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Abstract

We present a leading evaluation of the resummed coefficient function for the shape function. It is also
shown that the coefficient function is short-distance-dominated. Our results allow relating the shape function
computed on the lattice to the physical QCD distributions.
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1 Introduction

In this note we present a leading evaluation of the coefficient function of the shape function [1]–[3]. The latter is
also called structure function of the heavy flavours. The coefficient function allows relating the shape function
— computed with a non-perturbative technique such as lattice QCD — to distributions in semi-inclusive heavy-
flavour decays. We consider in particular the processes

B → Xs + γ (1)

and

B → Xu + l + ν (2)

in the hard limit

Q ≫ Λ. (3)

The quantity Q is the hard scale of these time-like processes: Q ≡ 2E , where E is the hadronic energy of the
state X and Λ is the QCD scale1. For a B-meson at rest, v = (1; 0, 0, 0) , and the jet X flying along the minus
direction (−z axis), the shape function is defined as

ϕ (k+) ≡ 〈B (v) |h†
vδ (k+ − iD+) hv|B (v)〉. (4)

This represents the probability that the b-quark in the B-meson has momenta

pb = mBv + k′ (5)

with any transverse and minus components and with given plus component

k′
+ = k+. (6)

The static field hv (x) is related to the Dirac field of the beauty quark b (x) by

b (x) = e−imBv·xhv (x) + O

(
1

mB

)
. (7)

With the shape function, the decays (1) and (2) are related to their respective quark-level processes

b → X̂s + γ (8)

and

b → X̂u + l + ν, (9)

where the b-quark has the momentum (5) with the distribution (4). It can be shown that the invariant mass m

of the state X̂ is related to the virtuality of the b-quark by

k+ = −
m2

Q
. (10)

The shape function is a non-perturbative distribution — analogous to parton distribution functions — and it
describes the slice of the semi-inclusive region2 in which

m2 ∼ Λ Q,

1For the rare decay (1), one can actually set Q = mB .
2This region is also called threshold region, large-x region, radiation-inhibited region and Sudakov region.
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i.e.

|k+| ∼ Λ, or z ∼ 1 −
Λ

Q
, (11)

where

z ≡ 1 −
m2

Q2
. (12)

Because of ultraviolet divergences affecting its matrix elements, the shape function has a dependence on the
ultraviolet cut-off or renormalization point µ :

ϕ (k+) = ϕ (k+; µ) , (13)

and is related to a physical QCD distribution by means of a coefficient function by (cf. eq. (77))

ϕ (k+; Q) =

∫
dk′

+ C
(
k+ − k′

+; Q, µ
)

ϕ
(
k′
+; µ

)
. (14)

The QCD distribution does not depend on µ :

d

dµ
ϕ (k+; Q) = 0, (15)

while the shape function does not depend on Q. As a consequence, the coefficient function depends on both Q
and µ.

The shape function can be computed with a non-perturbative technique or extracted from experimental data.
If it is computed inside a field-theory model — such as lattice QCD — its expression will exhibit a µ-dependence
that cancels against that of the coefficient function. If it is instead computed inside a phenomenological model —
such as a quark model — the situation is less transparent. The µ-independence is not “automatic” and one has
to specify the value of µ appropriate for the model. Some care is needed also in extracting the shape function
from the experimental data, in order to avoid double counting of perturbative corrections. A factorization
scheme must be defined and the coefficient functions for the various processes all have to be computed in the
same scheme3. In particular, if a branching MonteCarlo is used for the analysis, the perturbative corrections
generated by the program must be subtracted.

The coefficient function is obtained by evaluating in leading approximation both ϕ and ϕ and inserting their
expression in eq. (14). Since the coefficient function is expected to be a short-distance quantity, we compute
the QCD distribution and the shape function in PT for an on-shell b-quark (k′ = 0). This expectation will be
verified a posteriori.

2 The QCD distribution

The (perturbative) long-distance effects occurring in (1) and (2) can be factorized in the function

f (z) = δ (1 − z − 0) − A1αS

(
log [1 − z]

1 − z

)

+

, (16)

where

A1 =
CF

π
(17)

3The situation is analogous to usual hard processes, where various factorization schemes for the parton distribution functions
are defined: DIS, MS, etc.
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and CF =
(
N2

c − 1
)
/ (2Nc) = 4/3. The plus-distribution is defined as usual as

P (z)+ ≡ P (z) − δ (1 − z − 0)

∫ 1

0

dy P (y) . (18)

The integrated or cumulative distribution is defined as

F (z) ≡

∫ 1

z

dz′ f (z′) . (19)

Inserting expression (16) in this, one obtains the well-known double logarithm:

F (z) = 1 −
A1αS

2
log2 (1 − z) . (20)

The cumulative distribution satisfies the normalization condition F (0) = 1. Multiple soft-gluon emission expo-
nentiates the one-loop distribution, so that

F (z) = exp

[
−

A1αS

2
log2 (1 − z)

]
. (21)

For further improvement, it is convenient to write the function f (z) in an “unintegrated” form, as

f (z) = δ (1 − z) + A1αS

∫ 1

0

dǫ

ǫ

∫ 1

0

dt

t
[δ (1 − z − ǫt) − δ (1 − z)] , (22)

where we have defined the unitary energy and angular variables

ǫ ≡
E

Q
and t ≡

1 − cos θ

2
. (23)

The quantity E is two times the energy of the soft gluon, E = 2Eg, and θ is the emission angle. Leading
logarithmic corrections are included replacing the bare coupling with the running coupling evaluated at the
gluon transverse momentum squared [4]:

αS → αS

(
l2⊥

)
, (24)

with

l2⊥ ≃ E2
g θ2 ≃ Q2ǫ2t. (25)

The QCD semi-inclusive form factor then reads:

f (z) = δ (1 − z) +

∫ 1

0

dǫ

ǫ

∫ 1

0

dt

t
A1αS

(
Q2ǫ2t

)
[δ (1 − z − ǫt) − δ (1 − z)] . (26)

Performing the integrations, one obtains:

f (z) = δ (1 − z) +
A1

β0

{[
log log ξ (1 − z)

1 − z

]

+

−

[
log log ξ (1 − z)

2

1 − z

]

+

}
, (27)

where β0 ≡ (11/3 Nc − 2/3 nf) / (4π) and ξ is the square of the ratio of the hard scale to the QCD scale:

ξ ≡
Q2

Λ2
. (28)

Equation (27) replaces the frozen-coupling result (16) and reduces to it in the limit ξ → ∞ with z fixed. The
integrated distribution reads

F (z) = 1 −
A1

2β0

[
log ξ log log ξ − 2 log ξ (1 − z) log log ξ (1 − z) + log ξ (1 − z)

2
log log ξ (1 − z)

2
]
. (29)
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As in the frozen-coupling case, higher-order corrections exponentiate the one-loop result, so that

F (z) = exp

{
−

A1

2β0

[
log ξ log log ξ − 2 log ξ (1 − z) log log ξ (1 − z) + log ξ (1 − z)

2
log log ξ (1 − z)

2
]}

. (30)

Equation (30) replaces the frozen-coupling result (21).

The above distributions are “physical” and therefore should be real for any value of z in the range

0 ≤ z ≤ 1. (31)

In practice, the distributions (27) and (30) are real only if the range of z is restricted to

z < 1 −
Λ

Q
or m2 > Λ Q. (32)

This restriction is absent in the frozen coupling case and originates from the infrared pole in the running
coupling, which diverges when the transverse gluon momentum becomes as small as the QCD scale. The
resummed distribution is therefore reliable as long as one stays away from the infrared pole, which implies the
limitation

m2 ≫ Λ Q. (33)

This condition makes the kinematic region (11) unaccessible to the QCD distribution and forces the introduction
of a non-perturbative component, namely the shape function. The physical origin of the restriction (33) is easily
understood with the following qualitative considerations. The jet mass and the gluon transverse momentum
are given by

m2

Q
∼ E θ2,

l⊥ ∼ E θ. (34)

The smallest transverse momentum for fixed invariant mass is obtained for θ ∼ 1 and is

l⊥min ∼
m2

Q
. (35)

In region (11) this momentum is of the order of the QCD scale, where the coupling leaves the perturbative
phase. The conclusion is that large-angle soft-gluon emission signals non-perturbative effects in the region (11).

In general, resummation of multiple soft-gluon emission is performed in Mellin space. We therefore consider
the moments of the form factor:

fN ≡

∫ 1

0

dz zN f (z)

= 1 + ∆fN . (36)

Exponentiation of the “effective”4 one-gluon distribution takes place, so that

fN = e∆fN . (37)

Using the large-N approximation [5]

(1 − y)
N
− 1 ≃ −θ (y − 1/n) , (38)

4We call it “effective” because the insertion of the running coupling in the time-like region already includes some multiple
gluon-emission effects.
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where n ≡ N/N0 with N0 ≡ e−γ
E ≃ 0.56 and γE ≃ 0.58 is the Euler constant, the moments of eq. (16) or (22)

read (frozen-coupling case, β0 → 0)

fn = exp

[
−

A1αS

2
log2 n

]
. (39)

In the running coupling case, the Mellin transform of eq. (26) or (27) is [6, 7, 5]:

fn = exp

{
−

A1

2β0

[
log

ξ

n2
log log

ξ

n2
− 2 log

ξ

n
log log

ξ

n
+ log ξ log log ξ

]}
. (40)

Note that fn = 1 for n = 1. The distribution (40) is usually written as

fn = exp [l g1 (β0αSl)] , (41)

where l ≡ log n, αS ≡ αS (Q) and

g1 (w) ≡ −
A1

2β0

1

w
[(1 − 2w) log (1 − 2w) − 2 (1 − w) log (1 − w)] . (42)

Expanding this function to lowest order in w, one obtains g1 (w) = −A1w/(2β0)+O
(
w2

)
and recovers the fixed

coupling result.

As we clearly see, the inverse transform from fn to F (z) is simply computed with the replacement [8]

n →
1

1 − z
. (43)

The limitation to the resummed perturbative result found before (eq. (33)) reads, in N -space:

n ≪
Q

Λ
. (44)

3 The shape function

Let us now consider the quantity in the effective theory related to f (z), namely the shape function ϕ (k+) . For
an on-shell b-quark, the latter is given by

ϕ (k+) = δ (k+) + A1αS

θ (0; k+;−µ)

−k+
log

µ

−k+
− A1αS δ (k+)

∫ 0

−µ

dl+
−l+

log
µ

−l+
, (45)

where µ ≡ 2ΛS and we defined θ (a1; a2; · · · an) ≡ θ (a1 − a2) θ (a2 − a3) · · · θ (an−1 − an) . The regularization
used [3] imposes a cutoff on the spatial loop momenta and not on the energies:

|
−→
l | < ΛS , −∞ < l0 < +∞; (46)

it is qualitatively similar to lattice regularization. Proceeding in a similar way, one can write

ϕ (k+) = δ (k+) +

∫ µ

0

dE

E

∫ 1

0

dt

t
A1αS

(
E2t

)
[δ (k+ + Et) − δ (k+)] . (47)

We explicitly see that the hard scale Q does not appear in f (k+), as it should. Since k+ = −Q (1 − z) , the
shape function in the “QCD variable” z reads

f (z) = δ (1 − z) +

∫ η

0

dǫ

ǫ

∫ 1

0

dt

t
A1αS

(
Q2ǫ2t

)
[δ (1 − z − ǫt) − δ (1 − z)] , (48)
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where we have defined an adimensional shape function as

f (z) ≡ Q ϕ (k+) . (49)

The quantity η is the ratio of the UV cutoff of the effective theory to the hard scale,

η ≡
µ

Q
< 1, (50)

because the shape function is defined in a low-energy effective theory. To avoid substantial finite cut-off effects,
it must also be assumed that

µ ≫ Λ. (51)

Taking the Mellin moments and exponentiating the one-loop distribution as in the QCD case, one obtains5

fN = e∆fN . (52)

A straightforward computation gives

log fn = −
A1

2β0

θ (n − 1/η)

[
log

ξ

n2
log log

ξ

n2
− 2 log

ηξ

n
log log

ηξ

n
+ log η2ξ log log η2ξ

]
. (53)

As in the case of the QCD distribution, fn = 1 for n = 1. The N -moments of the shape function are reliably
computed in PT if one restricts n as in eq. (44). We therefore have here the same limitation of the QCD
distribution, as expected on physical ground.

4 The coefficient function

We now introduce the coefficient function C (z) , relating the shape function to the QCD semi-inclusive form
factor, as

C (z) ≡ δ (1 − z) + ∆C (z) , (54)

where

∆C (z) ≡ f (z) − f (z) . (55)

Inserting the expressions for the two distributions, we obtain

∆C (z) =

∫ 1

η

dǫ

ǫ

∫ 1

0

dt

t
A1αS

(
Q2ǫ2t

)
[δ (1 − z − ǫt) − δ (1 − z)] . (56)

The expression for the coefficient function is similar to the one for the QCD form factor, the only difference being
a lower cut-off on the gluon energies in this case. Note that there is no angular cutoff. The QCD distribution
and the shape function are related by a convolution in momentum space,

f (z) =

∫ 1

0

∫ 1

0

dz′dz′′δ (z − z′z′′) C (z′) f (z′′) . (57)

Taking the moments on both sides, one diagonalizes the convolution, so that

fn = Cn fn. (58)

5Do not confuse these moments of the shape function fN with the moments considered by other authors,
∫

dk+ kN

+ ϕ (k+) ∼∫
dz (1 − z)N f (z) .
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The usual exponentiation reads:

Cn = e∆Cn . (59)

The coefficient function can be computed from the difference in eq. (55) or directly from the integral represen-
tation in eq. (56) in the following way. The integration over the emission angle t gives

∆CN =

∫ 1

0

dy

y

[
(1 − y)

N
− 1

] ∫ 1

max(η, y)

dǫ

ǫ
A1αS

(
Q2ǫy

)
, (60)

where y ≡ 1 − z. The integration over y is done using the previous approximation (38) and one finally obtains:

log Cn = −
A1

2β0

{
θ (1/η − n)

[
log

ξ

n2
log log

ξ

n2
− 2 log

ξ

n
log log

ξ

n
+ log ξ log log ξ

]
+ (61)

+θ (n − 1/η)

[
2 log

ηξ

n
log log

ηξ

n
− 2 log

ξ

n
log log

ξ

n
+ log ξ log log ξ − log η2ξ log log η2ξ

]}
.

The QCD function fn is equal to the coefficient of θ (1/η − n) in the r.h.s of eq. (61). Collecting the terms in
common to the two θ-functions, eq. (61) can also be written as:

log Cn = −
A1

2β0

{
θ (1/η − n) log

ξ

n2
log log

ξ

n2
+ log ξ log log ξ − 2 log

ξ

n
log log

ξ

n
+

+θ (n − 1/η)

[
2 log

ηξ

n
log log

ηξ

n
− log η2ξ log log η2ξ

]}
. (62)

Let us comment on the result, represented by eq. (61) or by eq. (62). It is immediate to check that Cn = 1 when
η = 1 or when n = 1, as it should. Furthermore, Cn → 1 in the limit Q → ∞ with n and µ fixed.

5 10 15 20 25
n

0.4

0.5

0.6

0.7

0.8

0.9

Cn

Figure 1: Plot of the resummed coefficient function Cn (solid line) and the QCD semi-inclusive form factor fn
(dashed line) for the choice of the parameters discussed in the text.
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The main point is that the coefficient function is perturbatively computable as long as

n ≪
Q µ

Λ2
.

Note that this critical value of n is much larger than the one for the QCD form factor or the shape function
given in eq. (44), because of eq. (51). The equivalent limitation in momentum space for C (z) is

m2 ≫
Q Λ2

µ
. (63)

The occurrence of non-perturbative effects outside the region indicated by eq. (63) can be understood in a simple
way. The problem is to find the smallest gluon transverse momentum for a given invariant mass, eqs. (34), with
the additional constraint E & µ. The minimum occurs for the smallest gluon energy, E ∼ µ, where one has

θ ∼

√
m2

µ Q
∼

√
Λ

µ
≪ 1 (64)

and

l⊥min ∼

√
m2

Q
µ ∼

√
Λ µ ≫ Λ, (65)

in which conditions (11) and (51) have been used. A comparison between eqs. (35) and (65) shows that trans-
verse momenta are substantially larger in the coefficient function than in the QCD distribution; this allows a
perturbative treatment of the former. This is because the infrared cut-off on the gluon energies in C (z) has the
effect of lowering the largest emission angle, indirectly increasing the minimum gluon transverse momentum.

In single logarithmic problems, the loop expressions for the coefficient functions usually have phase-space
restrictions of the form

l⊥ & µ ≫ Λ. (66)

Therefore, factorization with the shape function involves, as the relevant dynamical scale, a softer scale with
respect to single logarithmic problems, because

µ ≫
√

Λ µ. (67)

Non-perturbative corrections to the factorized form (57) or (58) are expected to be of the size

Λ2

l2⊥min

, (68)

which means of order

Λ2

|k+|µ
∼

Λ

µ
. (69)

One inverse power of the factorization scale µ is involved. The corrections are therefore much larger than in
single logarithmic problems, where the estimate (68) translates to

Λ2

µ2
, (70)

involving two inverse powers of the factorization scale.

The previous findings can be summarized by considering eq. (58) in the various regions of the moment index
n, corresponding to different dynamical regimes:
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1. In the region6

1 ≪ n ≪
Q

Λ

or equivalently

Λ Q ≪ m2 ≪ Q2, (71)

the QCD function, the shape function and the coefficient function are all reliably computed in perturbation
theory. Actually, in this case there is no need to introduce the shape function and the resummed QCD
form factor is all is needed: its splitting in a shape function and a coefficient function is irrelevant;

2. In the “more exclusive” region

Q

Λ
∼ n ≪

Q µ

Λ2

or equivalently

Λ Q ∼ m2 ≫
Q Λ2

µ
, (72)

the QCD function and the shape function become non-perturbative, while the coefficient function is still
perturbatively computable. The idea is that one replaces the perturbative evaluation of the shape function
with a non-perturbative one and defines the QCD distribution by means of relation (58);

3. If one considers larger moments or, equivalently, smaller jet masses,

n &
Q µ

Λ2
or m2 .

Q Λ2

µ
, (73)

also the coefficient function becomes non-perturbative and the shape function loses most of its meaning.

The coefficient function Cn is plotted in fig. 1 together with the QCD function fn. For small values of n the
two curves are very close to each other because typical transverse momenta are large and the lower cut-off µ in
Cn is ineffective. In the figure we have taken Q = 5.2 GeV, αS = 0.24, µ = 2 GeV, Λ = 0.3 GeV and nf = 3.
For these value of the parameters, fn becomes singular for n > 17, while Cn becomes singular for n > 115. The
coefficient function monotonically decreases with n, starting from Cn = 1 at n = 1 and going down to Cn ≃ 0.68
for n = 17. This decay is produced by gluons of energy between the cutoff µ and the hard scale Q. The function
fn also monotonically decreases with n starting again from fn = 1 at n = 1 and reaching fn ≃ 0.33 for n = 17.
This faster decay is produced by gluons with any energy between the soft scale |k+| and Q.

The result (61) applies also to the coefficient function of the shape function defined in lattice regularization [9],
after the identification is done

1

a
= c µ, (74)

where c is a constant of order 1 and a is the lattice spacing. The precise value of c is determined only in
next-to-leading approximation. One has to perform a full order αS computation of the shape function in lattice
regularization and equate it to the expansion to order αS of the next-to-leading analogue of eq. (47).

6The region n ∼ 1 is trivial as there are no large infrared logarithms and fixed order perturbation theory is sufficient.
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5 Conclusions

In general, the QCD semi-inclusive form factor f (z) factorizes and resums large infrared double-logarithms
which occur in the threshold region

m2 ≪ Q2. (75)

These terms are related to the emission of soft gluons with transverse momenta ranging from the infrared scale
|k+| = m2/Q up to the hard scale Q. As long as one keeps |k+| ≫ Λ, dynamics is controlled by perturbation
theory. A phenomenologically relevant region is, however, |k+| ∼ Λ, in which substantial non-perturbative
effects are encountered. We factorize them by means of the shape function. An additional, unphysical, scale µ
is introduced in the problem, intermediate between the hard and the soft scale:

|k+| ≪ µ ≪ Q. (76)

This means a splitting of the double logarithm in the QCD cumulative distribution of the form

F = 1 −
A1αS

2
log2 Q2

m2
= 1 −

A1αS

2
log2 Q

|k+|

=

(
1 −

A1αS

2
log2 Q

µ
− A1αS log

Q

µ
log

µ

|k+|

) (
1 −

A1αS

2
log2 µ

|k+|

)
. (77)

The scale µ has the role of an IR cut-off for the coefficient function and of an UV cut-off for the shape
function. The first parenthesis in (77) contains the coefficient function, which is short-distance-dominated and
reliably computed in PT, while the second parenthesis contains a perturbative evaluation of the shape function.
The latter computation is “unreliable”, so it is thrown away and replaced by a non-perturbative one. The
factorization scale µ then separates what we compute in PT (above µ) from what we give up to compute in PT
(below µ). We may say that the coefficient function of the shape function is the “upper part” of a semi-inclusive
QCD form factor.

We have shown that the transverse gluon momenta entering the coefficient function have a lower bound
given by7

l⊥ &
√
|k+|µ ∼

√
Λ µ ≫ Λ, (78)

where eq. (11) has been used. As a consequence, non-perturbative corrections to the factorized form (57) or
(58) are expected to be of the size

Λ

µ
, (79)

involving one inverse power of the factorization scale µ. This situation is to be contrasted with single logarithmic
problems, where corrections to factorization have typically a size

Λ2

µ2
, (80)

involving two inverse powers of the factorization scale. We may say that factorization in this double-logarithmic
problem is still consistent, but it is presumably “less lucky” than in single-logarithmic cases.

We conjecture that a similar factorization — into a perturbatively calculable coefficient function and a non-
perturbative component — can be done for other semi-inclusive distributions, such as shape variables for very

7The appearance of a single logarithm of the soft scale |k+| in the coefficient function, eq. (77), should not be erroneously
interpreted as the signal of a non-perturbative effect in C.
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small values of the resolution parameters. An example is the thrust distribution in e+e− annihilations [10] for
values of the jet masses in the region (11), for which

1 − T ∼
Λ

Q
. (81)

In other words, we believe that the idea of the shape function can be generalized to describe many semi-inclusive
distributions in the region (11).

To conclude, we have presented a leading evalutation of the resummed coefficient function of the shape
function and we have proved that the latter is short-distance-dominated.
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