit ourselves to memory systems used in future high-end PC’s or low-
end workstations. This choice (the same as APE100 and APEmille) should be
the most effective to provide the highest level of integration, reduce costs and
guarantee part availability.

In the near future, planned memory systems are either RAMBUS DRAM’s
or DDR SDRAM’s.3

The DDR SDRAM (Double Data Rate Synchronous DRAM), is the evo-
lution of the mature SDRAM (Synchronous DRAM) technology (widely used
in the APEmille machine). The SDRAM is a low latency burst oriented de-
vice made of multiple (2 to 4) banks of asynchronous DRAM controlled by a
synchronous controller which allows pipelining of the I/O interface (one word
is accessed for every clock cycle). The Double Data Rate architecture realizes

3In the following we do not distinguish between traditional DDR SDRAM and new
“flavour” DDR SDRAM like Sync-Link because both are evolutionary designs of the same
basic structure.

17

two data transfers per clock cycle using both edges of the clock and one special
reference signal to fetch corresponding data.

The RAMBUS is a more advance memory architecture which works as a chip-
to-chip system-level interface rather than a conventional memory device. The
RAMBUS RDRAM (which stands for RAMBUS Direct Dram) shares the same
architectural idea of the SDRAM one, a core asynchronous plus a synchronous
controller. It makes use of a large degree of parallelism (32 interleaved memory
banks) on a narrow internal bus. The RAMBUS RDRAM is based on the
Direct RAMBUS Channel, a high speed 16-bit bus at a clock rate of 400 MHz,
which thanks to the adoption of a dedicated signalling technology (RAMBUS
Signalling Level) allows 600 MHz to 800 MHz data transfers.

In table 7 we summarize the main features of the two technologies, for cur-
rently available and next generation (less than 2 years from now) chips.

DDR RDRAM DDR RDRAM
Data rate 200 MHz 800 MHz 400 MHz 800 MHz

Memory size 256 Mbit 128/144 Mbit 1 Gbit 256 Mbit
Organization x4,x8,x16 x16,x18 x16,x32 x16,x18

Peak bandwidth 0.4 GB/s (x16) 1.6 GB/s 1.6 GB/s (x32) 1.6 GB/s
Package TSOP(66) BGA TSOP(80) BGA

Power (VCC) 2.5 V 2.5 V 1.8/2.5 V 1.8 V
I/O type SSTL2 RSL SSTL (?) RSL (?)

Power cons. 80 mA 330 mA ? ?
Cost (norm.) 1.0 1.8 ? ?
Sample/Prod. Now/Now Now/Now 3Q99/4Q00 ?

Table 7: A summary of several important figures for two options of dynamic
RAM’s. The second and third columns refer to presently available DDR and
RAMBUS devices. The fourth and fifth columns refer to the expected evolution
of these devices in the next two years.

Some comments are in order:

• The simple architecture of the DDR SDRAM allows larger memory size
per device. For a given fixed amount of memory, this reduces the number
of used components.

• Since power consumption is proportional to the interface clock (a factor 4
between RAMBUS e DDR), aggregated memory systems using the DDR
SDRAM reduce the global consumption.

18

• On the other hand the extremely high peak bandwidth of the RAMBUS
allows to build a very fast memory system with minimum impact on board
space occupancy (compact BGA packaging).

• The logic complexity of a RAMBUS interface is much larger than for a
DDRAM controller (the latter could be easily designed on the basis of the
experience done in the realization of the APEmille memory controller).
On the other hand, several silicon foundries make a RAMBUS controller
available as a core cell.

We conclude this section by presenting in table 8 two possible DDRAM-based
memory systems for apeNEXT. The performance target is set by our basic
performance figure, discussed in the previous subsection of 1.6Gflops and R =
4, leading to a bandwidth requirements of at least 3.2 GBytes/sec (assuming
double precision data words throughout).

chip-size 1 Gbit 1 Gbit
chip organization 32 bits 32 bits
chip number 4 2
word size 128 bit 64 bit
bank size 512 MBytes 256 MBytes
frequency 300 MHz 400 MHz
total bandwidth 4.8 GBytes/sec 3.2 GBytes/sec
power consumption 640 mW 400 mW

Table 8: Basic features of two possible memory systems for apeNEXT based
on DDRAM memory technology. Power consumption is estimated by rescaling
data available for present generation systems

In conclusion, forthcoming memory technology is adequate to support the
processor performance discussed above. There is in fact reasonable space to
consider either fatter node processors, or multi-processor chips.

5.3 Data-link Technology

We now consider remote communications which, in our opinion, is a key tech-
nological challenge for the project.

Assuming our reference figures - 1.6 Gflops per node, along with R = 4, and
ρ = 8 (as defined in the previous sections) - we require an inter-processor com-
munication bandwidth of about 400 MBytes/sec. As discussed above, several
code optimization steps are able to reduce the amount of data to be transferred.

19

The overlap between computation and communication can also be increased. All
this steps reduce bandwidth requirements. We will stick however to the previous
figure, so a large safety margin is established.

The needed communication patterns are however very simple: communica-
tions are needed between nearest-neighbours (L-shaped paths, between next-
to-nearest neighbours are also useful) in a 3-d array of processors, where each
processor has 6 direct links to its nearest neighbours. The real challenge in this
area is therefore more the implementation of a fast, reliable and cheap link than
the development of any clever routing strategy.

In APE100 and APEmille, links use large, parallel and synchronous data
paths. Data words are injected at the transmitting end of the line following a
rising transition of the clock and are strobed into the receiving end of the line
at the next rising edge of the clock. This works if

Tt < Tclock (1)

∆Tclock << Tclock (2)

where Tt is the travel time over the physical link, Tclock is the clock period and
∆Tclock is the phase spread between (nominally aligned) clock signals at various
places in the machine. The conditions are met in APEmille, where Tclock =
30ns, Tt ≃ 10ns and ∆Tclock ≃ 4ns, while they become clearly unrealistic for
frequencies of ≃ 200 MHz.

More advanced (high bandwidth) link technologies have recently become
available, in which data and timing information are both encoded on the physical
link, so asynchronous operation is possible. In the bandwidth range relevant for
us, we have considered three different options:

• Myrinet-like links. The physical layer of the Myrinet interconnect uses
low swing single-ended signalling. One byte is encoded onto ten signal
lines, carrying also timing information. The full duplex link uses two
such busses. The present generation Myrinet link has a bandwidth of 160
MBytes/sec (using both edges of an 80 MHz clock), while a new genera-
tion (Myrinet-2000, 320 MBytes/sec) is under test. The main advantage
of Myrinet links is that they pack a lot of bandwidth while keeping oper-
ating frequency low. Board layout details, connectors and cables are also
very well tested. We are informally discussing with Myricom the possi-
bility to use this link for apeNEXT. Myricom have agreed to allow us
to use the link level (SAN-port) circuitry for their latest Myrinet chips
(Myrinet 2000) as a basis for the apeNEXT links. Under a suitable
non-redistribution agreement, Myricom will make available to the collab-
oration the layout of the basic cells, along with their Verilog models.

20

• LVDS based links. The Low Voltage Differential Signalling (LVDS)
technology is now widely used in many telecom and network technologies,
like the Scalable Coherent Interface (SCI). LVDS is designed to work up to
≃ 622 MHz. Several redundant encoding schemes (e.g., 8 bits into 10 bits)
have been proposed. LVDS cells are readily available from several silicon
vendors. New generations FPGA chips have been announced including
LVDS options. Work is in progress to test LVDS links, as described later
in this document.

• High speed proprietary links. Several silicon houses (e.g., Texas In-
struments (TI), National Semiconductor(NSC), LSI Logic) have devel-
oped very high speed proprietary links, aimed at the Gb Ethernet, Fiber-
Channel, Infini-Band markets. The typical bandwidth is higher than 1
Gbit/s. Complete encoding-decoding black-boxes are usually available.
This option has two main drawbacks: it makes the whole project depen-
dent on a specific silicon house, and requires very careful layout of the
printed circuits and proper choices of cables, connectors and the like.

Basic figures of the three options are compared in table 9, where we use for
the LVDS case a more conservative frequency of 400 MHz.

Technology Frequency Pins Bandwidth Power Dissipation
Myrinet 160 MHz 20 320 MBytes/s 300 mW
LVDS 400 MHz 40 400 MBytes/s 200 mW
SerDes(TI) 1.24 GHz 10 400 MBytes/s 400 mW
NSC DS90CR483/484 784 MHz 18 672 MBytes/s 1500 mW

Table 9: Basic figures for several link technologies. All figures refer to full duplex
links. An 8 bit into 10 bit encoding has been assumed for the LVDS case.

An important issue is the reliability of the network, usually measured in
BERR (average number of errors for transmitted bit). If we require fault-less
operation of a large machine for one day (say, 2000 links active for 50% of the
time), we need a very low value of BERR ≃ 10−17. For comparison’s sake,
measured stable operation of an APEmille machine with 250 nodes for periods
of a few days implies BERR ≤ 10−15.

Machine reliability greatly improves if the network is able to recover from
network errors by retrying a failed communication (this impacts on link latency,
but the impact can be made low with some care). For instance a comfortable
BERR ≃ 10−12 implies that one communication must be retried on the machine
every second.

21

The above discussed feature however requires some degree of non asyn-
chronous operations, with important technological implications. Regardless of
the technological choice made for the processor, we think that no real advan-
tage is gained by departing from the Single Instruction Multiple Data (SIMD)
or Single Program Multiple Data (SPMD) programming style used in previ-
ous generation APE machines. At the hardware level, APE processors of all
previous generations have been hardware-synchronized with an accuracy of a
fraction of clock cycle. Although logically very neat, this is rapidly becoming
impossible, for clock frequencies higher than 100 MHz and across physical scales
of several meters. We consider an approach in which independent processors,
while running at the same frequency, are only loosely synchronized. Logical
synchronization will have to be enforced by some form of software-controlled
barrier.

5.4 Off-the-Shelf Processors

In this section, we briefly consider of-the-shelf processors as a potential building
block for the computational core of apeNEXT. With one notable exception
(see later), we choose to consider only the option of using commercially available
boards (in other word, if we decide to use a commercially available option, we
want to drop altogether any hardware development not involving the network).
In the following section we will compare the relative merits of off-the-shelf versus
custom processors.

Standard off-the-shelf processors have increased in performance by more than
one order of magnitude in the last 8-10 years, with an even more remarkable im-
provement in the efficiency of floating point computations. Standard PC boards
using off-the-shelf processors have been used for small scale LQCD simulations.
The relevant codes are written in familiar programming languages, like C (or
C++) or Fortran. Efficiencies are limited by bottlenecks in memory access as
soon as the data base involved in the computation exceeds the cache size (which
is the typical situation in realistic LQCD simulations). Measured efficiencies on
a Pentium II processor running at 450 MHz are of the order of 30%, for real-life
production programs (running on just one node, i.e., with no communication
overheads) [16].

A detailed discussion of the expected technical road-maps for off-the-shelf
processors in the next few years in general terms would exceed the scope of this
document. Instead, we discuss the features of a typical high end microprocessor,
that might be used today and apply usual scaling laws. For this purpose, we
(rather arbitrarily) take the AMD Athlon. A number of features relevant for
LQCD simulations are shown in table 10.

22

Clock frequency 600 - 1000 MHz
FP ops (single precision) 4 per clock cycle
FP ops (double precision) 1.6 per clock cycle
FP latency 15 clock cycles
L1 Data Cache 64 kBytes
Data bandwidth to L2 cache 1.6 GBytes/sec
Sustained LQCD performance 360 MFlops
Power consumption (750 MHz) 35 W
Retail price (600 MHz) 200 Euro
Retail price (750 MHz) 375 Euro
Retail price (800 MHz) 500 Euro

Table 10: Features of the AMD Athlon processor relevant for LQCD simulations.
Sustained performance is estimated under the assumptions discussed in the text.

In the rest of the discussion, we consider the version of the Athlon running
at 750 MHz. Indeed, figure 1 shows that for higher frequency, power dissipation
increases faster than linearly.

If we assume an efficiency comparable to the one measured on Pentium sys-
tems, we expect a sustained LQCD performance of ≃ 360Mflops per processor,
making it possible to use dual-processor mother-boards without jeopardizing ef-
ficiency (a quad-processor system would saturate the maximal theoretical band-
width of 1.6 GBytes/sec to access a memory bank working at 200 MHz assuming
our usual value of R ≃ 4).

In summary, a high end PC-like node should be able to sustain a performance
of ≃ 700Mflops running LQCD codes in double precision. We can take this as
our basic building block, with just a few relevant figures summarized in table 11

Sustained performance 700 MFlops
Power dissipation 90 W
Tag price 1500 Euro

Table 11: Basic figures for a PC-based node of an LQCD engine, using cur-
rently available off-the-shelf hardware. Price estimates are made at current
retail prices. They include 512 MBytes main memory. No LQCD networking
or infrastructure is considered.

This nodes needs a sustained interface to neighbour nodes in the three di-
rections of the lattice grid with a bandwidth of ≃ 200 MBytes/sec.

23

Figure 1: Power consumption (W) of the AMD Athlon processor as a function
of the clock frequency (MHz) [17].

In conclusion, a system delivering 1 TFlops sustained LQCD performance
would cost more than 2.2 MEuro in processors only, and dissipate more than 130
KW power. We will discuss the implications of these numbers in the following
section.

5.5 The Crusoe Architecture

Very recently a new processor architecture (known as the Crusoe) has been pro-
posed by Transmeta Corporation. The Crusoe is advertised as as a streamlined
(hence very low consumption) processor, optimized for laptops or other mobile
computers. The Crusoe has a very simple architecture, that, when used behind
a core-level software environment, emulates the Intel X86 architecture. From

24

our point of view, it is more relevant that the architecture of the Crusoe is
extremely similar to the combination of the processing chips used in APEmille.
Basically, the Crusoe core is a micro-coded system in which several functional
units operate concurrently on data coming from a medium-size register file (see
figure 2). The chip has also a data instruction cache, as well as two different
memory interfaces.

FP unit Integer ALU BranchLoad/Store

FADD ADD LD BRCC

Micro-code Word

Figure 2: The Crusoe architecture (adapted from [18].

A high-end implementation of the Crusoe (advertised as available from Sum-
mer 2000) is called the TM5400. It runs at 500 (maybe 700) MHz and dissipates
about 2.5 W, when running at full speed.

At present, no Crusoe-based boards are available. It is likely that the first
commercial products using Crusoe processors will be laptop machines, that
obviously do not meet our requirements. We have therefore to consider the
option of building a Crusoe-based apeNEXT processing board.

The main advantages of this choice are basically summarized by saying that
we would be using an architecture very similar to APE, while being spared the
burden of designing our own processor.

We have contacted Transmeta to explore this option. They stated that:

• They are not ready to provide critical details of the internal architecture
(for instance, no information was provided on how many floating point
operations can be executed at each clock cycle).

• Sufficient details of the VLIW core will not be given. Indeed Trans-Meta
attitude is that all programming for the Crusoe must be done at the level
of the Intel architecture, and must be translated with their proprietary
software.

25

With these pieces of information available and considering also that:

• It is not clear whether chips can be procured at an early enough stage of
the project.

• It is not obvious how fragile the whole Crusoe endeavour is.

we think that the present situation does not suggest to base a new project on
Crusoe. Of course, we will keep a close watch on any related development.

6 Custom or Off-the-Shelf Processor

Previous generation LQCD projects have used either custom processors, or sub-
stantial enhancements to standard processor architectures or processors devel-
oped for niche applications. No big project has been based on standard off-
the-shelf processors so far. Today, a decision to follow the same path is not as
obvious as it has been in the past, since off-the-shelf processors have increased
in performance by more than one order of magnitude in the last 8-10 years, with
a remarkable and even more relevant improvement in the efficiency of floating
point computations.

In table 12 we compare a few numbers relevant for APEmille, for the PC-
based solution discussed in the previous section and for a custom-based ape-

NEXT architecture (in this case, we use several tentative numbers discussed
in early sections).

—- APEmille apeNEXT: PC-based apeNEXT: custom
Peak performance 500 MFlops 1200 MFlops 1600 MFlops
Sust. performance 250 MFlops 360 MFlops 800 MFlops
Power Dissipation 1.5 W 35 W 3.0 W

Table 12: Comparison of several key figures for APEmille processors and possi-
ble options for apeNEXT. We assume that a next generation custom processor
has the same efficiency as APEmille.

No clear cut best choice emerges from these numbers. In general, we see
advantages both in custom architectures and in PC-based architectures:

We believe that a custom architecture is superior for very large (≥ 500nodes)
systems for the following reasons:

26

• lower power consumption by one order of magnitude.

• significantly more compact mechanical design.

• better scalability once the basic units are operating (reliability and soft-
ware issues of large systems).

• easier interfacing with the necessary custom remote communication net-
work and the host system.

• better control of technological aspects and less dependence on changing
commercial trends during the realization of the project.

On the other hand, we see several advantages stemming from the use of
PC-derived systems for smaller machines:

• limited hardware development effort.

• standard software is readily available for major parts of the compiler and
the operating system.

• short lead time to commission a prototype system.

We see at this point the need to make a clear decision between the two
options: we decide to focus on the development of a LQCD architecture based
on an APE-like custom processing nodes, whose architecture is described in the
next sections. We base our decision on the following points:

• we want to focus our project onto machines with very large performance.
As explained earlier on, we will have to put together several machines to
really arrive at a VERY LARGE scale.

• we think to be able to rescale and reuse a large wealth of building blocks
from APEmille, reducing the design time.

• We think that the commissioning of a very large PC-based system (involv-
ing several thousand PC’s all over the collaboration) is a huge (and new
for us) project in terms of hardware (thermal and power management,
availability in case of hardware failures) and software (control of a large
network) issues for which we have no real background.

We obviously think that a PC-based system is still a viable alternative (dis-
cussed at some length in the preliminary proposal) for small or medium-scale
systems. At this point in time, we do not consider however the development

27

of such a PC-based cluster as a priority for the apeNEXT project. We are
however willing to collaborate with any such project, making any apeNEXT-
proper development that might be useful for a PC-based LQCD cluster readily
available for such purpose. To this end, two points are most important:

• We plan to design the network processor, supporting LQCD-optimized
point-to-point communication in such a way that it can be easily interfaced
to a PC (say across a PCI interface). See the section on the network
architecture for more details on this point.

• We start from the beginning the development of a programming envi-
ronment that allows easy porting between PC-clusters and apeNEXT

systems.

7 Architecture Outline

In this section, we outline an architecture, leading to stand-alone apeNEXT

systems scalable from about 100 Gflops to about 6 TFlops peak performance.

Just one such high-end machine would offer a ten-fold increase in peak per-
formance with respect to currently available systems. Several (5 to 10) high-end
machines, working together with a comparatively larger number of low-end sys-
tems, would allow to complete the physics program outlined in previous para-
graphs.

We propose the following structure:

• a three dimensional array of processing nodes, linked together by nearest-
neighbour links. Each node is a complete and independent processor. All
nodes execute the same program and are loosely synchronized, i.e., they are
started at approximately the same time and proceed at approximately the
same pace. They synchronize when requested by the logical consistency
of the program (e.g., before exchanging data).

• Remote communications use FIFO-based weakly asynchronous connec-
tions between neighbouring nodes. The SIMD/SPMD programming style
à la APE does not require complex handshaking protocols, since trans-
mitting nodes may assume that the receiving partner is always ready to
receive the incoming message.

This simple mechanism brings several architectural advantages:

1. It allows to use for the remote communications a programming style
which is very similar to APE100/APEmille. The latter has the very

28

convenient feature that no explicit distinction between local and re-
mote memory accesses is required when coding a program.

2. This programming style can be easily modified to allow hidden data
transfers (data are moved on the links while the processing node is
performing calculations).

3. It drastically simplifies the global hardware synchronization logic of
the system.

• The communication interface is in principle an independent component.
As discussed, the communication interface is conceptually based on FIFOs,
allowing ”elastic” connections between nodes. This novel feature has to
be carefully simulated, but no serious problem is anticipated here. We
need a fast, yet cheap and reliable4 data-link. Using ρ ≃ 8, we need links
of 400 MByte/sec. As discussed in the section on technology, two or three
different solutions are available.

As discussed in the previous section, we focus our project on an implementa-
tion of the above outlined architecture based on a closely packed array of custom
processors. We have in mind an implementation allowing to build systems of
between about 1000 to about 4000 processors, along the following lines:

• Each node is based on a VLSI processor running at about 200 MHz clock.
The processor merges the functions of the control (T1000) and floating-
point (J1000) processors of APEmille on a single chip. Each node has a
private memory bank, based on commodity chips. Memory size per node
is likely to be in the range 256 MBytes - 1 GByte per node. The actual
choice may be heavily affected by cost factors. The basic floating point
instruction is the complex normal operation, so peak performance is 1.6
Gflops (double precision). As already remarked, this requires a memory
bandwidth of 3.2 GBytes/sec (R = 4). We are studying the possibility to
increase performance by factors 2÷ 4, by using some form of super-scalar
or vector processing, in which several normal operations are performed
concurrently.

• A typical large system has between 8×8×16 = 1024 and 16×16×16 = 4096
nodes. We assemble nodes on processing boards, similar to APEmille.
Each processor is more compact than in previous generations, and glue
logic is almost completely absent.

• The node (and the network) should support not only data transfers be-
tween memory and register (as available on APE100 and APEmille), but

4As already stated, due to asynchronous operations of the machine, requirements on the bit-
error rate of the communication system are less demanding than in previous APE generations,
since it allows for repetition of transfers with minor performance loss.

29

also register to register. This can be used to reduce bandwidth requests
by splitting a complex computation on more nodes, each node using local
data as much as possible, as remarked earlier.

• A host system similar to the one used in APEmille is a possible choice for
the new machine. Based on networked Linux PC’s and the CPCI bus, it
is mechanically compact and reliable. Each PC will be in charge of several
boards. The actual number of boards connected to each PC is dictated by
the bandwidth available on the PCI bus to move data from APE to disk
and vice-versa. For the sake of definiteness, assume a system distributed
on approximately 100 boards, with a total bandwidth of 2 GBytes/sec
(that is 20 MBytes/sec per board). In this case, up to 4 boards can
be handled by present generation CPCI CPU’s. Higher performance PCI
busses (double size and/or double speed) may allow to increase the number
of boards connected to each PC. The host PC’s will be networked with
the most appropriate technology available in due time.

• We plan to take advantage of all handles offered by the non fully syn-
chronous structure of the machine to relax the requirements and to sim-
plify the structure of the host to apeNEXT interface.

Basically we will hook the interface to just one or two nodes belonging
to each apeNEXT board. (This can be done conveniently by connect-
ing to the corresponding network interface). All complex patterns of in-
put/output data movements, for instance relevant to a write onto disk of
a “slice” of apeNEXT processors, are best performed by assembling the
data words onto the input/output nodes under program control, and then
issuing a single data transfer to disk.

We can load executable programs in a similar way, by first moving the
code to the input/output nodes and then having a “loader program” to
move the data onto the whole array.

We need a lower level system able to access all nodes independently even
if the neighbouring nodes do not work correctly. This system is needed
for debugging and test purposes and (for instance) to start the “loader”.
Speed is not relevant in this case, so well tested standard systems (such
as the JTAG interface) would perfectly fit our needs.

• We note that it is a relatively easy task to design the (fully self-contained)
processing node(s) in such a way that they can be connected to a standard
PCI desk-top PC. This possibility is very appealing for program debugging
and small scale application. We plan to pursue this design characteristic.

In the following sections, we describe in more details some key components
of our new system.

30

8 Architecture of the Custom Node

In this section we present the architecture of a simple custom node for ape-

NEXT. The main idea guiding our design has been that of reusing bits and
pieces of APEmille as long as possible, while making use of technologic improve-
ments to rescale performance as much as possible. We chose these guidelines in
order to shorten the design cycle.

The custom node on which a large scale apeNEXT system is based is called
J&T, since it combines the functionalities provided in APEmille by the con-
trol processor (T1000) and the mathematical processor (J1000). The combined
processor shares just one memory bank.

A basic block diagram of the architecture is shown in figure 3. The picture
does not cover in detail the memory and network interface. These points will
be discussed later on. J&T is centered around the register file, whose structure

����������������
����������������
����������������
����������������
����������������
����������������
����������������

����������������
����������������
����������������
����������������
����������������
����������������
����������������

outMux

IBB FBB LBB

Register File

a b c
STK

AGU

inMux

pcReg dmaReg

pc Box

length

m
ic

ro
C

od
eR

eg

memory (grey Box)

m
em

A
dd

r

progCounter

displacement

Figure 3: Architectural block diagram of J&T

is the same as the one used in APEmille. Data are transferred from memory
to register file (and back) through a bi-directional port. Data available on the
register file can be operated upon in just a few ways:

31

• Data words can be fed to the mathematical processor (the set of three units
within the red dashed frame). The latter contains a floating-point data-
path (Floating-point Building Block, FBB), an integer arithmetic unit
(Integer Building Block, IBB) and a further unit providing first approx-
imations of some useful mathematical functions, such as

√
x, 1/x, expx.

This block is known as a Look-Up-Table Building Block (LBB) in APE
jargon. Results of the mathematical block are written back to the register
file (for later reuse or store onto the memory).

• Data can be moved to the Address Generation Unit (AGU), where a mem-
ory address or a branch-address can be computed out of two register-
operands and one immediate-operand (the displacement). New (data or
branch) addresses are stored in appropriate registers to be used at the
next memory reference or branch.

• Logical tests can be evaluated on results computed from the mathemat-
ical processor. The outcome of such tests goes onto a stack where more
complex logical conditions can be evaluated. The top of the stack is used
to control program flow by acting on the program-counter circuitry (cor-
responding to if (...) then in high level programs) or to block write
operations onto memory or register file (where (...) statements in APE-
like high level programs).

The processor is controlled by a relatively large program word (called the Micro-
code Word) directly controlling the various devices in the node. (Almost) no
instruction decoding is performed on chip. This scheme has been successfully
used in the node processors of both APE100 and APEmille. A word size of 128
bits is large enough to control the system.

In the following, we describe in more details several key units of the proces-
sor.

8.1 The memory Interface and the Network Interface

In this section we describe the memory and network interface, sketched as mem-
ory grey box in figure 3. A basic structure of this subsystem is shown in fig 4.
The diagram shows several paths:

• there is a direct data path from the Register File to the physical memory
interface (and vice versa), supporting normal memory access.

• Data from memory can be also fed to the Network Interface (and eventu-
ally routed to a remote node). Conversely, data arriving from the Network
(from a remote node) can be routed to the Register File.

32

���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������

���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������

Net Intf.

l1

l2

l3

l5

l6

l4

Register File

In
te

rf
ac

e
&

 C
on

tr
ol

Phys. memory Intf.

Figure 4: Top level block diagram of the memory and network interface.

• Data words may be sent to the network from the register file. This is a
novel feature, allowing register-to-register remote communications. This
feature reduces remote bandwidth requests in some cases (notably in the
evaluation of the Dirac operator).

• The network interface receives data from the memory (or the registers)
and route it to the appropriate destination through one of the six links
(Details on the network itself will be provided later on).

In figure 5 we show a more detailed view of the interface to the physical
memory. We see that memory is divided into cache memory and external mem-
ory:

• external memory. External memory implements the large memory bank
of the node. As discussed in the section on technologies, we may use (for
instance) DDR 1 Gbit memory chips. We have several options of memory

33

���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������

���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������

Interface to memory chips

On-board cache

to
 m

em
or

y

da
ta

-v
al

id

ad
dr

es
s

Figure 5: A lower level view of the memory system.

bus width and bank size satisfying bandwidth constraints (see table 7). We
want to leave these options open at this point in time. For this reason,
figure 5 still has a grey box. This grey box contains the actual state
machine controlling memory access, memory correction circuitry, refresh
control circuitry and any other ancillary logic. The box will be designed in
detail at a later stage of the project, after the actual memory technology
has been selected. For the moment, we model the block by a simple
interface in which data words coming from the memory are validated by
an ad-hoc signal.

• cache memory A limited amount of on chip memory is needed in the
node. Fast access on-chip memory will be used to store control variables
(i.e. loop counters) and memory pointers. These variables were stored
in the data memory block of the control processor (T1000) in APEmille.
Indeed, these variables have very irregular access patterns and very short
access bursts. The use of relatively long-latency dynamic memory would
adversely impact performance. On-chip memory does not need to be very
large, of the order of 1K data words. Note that, in spite of the name, this
is not a true hardware controlled cache system, since the decision to store
variables on-board or otherwise is statically made at compile time (one
very simple strategy would be to store on-board all non vector integer
quantities defined by a program).

34

In any case, as seen by the processor, the memory interface has a word-width
of 128 bits (one complex double precision number) and provides one new word
at each clock cycle in burst mode. Addressing is done on 64-bit boundaries (so
real and integer variables can be stored efficiently).

8.2 The Instruction Cache

Actual LQCD simulations typically spend an extremely large fraction of the
running time in just a few critical loops. For instance, a full-fermion hybrid
Monte Carlo code spends nearly 95% of the time in the kernel used to compute
the value of the Dirac operator on the fermion fields. Under these conditions,
an instruction-cache system should have very large efficiency. We may exploit
this feature by storing node programs in the same memory bank as data, with
obvious advantages in terms of pin-count, real-estate reduction and cost savings.

We consider a control word (micro-code word) of 128 bits, equal to the word
size that can be fetched from memory at each clock cycle. We may modify the
memory interface as shown in fig 6.

Consider for the moment just the instruction FIFO. The memory controller
(not shown in the picture) continuously looks-ahead and prefetches instructions
from the memory, at all machine cycles in which data-memory transactions
are not in progress. Under the fully pessimistic assumption that all program
cycles involve data-memory accesses, this mechanism reduces performance by
a factor ≤ 2. Now consider the instruction cache. The instruction cache is
loaded when or before the critical kernels are executed the first time (possibly
under program control: the program writer may advise the compiler through
appropriate directives that some routine or do loop is a critical kernel). The
program then completes all following loops fetching instructions from the cache
without incurring in any time penalty. The expected efficiency ǫ is

ǫ =
1

f + 2 × (1 − f)
, (3)

where f is the fraction of cached program instructions. If we expect to cache
90% of all used instructions (a rather pessimistic value) we may still expect 90%
program efficiency.

The size of the cache needed to accommodate the computational kernels is
an important parameter. We have analyzed several LQCD kernels used in TAO
and TAOmille physics programs and we have found that a cache size of the
order of 16 kWords is large enough.

35

���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������

���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������

Interface to memory chips

On-board cache

to
 m

em
or

y

da
ta

-v
al

id

ad
dr

es
s

data

code

I-
ca

ch
e

I-
fif

o

Figure 6: The instruction cache and the program look-ahead system.

8.3 The Register File

The register file has the same architecture as in APEmille. The register file
has three read-only ports, one write-only port and one bi-directional port. The
read-only ports are used to feed data to the mathematical processor, while the
write-only port stores data from the mathematical processor onto the RF. The
bi-directional port is used for memory access. All ports can be used at each
clock cycle (five independent addresses are needed).

The word size of the processor is 64 bits, and complex numbers are stored
as pair of (adjacent) registers.

The depth of the register file affects the performance of the node. If there
are not enough registers available, temporary results cannot be hold on-register.
Memory bandwidth requirements increase and program efficiency decreases. In
APEmille, 512 registers (or 256 register pairs) were used. Table ?? lists the

36

number of registers used by critical LQCD kernels programmed in TAO and
compiled for APEmille. As we see, less than 256 are needed in all programs.
We plan to design a register file of the same size as APEmille (512 lines). If we
find out that such a large system does not work at the required speed, we know
that the size can be halved without serious problems.

8.4 The Mathematical Processor

The computing engine contained in J&T performs three tasks:

1. it performs the floating-point (FP) (and, less frequently, integer) arith-
metic operations heavily used in any scientific code. This is of course the
most important functionality of the computing engine. All design trade-
offs must be guided by the aim of achieving highest possible sustained
performance for the most relevant tasks. As already discussed, we will
use the IEEE double precision format only. The system will be heavily
optimized for the arithmetics of complex-valued numbers.

2. it computes first approximations of several important special functions (as
already remarked, these functionalities are called LUT operations in APE
jargon).

3. it performs all (mostly integer) arithmetic and logic operations needed
to compute memory addresses. This task was carried out in a separate
chip in APEmille, with dedicated hardware. We plan to share just one
processor for this task and the previous one (and also for the fourth task,
described below). As shown elsewhere, the price paid by this optimization
in terms of performance is small.

4. it performs all arithmetic and logic operations supporting the evaluation
of branch conditions. All considerations made before about addressing
also apply here.

We plan, for obvious reasons, to reuse to a large extent the logical design
and implementation of the arithmetic block used in APEmille (called FILU for
Floating - Integer - Logic Unit). This goal is most easily reached by extracting
from FILU the double precision FP data path, the integer data path and the
LUT circuitry, and building more complex operators as combinations of these
building blocks. We recall that the FP data path performs the normal FP
operation (d = a × b + c) and conversions between FP and integer numbers,
while the integer data path performs standard arithmetic and logic operations
in integer format. We call these basic data paths the FBB (Floating Building
Block), the IBB (Integer building Block) and the LBB (LUT Building Block).

37

Experience with the development of APEmille has taught us that a minor
effort is needed to finalize the design of the IBB and LBB. Here we consider in
details only the FBB. The architecture that we consider is shown in figure 7. It
uses data stored in the RF, that contains 256 register pairs. The two elements of
the pair share the same address on each of the three ports. A complex operand
has its real and imaginary parts stored on the same word of both registers,
while a real operand sits on any location of either block. A vector operand
finally is made up of two independent real values, stored in the same way as a
complex operand. Vector operations can be efficiently used in LQCD codes for
the generation of random numbers.

Ar Cr
Rr

Ri

Br

Reg. File

fl. mult fl. mult fl. mult fl. mult

fl. add/sub fl. add/sub

fl. add/subfl. add/sub

CiBiAi

Figure 7: Block diagram of the floating point data-path (FBB) within the math-
ematical processor.

The FBB (see figure 7) uses four basic floating point blocks, wired in such a
way as to:

• compute the complex-valued version of the normal operation:

d.re = a.re× b.re− a.im× b.im+ c.re (4)

d.im = a.re× b.im+ a.im× b.re+ c.im (5)

• compute one real-valued normal operation on operands coming from any
element of any register.

38

• compute two real-valued normal operations on ordered operand pairs sit-
ting on the right and left register banks respectively (vector mode).

Some basic figures of this architecture are collected in table 13. Control of
the processor requires 5 opcode bits in the microcode word and 4 addresses for
the RF ports. In total 8 × 4 + 5 = 37 control bits are needed.

type performance operands in RF
complex 1600 MFlops 256
real 400 MFlops 512
real vect. 800 MFlops 256
integer 200 Mips 512
int. vect. 400 Mips 256

Table 13: Basic parameters of the mathematical processor.

8.5 Performance Estimates

We have worked out some preliminary (but for the considered processor models
rather accurate) forecasts of the expected efficiency of the processor outlined
in the previous sub-sections on a few computationally intensive kernels. Our
results are shown in table 14 for two versions of the kernel of the Dirac operator
and for the main kernel of the Lattice Boltzmann Equation (LBE) solver.

Kernel normals APEmille apeNEXT

Dirac1 336 44% 45%
Dirac2 336 58% 72%
LBE 870 55% 60%

Table 14: Measured performance on APEmille and estimated performance of
J&T on some critical kernels described in the text.

The first two codes are appropriate for LQCD programs, while the last kernel
has been used for the simulation of turbulent fluid flows on APE systems. The
two Dirac kernels refer to a simple program written in TAO (Dirac1) and to
an highly optimized code written in assembly (Dirac2). We can safely conclude
that the performance will be in most cases comparable or superior to APEmille.

We are still working to make our prediction more accurate and to test the
efficiency of the processor on a larger set of computational kernels.

39

8.6 Implementation Issues

In table 15 we estimate the gate count of the largest logical blocks used in J&T.
In the table we foresee a 0.18µ CMOS technology, as discussed in a previous
section. Most values are evaluated by using appropriately scaled corresponding
figures for APEmille and allowing large safety margins.

what APEmille scale Factor apeNEXT (gates) apeNEXT(mm2)
Reg File 200 K 2 400K 5.0
Math. Unit 100 K 2.5 250K 3.7
Intf. 30 K 2 60K 1.0
Data cache 0 NA 1K × 128b 4.4
Instr. cache 0 NA 16K × 128b 34
Total 330 K 4.5 + cache 700K + caches 48

Table 15: Gate count and area estimate for the main components of the ape-

NEXT custom processor

Power dissipation for this system is less than 2.5 W at 200 MHz (assuming
that about 30% of the gates switch at each clock cycle). This processor fits into
a reasonably small die and has a relatively small pin count.

9 The Interconnection Network

The interconnection network is specifically tailored to the needs of LQCD sim-
ulations. The networks supports rigid data transfers between:

• nearest neighbour nodes in the positive and negative direction of the three
axis (single hops)

• next to nearest nodes, whose node-coordinate differ by ±1 in two of the
three dimensions (double hops)

More formally, the network performs rigid shifts of the mesh of processors onto
itself:

(x, y, z) → (x+ ∆x, y + ∆y, z + ∆z) (6)

where (x, y, z) labels the coordinates of each processor. The shifts (∆x,∆y,∆z),
with |∆i| = 0, 1 and

∑
i |∆i| ≤ 2, are the same for each processor.

40

Each link has a target bandwidth of at least 300 MBytes/sec per link. Each
node needs six links to support all the above described communication patterns.

From the point of view of system architecture the network is logically syn-
chronous and supports SIMD program flows, although at the layer of the phys-
ical link, no (wall-clock) time synchronization is needed.

This definition can be made more precise in the following way:

• Consider a SIMD program started on all nodes of the machine. Each node,
while executing the program, starts a well defined sequence of remote
communications. The sequence is the same for all nodes.

• we tag all remote communications by the following set of attributes:

(∆x,∆y,∆z, S,N) (7)

where the ∆’s were defined before, S is the size of the data packet associ-
ated to the communication and N is an identifier that labels all communi-
cations issued by each program (in the following, we call N the message-
tag). N is initialized at 0, when starting the program and is incremented
every time a new communication is started. In other words, N defines
an ordering of all communications inside the program. Note that all at-
tributes of each remote communication are equal on all nodes.

• The network interface of each node accepts data bound to a remote node
and tries to send it to destination. Note that although all nodes necessarily
send the same sequence of packets, the (wall-clock) time at which a new
data transfer starts may differ slightly among nodes. The following simple
protocol controls the ensuing traffic:

1. Each network interface refuses to accept a data packet coming from a
different node and tagged by N unless it has been already instructed
by its own node to start transferring N .

2. Each network interface delivers incoming data in strict ascending N
order.

This protocol is needed to make sure that all messages reach destination in
the appropriate ordering. As we see, very simple rules are needed to reach
this goal under the assumption that programs follow the SIMD paradigm.

Note that the network can perform several useful sanity checks:

• Once a node instructs the network to send a data-packet to a given des-
tination, the network implicitly knows which packets it should expect on

41

NETWORK MODULE

COMPUTATION NODE

STX

LNK

ETX

LNK

LNK

LNK

LNK

LNK

NETWORK MODULE

COMPUTATION NODE

STX

LNK

ETX

LNK

LNK

LNK

LNK

LNK

NETWORK MODULE

COMPUTATION NODE

STX

LNK

ETX

LNK

LNK

LNK

LNK

LNK

Figure 8: Architectural block diagram of the interconnection network.

its links with a given tag. For instance, if a data-packet must be routed
to south - east, then data with the same tag is expected from west for
delivery at the local node and from north to be routed to east. The
network interface can check that this is actually the case.

• The network can also check whether the right sequence of tags is received
within a (programmable) time-out delay.

• The network can further check whether the data-sizes of all messages as-
sociated to a given tag are equal.

All these checks are important to help debug either ill-functioning hardware or
wrong programs.

42

Error rates in the network are an important issue. In plain fact, we do not
know the Bit Error Rate (BERR) that we may expected on fast links. We are
only able to quote the upper limit on the BERR implied by the safe operation
of the APEmille prototype (10−15). The BERR value needed for an error free
apeNEXT operation on runs lasting a few days is an embarrassingly low 10−17.
For this reason, we have decided to stay on the safe side and to design a network
partially able to recover from errors. If we are able to recover from errors, a
much more manageable picture emerges: for instance a more modest BERR
≃ 10−12 implies the failure of one transmission burst every second on the entire
machine.

Re-Try request

Current Burst

FIFO

To Node
CRC - check

Receiving SideTransmitting Side

Figure 9: Low-latency retry mechanism for the apeNEXT links.

We are considering a retry mechanism, shown in figure 9 that has only a
moderate impact on communication latency:

• We divide each data block traveling on a remote link in relatively short
bursts (say, 16 bytes) followed by a cyclic-redundancy-check (CRC).

• Data bursts are sent from the transmitting nodes, followed by their CRC.
A small number of bursts is kept on the transmitting node, stored inside
a FIFO queue, also after transmission.

• The receiving end of the link checks the CRC of each burst as it arrives.
If the check is successful it delivers received data. The latency implied by
this procedure is not longer than the size of each burst.

• If an error is detected, the receiving end requests the corrupted burst to
be retransmitted. This is possible, since relevant data is still available on
the transmitting side of the link.

43

We plan to finalize most of the high level details of the network using a
black box model of the physical link layer. In this way we can complete most of
the design even before selecting the actual link technology. In parallel, we are
already carrying out tests on some of the link technologies.

10 Machine Assembly and Partitioning

We plan to assemble a certain number of APEmille processors on a printed
circuit board (PCB). Preliminary evaluations suggest that 16 processors can be
placed on one PCB, of roughly the same size as the one used for APEmille.
For comparison, note that one APEmille PCB houses 8 processors. In this case
however a large (almost 50%) fraction of the real estate is used by the control
processor and ancillary circuitry. If we use PCB’s of the same size as APEmille,
we can immediately reuse the mechanical components of the older system.

At this point in time we have two options for the topology of the nodes
belonging to one PCB. The first option is a three-dimensional structure with
2×2×4 processors. The second option implies a two-dimensional set-up of 4×4
processors. PCB’s are assembled inside a crate. All PCB’s inside one crate are
connected to a communication backplane. If we use the mechanical components
developed for APEmille, we can reasonably house up to 16 PCB’s inside one
crate. Larger machines use more crates.

If we use the first option for the node topology inside a PCB, we can allocate
onto the backplane all links in two of the three dimensions (say, directions y and
z), building a system of size 4 × 8 × 8. Communications in the x direction are
implemented via cable links. If we assemble and connect together n crates, we
obtain apeNEXT systems of size (4 × n) × 8 × 8). This option is very similar
to the one used by APEmille, where systems of size (2× n)× 8× 8 are allowed.
We call this arrangement Option 1A.

It is possible to use the same structure of the PCB as above, wiring however
the unit inside a crate according to a 4 × 4 × 16 topology. In this case large
machines contain (4 × n) × (4 ×m) × 16 nodes. This is option 1B.

In the case that the second option for the PCB is selected, we allocate
all links belonging to one of the spatial directions (say, direction z) onto the
backplane. Links in the x and y directions stemming out of the PCB use cable
links instead. Using this arrangement, systems of size (4 × n) × (4 ×m) × 16
can be assembled. This is option 2. Some basic figures relevant to both options
are collected in table 16.

In both cases, a large number of signal must be routed on the backplane.

44

Option 1A Option 1B Option 2
number of procs. 16 16 16
Peak PCB perf. 25.6 GFlops 25.6 GFlops 25.6 GFlops
topology 2 × 2 × 4 2 × 2 × 4 1 × 4 × 4
crate topology 2 × 8 × 8 4 × 4 × 16 4 × 4 × 16
Large-systems (2 × n) × 8 × 8 (4 × n) × (4 ×m) × 16 (4 × n) × (4 ×m) × 16
Remote links (PCB) 40 40 48
Remote links (BP) 32 24 32
Remote links (cables) 8 16 16

Table 16: Basic figures of three possible apeNEXT machine configurations.

This is a serious but not formidable engineering problem. Assuming that 20
data lines are needed per link, we have 640 pins carrying data from the PCB
to the backplane (see again table 16). This requires as little as about 17 cm
on the PCB edge, using high-density high-speed matched-impedance connectors
developed by several vendors (see for instance [19]). Of course, special care must
be taken in the design of accurately matched transmission lines, both on the
backplane and on the main PCB.

As discussed earlier, the backplane must also house a CPCI backplane. This
is made by a straightforward copy the well tested CPCI backplane developed
for APEmille.

We will decide later on in the design phase on the selected topology, using
information from test setups and taking also into consideration the relative
merits of the two solutions from the point of view of physics simulations.

11 Software: The Programming Environment

The apeNEXT programming environment will be initially based on two main
lines:

• The TAO programming language, extensively used in APE100 and in
APEmille, will be supported. This is necessary to allow easy and early
migration of the large set of existing QCD programs on the new machine
This large portfolio of programs is also going to be extremely useful for
test and debugging purposes.

We do not plan to make any substantial improvement to TAO. We will

45

just modify the back-end section of the TAO compiler, so it produces
apeNEXT assembly codes.

• We plan to develop a C/C++ language compiler for apeNEXT since
the early phases of the project. Very few extensions will be added to
the standard C syntax, with the goal of minimizing the effort for the
programmer in learning a new language. SPMD parallelism will be realized
by just a few special constructs, similar to the ones already present in TAO:

1. the where statement executes code blocks based on local conditions.

2. the all, none, any keywords in a standard C condition perform
aggregate evaluation of local conditions.

3. Remote communications will be specified by constant pointers.

The compiler will be implemented by porting already available public do-
main compilers (like, for instance, the GNU C/C++ compiler or lcc) with
the needed SPMD extensions in the front-end (the language definition)
and all necessary changes in the back-end, to produce the target assem-
bly. A similar GNU-gcc based compiler prototype for APEmille [20] is
currently evaluated.

Note that, by using already available compilers, it will be relatively easy
to implement all SPMD extensions of the language on more traditional
machines (like PC clusters). Conversely, already developed parallel pro-
grams written in C (and following the SIMD/SPMD paradigm) will be
easily ported onto apeNEXT. We regard this possibility as our main
path to build a common programming environment between apeNEXT

and more traditional systems.

We want to push still further the goal of a more general apeNEXT pro-
gramming environment. We plan to merge to some extent the programming
environments based on Tao and on C/C++, and at the same time enhance the
portability of programs between APE systems and more traditional computer
clusters. We plan to work according to the lines described in figure 10, that
uses for definiteness the structure of the GNU compiler.

The blue boxes in figure 10 sketchily describe the overall organization of a
modern compiler. There is a front-end block with a configurable parser that
transforms the user code into an internal representation, based on a tree repre-
sentation of the code and symbol tables. The back-end block maps the internal
representation onto assembly code for a specific target architecture.

The APE C compiler can be implemented on the basis of existing and con-
figurable front-ends with minor modifications to include the required syntax

46

Grammar Def.

Machine Def.

C parser

Asm

Pre-Proc.

Code Gen.

.cc

Int. Rep.

.zzt

Tao Parser

Figure 10: A sketchy view of the internal structure of the GNU compiler, in-
cluding planned extensions for the apeNEXT software environment.

extensions for parallel processing. The back-end section must of course be cus-
tomized to produce apeNEXT assembly code.

It is also possible to add an additional parser at the front-end level. (For
instance, Fortran is implemented in this way in the GNU compilers.) We intend
to follow this path and to include the TAO parser, suitably modified to generate
the GNU internal representation. Indeed, TAO cannot be easily handled by
standard configurable parsers because of its dynamic grammar. In figure 10 the
APE specific extensions are drawn in red.

When the program outlined above is accomplished, we will have a very neat
portable environment in which:

• all powerful optimization techniques of a standard compiler core are avail-
able.

• TAO and C codes can be compiled for a standard computer system (e.g.
a PC).

• C and TAO codes can be compiled for an APE system.

47

The design and implementation of this open programming environment is a
long term and very high priority goal of our project. This is not going to be an
easy task and can certainly not be finalized in short terms. Physics exploitation
of apeNEXT in the early phases does not depend on this environment, since
the traditional APE software tools can be used.

At the machine level, we will port to the new architecture and improve the
well-established VLIW code-scheduling and code-compressing tools already used
in APEmille.

12 Software: The Operating System

We plan to shape the apeNEXT operating system as a direct evolution of the
APEmille system: the basic idea is that we use as much as possible the services
provided by Linux on the network of host PC’s.

• The apeNEXT operating system must load executable codes on the array
of processing nodes and start execution of the whole system. We remind
that all steps of program compilation and optimization are not done on
the apeNEXT processors itself but are performed on the host PC’s (or
on any other Linux machine).

• The second task performed by the operating system is the support for
input-output operations requested by the executing program. Note here
that these operations use the standard file systems available on the host
PC’s (or, on any networked disk server). Of course, large data transfers,
where high bandwidth is needed, are performed in parallel by all PC’s on
local disks. Later on, we will make some additional remarks on this point.

• The third task performed by the operating system is the monitoring and
control of all nodes at a low level. Typical examples include the inspection
and setting of status-registers, the analysis of error conditions, explicit
writes or reads to memory locations.

All functions described above are handled by the APEmille operating system
in a reasonably efficient and user-friendly way. Most operations can be easily
moved onto apeNEXT by rewriting only the lowest layer levels of the operating
system, like device drivers or the functions mapping a specific operation on a
specific node onto the appropriate PC. We expect therefore to be able to put to
work quickly an early version of the system.

An area where we would like to come up with new ideas, not needed how-
ever for the early commissioning of apeNEXT, is some version of a parallel

48

file system, where large field and propagator configurations can be stored in a
standard format. This is an obvious starting point to allow the sharing of QCD
configurations among collaborating groups. We see this work as a partial contri-
bution of apeNEXT to the GRID project. Work on this line will be therefore
coordinated with GRID.

13 Design Method

In designing the needed VLSI components as well as the overall system, we
want to follow the method used in APE100 and APE1000, with a number of
improvements to make it more efficient and faster. The main advantage of this
method has been shown in APE100 and APEmille: in both cases all components
of the machine were designed ”first-time-right”.

The main idea behind our method is some informal implementation of ”hardware-
software co-design” techniques:

• We base our design on a VHDL model of a large and significant fraction
of the whole system. The model contains all in-house developed systems
as well as all off-the-shelf components. Initially, the model will be a very
crude approximation to the actual system, gradually incorporating all de-
tails. This reference model is available at all collaboration sites.

• All VLSI (or FPGA based) components of the system are derived with
high quality synthesis tools from the VHDL design. In the (hopefully
rare) cases where some components cannot be synthesized from a VHDL
description, a VHDL model is built anyway, and test vectors for the ac-
tual implementation are derived by the VHDL model. Non-VLSI parts of
the systems (i.e., processing boards) will be modelled in VHDL by their
designers.

• The VHDL model supports a reasonable approximation of the interaction
with the host system (operating system).

• All software developments are immediately tested on the VHDL model.
At an early stage of the design, tests will involve performance estimates
on crudely modelled architectural choices. As the level of details of the
model increases, actual programs, in all their intricacies, will be executed
on the model, giving quick feed-back on any design detail.

As an improvement with respect to APEmille, we will insist on:

49

• a continuous availability of the model at all collaboration sites, so all
members of the collaboration can easily monitor the effects of a design
change made elsewhere. This can be achieved with reasonable effort by
keeping a master copy of the model on an AFS cell available from all sites.

• an effort to allow access to the model from a basic version of the op-
erating system, so that even the more physics-oriented members of the
collaboration can exercise it.

• a systematic use of blind-test procedures: at all stages of the design phase,
test sequences for any part of the machine will be prepared and executed
by someone who has not been directly involved in the design.

Finally, we address the issue of the design of some VLSI blocks that depend
critically on some element which is either not under our direct control or not
completely defined at this stage. Examples of this situation are the details of
the memory system (which heavily depends on the type of memory available at
the time when the prototypes are built) for the custom processor, or the actual
choice for the physical layer of the interconnection links. Changes made in
memory technology during the design lifetime of APEmille have indeed adversely
affected that project, as large subsystems within J1000 and T1000 processors
had to be modified to adapt to changing memory specifications.

We want to solve this problem by confining all details of the memory and
link interfaces in a ”grey box”, that interacts with the rest of the design with
some simple and rather general data and control paths. In this way, a very large
fraction of the design can be finalized independently, while the interface-specific
blocks will be procured (if available from external sources) or designed in detail
at the last moment.

14 Conclusions

This document has described physics requirements and the basic architecture
of a next generation LQCD computer project. We think that the well-tested
SIMD/SPMD architecture of the previous APE generations is still the best
choice for a LQCD-focused high performance engine. At the engineering level,
we plan to use technologies similar to those used in APEmille. We think that
this choice reduces development costs and risks.

In the near future, collaboration between groups active in LQCD simula-
tions will become tighter and tighter. For this reason we plan to work hard
on the development of a software environment allowing easy migration between
apeNEXT and more traditional computers.

50

Acknowledgments

Several people have helped shape the basic ideas of apeNEXT and contributed
several important pieces of information. We would like to thank I. D’ Auria,
W. Friebel, J. Heitger, M. Loukyanov, S. Menschikov, A. Sapojnikov, T. Sapo-
jnikova, L. Schur, A. Thimm. N. Christ, N. Eicker, Y. Iwasaki, T. Lippert and
K. Schilling have provided valuable information on the status and perspectives
of their projects.

51

References

[1] for a recent review, see: N. Christ, “Proceedings of Lattice99”, Nucl. Phys.
B (Proc. Suppl.), in press.

[2] R. Tripiccione “APEmille”, Parallel Computing 25 (1999) 1297.

[3] F. Jegerlehner et al., “Requirements For High Performance Computing for
Lattice QCD: Report of the ECFA Working Panel”, Preprint ECFA/99/200.

[4] F. Aglietti et al., “Proposal for a Multi-Tflops Computing Project”, Rome
Preprint 1255/99.

[5] See for example: P. de Forcrand, Nucl. Phys. B (Proc.Suppl.) 47 (1996) 228;
A. Frommer, Nucl. Phys. B (Proc.Suppl.) 53 (1997) 120; K. Jansen, Nucl.
Phys. B (Proc.Suppl.) 53 (1997) 127, and references therein.

[6] TAO Reference Manual, (E. Panizzi and V. Ghisalberti Eds.), 1994.

[7] R. G. Edwards, I. Horvath and A. D. Kennedy, Nucl. Phys. B484 (1997)
375; B. Bunk, S. Elser, R. Frezzotti and K. Jansen, Comput.Phys.Comm.
118 (1999) 95, hep-lat/9805026; K. Jansen and C. Liu, Nucl. Phys. B
(Proc.Suppl.) 53 (1997) 974; C. Liu, A. Jaster and K. Jansen, Nucl.Phys.
B524 (1998) 603; K. Jansen and C. Liu, Nucl.Phys. B453 (1995) 375.

[8] http://nicewww.cern.ch/∼les/grid/welcome.html and
http://www.infn.it/grid/

[9] S. Aoki et al., hep-lat/9903001.

[10] See, e.g., C.T. Sachrajda, summary talk at Lattice 99 (Pisa), hep-
lat/9911016 and references herein.

[11] Y. Iwasaki, private communication. Also CP-PACS Collaboration, Internal
report, 1999.6.20, to be published.

[12] N. H. Christ, private communication.

[13] N. Eicker and T. Lippert, private communication.

[14] The Lattice Hadron Physics Collaboration,
ftp://www-ctp.mit.edu/pub/negele/LatProp/LatticePropFinal.ps.

[15] F. Csikor et al., hep-lat/9912059

[16] H. Simma, “PC’s for Multi TFlops LQCD Compute Engines?”, Proceed-
ings of the Workshop PC-NETS, INFN/TC-99/09.

[17] AMD Athlon Processor Data Sheet (Publication 21016), March 2000.

52

http://arxiv.org/abs/hep-lat/9805026
http://nicewww.cern.ch/~les/grid/welcome.html
http://www.infn.it/grid/
http://arxiv.org/abs/hep-lat/9903001
http://arxiv.org/abs/hep-lat/9911016
http://arxiv.org/abs/hep-lat/9911016
ftp://www-ctp.mit.edu/pub/negele/LatProp/LatticePropFinal.ps
http://arxiv.org/abs/hep-lat/9912059

[18] See, for instance, http://www.transmeta.com/crusoe

[19] See, for instance, http://www.teradyne.com/prods/bps/vhdm/intro.html

[20] http://apemaia.roma1.infn.it/∼betto/C++ apeNEXT.html

53

http://www.transmeta.com/crusoe
http://www.teradyne.com/prods/bps/vhdm/intro.html
http://apemaia.roma1.infn.it/~betto/C++_apeNEXT.html

