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Abstract

We present a leading evaluation of the resummed coefficient function for the shape function. It is also
shown that the coefficient function is short-distance-dominated. Our results allow relating the shape function
computed on the lattice to the physical QCD distributions.
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1 Introduction

In this note we present a leading evaluation of the coefficient function of the shape function [?]–[?]. The latter is
also called structure function of the heavy flavours. The coefficient function allows relating the shape function
— computed with a non-perturbative technique such as lattice QCD — to distributions in semi-inclusive heavy-
flavour decays. We consider in particular the processes

B → Xs + γ (1)

and

B → Xu + l + ν (2)

in the hard limit

Q � Λ. (3)

The quantity Q is the hard scale of these time-like processes: Q ≡ 2E , where E is the hadronic energy of the
state X and Λ is the QCD scale1. For a B-meson at rest, v = (1; 0, 0, 0) , and the jet X flying along the minus
direction (−z axis), the shape function is defined as

ϕ (k+) ≡ 〈B (v) |h†vδ (k+ − iD+) hv|B (v)〉. (4)

This represents the probability that the b-quark in the B-meson has momenta

pb = mBv + k′ (5)

with any transverse and minus components and with given plus component

k′+ = k+. (6)

The static field hv (x) is related to the Dirac field of the beauty quark b (x) by

b (x) = e−imBv·xhv (x) + O (1mB) . (7)

With the shape function, the decays (1) and (2) are related to their respective quark-level processes

b → X̂s + γ (8)

and

b → X̂u + l + ν, (9)

1For the rare decay (1), one can actually set Q = mB .
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where the b-quark has the momentum (5) with the distribution (4). It can be shown that the invariant mass m

of the state X̂ is related to the virtuality of the b-quark by

k+ = −m2Q. (10)

The shape function is a non-perturbative distribution — analogous to parton distribution functions — and it
describes the slice of the semi-inclusive region2 in which

m2 ∼ Λ Q,

i.e.

|k+| ∼ Λ, or z ∼ 1− ΛQ, (11)

where

z ≡ 1−m2Q2. (12)

Because of ultraviolet divergences affecting its matrix elements, the shape function has a dependence on the
ultraviolet cut-off or renormalization point µ :

ϕ (k+) = ϕ (k+; µ) , (13)

and is related to a physical QCD distribution by means of a coefficient function by (cf. eq. (??))

ϕ (k+; Q) =
∫

dk′+ C
(
k+ − k′+; Q, µ

)
ϕ

(
k′+; µ

)
. (14)

The QCD distribution does not depend on µ :

ddµϕ (k+; Q) = 0, (15)

while the shape function does not depend on Q. As a consequence, the coefficient function depends on both Q
and µ.

The shape function can be computed with a non-perturbative technique or extracted from experimental data.
If it is computed inside a field-theory model — such as lattice QCD — its expression will exhibit a µ-dependence
that cancels against that of the coefficient function. If it is instead computed inside a phenomenological model —
such as a quark model — the situation is less transparent. The µ-independence is not “automatic” and one has
to specify the value of µ appropriate for the model. Some care is needed also in extracting the shape function
from the experimental data, in order to avoid double counting of perturbative corrections. A factorization
scheme must be defined and the coefficient functions for the various processes all have to be computed in the
same scheme3. In particular, if a branching MonteCarlo is used for the analysis, the perturbative corrections
generated by the program must be subtracted.

The coefficient function is obtained by evaluating in leading approximation both ϕ and ϕ and inserting their
expression in eq. (14). Since the coefficient function is expected to be a short-distance quantity, we compute
the QCD distribution and the shape function in PT for an on-shell b-quark (k′ = 0). This expectation will be
verified a posteriori.

2This region is also called threshold region, large-x region, radiation-inhibited region and Sudakov region.
3The situation is analogous to usual hard processes, where various factorization schemes for the parton distribution functions

are defined: DIS, MS, etc.
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2 The QCD distribution

The (perturbative) long-distance effects occurring in (1) and (2) can be factorized in the function

f (z) = δ (1− z − 0)−A1αS (log [1− z] 1− z)+ , (16)

where

A1 = CF π (17)

and CF =
(
N2

c − 1
)
/ (2Nc) = 4/3. The plus-distribution is defined as usual as

P (z)+ ≡ P (z) − δ (1− z − 0)
∫ 1

0

dy P (y) . (18)

The integrated or cumulative distribution is defined as

F (z) ≡
∫ 1

z

dz′ f (z′) . (19)

Inserting expression (16) in this, one obtains the well-known double logarithm:

F (z) = 1−A1αS2 log2 (1− z) . (20)

The cumulative distribution satisfies the normalization condition F (0) = 1. Multiple soft-gluon emission expo-
nentiates the one-loop distribution, so that

F (z) = exp
[−A1αS2 log2 (1− z)

]
. (21)

For further improvement, it is convenient to write the function f (z) in an “unintegrated” form, as

f (z) = δ (1− z) + A1αS

∫ 1

0

dεε

∫ 1

0

dtt [δ (1− z − εt)− δ (1− z)] , (22)

where we have defined the unitary energy and angular variables

ε ≡ EQ and t ≡ 1− cos θ2. (23)

The quantity E is two times the energy of the soft gluon, E = 2Eg, and θ is the emission angle. Leading
logarithmic corrections are included replacing the bare coupling with the running coupling evaluated at the
gluon transverse momentum squared [?]:

αS → αS

(
l2⊥

)
, (24)
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