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Abstract

We present a leading evaluation of the resummed coefficient function for the shape function. It is also
shown that the coefficient function is short-distance-dominated. Our results allow relating the shape function
computed on the lattice to the physical QCD distributions.
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1 Introduction

In this note we present a leading evaluation of the coefficient function of the shape function [?]—[?]. The latter is
also called structure function of the heavy flavours. The coefficient function allows relating the shape function
— computed with a non-perturbative technique such as lattice QCD — to distributions in semi-inclusive heavy-
flavour decays. We consider in particular the processes

B— X, +7 (1)
and
B—X,+l+v (2)
in the hard limit
Q> A (3)

The quantity @ is the hard scale of these time-like processes: Q@ = 2€ , where £ is the hadronic energy of the
state X and A is the QCD scale!. For a B-meson at rest, v = (1;0,0,0), and the jet X flying along the minus
direction (—z axis), the shape function is defined as

¢ (ky) = (B (v) |h}6 (ks — iD) | B (v)). (4)

This represents the probability that the b-quark in the B-meson has momenta

py=mpv+ K (5)

with any transverse and minus components and with given plus component

K = k. (6)

The static field h, (x) is related to the Dirac field of the beauty quark b (z) by

b(z) =e ™MV, (2) + O (1mp). (7)

With the shape function, the decays (1) and (2) are related to their respective quark-level processes

~

b— X+~ (8)

and

b— Xy +1+v, (9)

IFor the rare decay (1), one can actually set Q = mp.



where the b-quark has the momentum (5) with the distribution (4). It can be shown that the invariant mass m
of the state X is related to the virtuality of the b-quark by

ky = —m?Q. (10)

The shape function is a non-perturbative distribution — analogous to parton distribution functions — and it
describes the slice of the semi-inclusive region? in which

m? ~AQ,
ie.
|ky| ~ A, or z~1—AQ, (11)
where
z=1-m?Q>. (12)

Because of ultraviolet divergences affecting its matrix elements, the shape function has a dependence on the
ultraviolet cut-off or renormalization point y :

o (ky) =@ (ki) (13)
and is related to a physical QCD distribution by means of a coefficient function by (cf. eq. (?7))

p(k+;Q) = /dkiC(h — K Q,p) ¢ (Kysp) (14)

The QCD distribution does not depend on p :

ddpep (k45 Q) =0, (15)

while the shape function does not depend on (). As a consequence, the coefficient function depends on both @
and u.

The shape function can be computed with a non-perturbative technique or extracted from experimental data.
If it is computed inside a field-theory model — such as lattice QCD — its expression will exhibit a p-dependence
that cancels against that of the coefficient function. If it is instead computed inside a phenomenological model —
such as a quark model — the situation is less transparent. The u-independence is not “automatic” and one has
to specify the value of u appropriate for the model. Some care is needed also in extracting the shape function
from the experimental data, in order to avoid double counting of perturbative corrections. A factorization
scheme must be defined and the coefficient functions for the various processes all have to be computed in the
same scheme?. In particular, if a branching MonteCarlo is used for the analysis, the perturbative corrections
generated by the program must be subtracted.

The coefficient function is obtained by evaluating in leading approximation both ¢ and ¢ and inserting their
expression in eq. (14). Since the coefficient function is expected to be a short-distance quantity, we compute
the QCD distribution and the shape function in PT for an on-shell b-quark (k" = 0). This expectation will be
verified a posteriori.

2This region is also called threshold region, large-x region, radiation-inhibited region and Sudakov region.
3The situation is analogous to usual hard processes, where various factorization schemes for the parton distribution functions
are defined: DIS, MS, etc.



2 The QCD distribution

The (perturbative) long-distance effects occurring in (1) and (2) can be factorized in the function

f(2)=0(1-2-0)—Aras(log[l —2]1-2),, (16)

where

A1 = CFT(' (17)

and Cp = (N2 — 1) / (2N;) = 4/3. The plus-distribution is defined as usual as

P(z)+EP(z)—6(1—z—0)/O dy P (y). (18)

The integrated or cumulative distribution is defined as

F(z)= / dz'f(2'). (19)

Inserting expression (16) in this, one obtains the well-known double logarithm:

F(2)=1- Ajas2log® (1 —2). (20)

The cumulative distribution satisfies the normalization condition F (0) = 1. Multiple soft-gluon emission expo-
nentiates the one-loop distribution, so that

F (2) = exp [~ Ajas2log? (1 — 2)] . (21)

For further improvement, it is convenient to write the function f (z) in an “unintegrated” form, as

1 1
f(z):é(l—z)+A1aS/0 dee/o Q51— 2 —et)—6(1—2), (22)

where we have defined the unitary energy and angular variables

e=EQ and t=1-cosf2. (23)
The quantity F is two times the energy of the soft gluon, £ = 2E,, and 6 is the emission angle. Leading

logarithmic corrections are included replacing the bare coupling with the running coupling evaluated at the
gluon transverse momentum squared [?]:

as — ag (li) s (24)



