
Implementation of an environment for Monte
Carlo simulation of fully 3-D positron

tomography on a high-performance parallel
platform

Habib Zaidi *, Claire Labb�e, Christian Morel

Division of Nuclear Medicine, Geneva University Hospital CH-1211 Geneva 4, Switzerland

Received 15 January 1998; received in revised form 15 April 1998

Abstract

This paper describes the implementation of the Eidolon Monte Carlo program designed to

simulate fully three-dimensional (3-D) cylindrical positron tomographs on a MIMD parallel

architecture. The original code was written in Objective-C and developed under the NeXT-

STEP development environment. Di�erent steps involved in porting the software on a parallel

architecture based on PowerPC 604 processors running under AIX 4.1 are presented. Basic

aspects and strategies of running Monte Carlo calculations on parallel computers are de-

scribed. A linear decrease of the computing time was achieved with the number of computing

nodes. The improved time performances resulting from parallelisation of the Monte Carlo

calculations makes it an attractive tool for modelling photon transport in 3-D positron

tomography. The parallelisation paradigm used in this work is independent from the chosen

parallel architecture. Ó 1998 Elsevier Science B.V. All rights reserved.

Keywords: Monte Carlo simulation; Positron emission tomography; Random numbers; Image recon-

struction; Parallel computer

1. Introduction

Positron emission tomography (PET) is a well-established imaging modality
which provides physicians with information about the body's chemistry not available
through any other procedure. Three-dimensional (3-D) PET provides qualitative and

Parallel Computing 24 (1998) 1523±1536

* Corresponding author. E-mail: hzaidi@dmnu-pet5.hcuge.ch

0167-8191/98/$ ± see front matter Ó 1998 Elsevier Science B.V. All rights reserved.

PII: S 0 1 6 7 - 8 1 9 1 (9 8) 0 0 0 6 9 - 6

ex
t-

20
01

-0
07

12
/

02
/

19
98

quantitative information about the volume distribution of biologically signi®cant
radiotracers after injection into the human body. Unlike X-ray computed tomo-
graphy (CT) or magnetic resonance imaging (MRI), which look at anatomy or body
morphology, PET studies metabolic activity or body function. PET has been used
primarily in cardiology, neurology, and oncology. Mathematical modelling is widely
used for the assessment of various parameters in imaging systems since no analytical
solution is possible when solving the transport equation describing the interaction of
photons with non-uniformly attenuating body structures and complex detector ge-
ometries. The Monte Carlo method is thoroughly used for solving problems in-
volving statistical processes, particularly in nuclear medical imaging since it can
reproduce the stochastic nature of radiation emission and detection [2]. Apart from
being used to model detectors and to estimate tomograph performances, the Monte
Carlo method was also employed to assess 3-D image reconstruction algorithms and
their implementations [11,27,28]. The usefulness of Monte Carlo techniques in the
development and evaluation of attenuation and scatter correction techniques for
both SPECT [26] and PET [10,25] is also well established.

Although variance reduction techniques have been developed to reduce compu-
tation time, the main drawback of the Monte Carlo method is that it is extremely
time-consuming. To obtain the statistics required for image reconstruction studies
needs to track hundreds of millions of particles. Consequently, a large amount of
CPU time (weeks or even months) may be required to obtain useful simulated data
sets. As parallel computers are becoming increasingly accessible to computational
scientists, problems that may otherwise be computationally prohibitive can be per-
formed much faster than with a scalar machine. Historically, however, most pro-
grams and subroutine libraries have been developed to run on serial, single-processor
computers. A modi®cation or adaptation of source code is therefore a prerequisite to
run it on a parallel computer. Nevertheless, among all simulation techniques of
physical processes, the Monte Carlo method is probably the most suitable one for
parallel computing since photon histories are completely independent from each
others. Although parallel processing seems to be the ideal solution for Monte Carlo
simulation, very few investigations have been reported and a limited number of
papers have been published on the subject [2]. The aim of this paper is to place the
status of parallel Monte Carlo in perspective and describe the implementation of a
simulator for 3-D positron tomography on a high performance parallel platform.

2. Parallelisation strategies for Monte Carlo codes

Sequential programs make the most e�ective use of the available processing
power: they alone guarantee maximum use of the CPU. In parallel programs,
communication management introduces an unavoidable overhead, resulting in less
e�cient use of the overall CPU power. Moreover, according to Amdahl's law [1],
parallelisation e�ciency is decreased by a factor representing the fraction of oper-
ations that must be executed in sequential order. When this fraction reaches one, we
are confronted with a wholly unparallelisable code, and the speed-up is zero no

1524 H. Zaidi et al. / Parallel Computing 24 (1998) 1523±1536

matter how many processors are used. The e�ciency of parallel programs is fur-
thermore reduced by a factor equal to the fraction of processor idle time, which is
highly dependent on the software parallelisation techniques used by the program-
mer.

In photon transport simulation, scalar or serial Monte Carlo codes track the
history of one particle at a time, and the total calculation time is the sum of the time
consumed in each particle history. Many Monte Carlo applications have charac-
teristics that make them easy to map onto computers having multiple processors.
Some of these parallel implementations require little or no interprocessor commu-
nication, and are typically easy to code on a parallel computer. Others require fre-
quent communication and synchronisation among processors and in general are
more di�cult to write and debug. A common way to parallelise Monte Carlo is to
put identical ``clones'' on the various processors; only the random numbers are
di�erent. It is therefore important for the sequences on the di�erent processors to be
uncorrelated so each processor does not end up simulating the same data [8]. That is,
given an initial segment of the sequence on one process, and the random number
sequences on other processes, we should not be able to predict the next element of
the sequence on the ®rst process. For example, it should not happen that if random
numbers of large magnitude are obtained on one process, large numbers are more
likely to be obtained on another. Furthermore, in developing any parallel Monte
Carlo code, it is important to be able to reproduce exactly Monte Carlo runs in order
to trace program execution.

The basic principles of parallel and vector processing are illustrated in Fig. 1. In
history-based parallel processing, each particle �p1; p2; . . . ; pm� is assigned to one
process which tracks its complete factual history �e1; e2; . . . ; en�. In event-based
vector processing, a process treats only part of each particle history �e1; e2; . . . ; en�
and particles �p1; p2; . . . ; pm� ``¯ow'' from process to process. The ®rst approach
seems to be best suited to the physics of the problem. By spreading out the work
among many processors, a speed-up that approaches the number of processors being
used could be attained. This can be achieved through the use of parallel processing
environments including arrays of transputers [3,14], vector parallel supercomputers
[19,22], massively parallel computers [20], or a cluster of workstations in a local area
network using a parallel computing simulator such as Parallel Virtual Machine
(PVM) [13]. While vector processors were designed for single instructions operating
on multiple data (SIMD), parallel computers are for multiple instructions operating
independently on multiple data (MIMD). In this later case, memories are distributed
on each processor and the communications between processors are carried out by
passing messages. Processors in MIMD machines are subject to asynchronous and
unbalanced external e�ects and are thus, for all practical purposes, impossible to
keep aligned in time in a predictable way. If the assumption is made that random
number generation from a single generator will occur across processors in a certain
predictable order, then that assumption will quite likely be wrong. A number of
techniques have been developed that guarantee reproducibility in multiprocessor
settings and with various types of Monte Carlo problems [5]. Although PVM [9] or
MPI [23] can be used to provide a machine independent message passing interface,

H. Zaidi et al. / Parallel Computing 24 (1998) 1523±1536 1525

uniform assignment of particles to processes is not suited for workstation clusters
because all the processors in the cluster may not have the same computation power
in a heterogeneous environment, and the processing speed is bound by the slowest
process. Moreover, the programmer needs to handle the di�erent formats (big-
endian and little-endian) computers use to keep data in memory.

During the last decade, investigations were carried out to run the EGS4 photon-
electron Monte Carlo transport code on vector machines [7,17] and a speed up of
about 8 was reported with the vectorized code [19]. The same code was also im-
plemented on a multiple-transputer system [14] and a parallel computer [20]. Dif-
ferent approaches for parallel execution of this code including large-grain data ¯ow
techniques were reported [4]. Last but not least, Smith [22] described a vectorized
code for simulation of SPECT imaging that uses an event-based algorithm in which
photon history computations are performed within DO loops. The indices of the DO
loops range over the number of photon histories, and take advantage of the vector
processing unit of the Stellar GS1000 computer for pipelined computations.

Fig. 1. Comparison of history-based parallel processing and event-based vector processing. In history-

based parallel processing, each particle �p1; p2; . . . ; pm� is assigned to one process which tracks its complete

factual history �e1; e2; . . . ; en�. In event-based vector processing, a process treats only part of each particle

history �e1; e2; . . . ; en� and particles �p1; p2; . . . ; pm� ``¯ow'' from process to process.

1526 H. Zaidi et al. / Parallel Computing 24 (1998) 1523±1536

3. Implementation of the Eidolon Monte Carlo code on the parallel system

3.1. System architecture

The Parsytec CC system (Parsytec GmbH, D-52068 Aachen, Germany) is an
autonomous unit at the card rack level. The CC card rack subsystem provides the
system with its infrastructure including power supply and cooling. The system is
con®gured as a standard 19'' rack mountable unit which accepts the various 6U
plug-in modules. The Parsytec CC system is a distributed memory, message passing
parallel computer and is globally classi®ed into the MIMD category of parallel
computers. Its architecture is based on the mainstream Motorola MPC 604 pro-
cessor running at 133 MHz with 512KB L2-cache. The modules are connected to-
gether at 1 Gbits/s with high speed (HS) link technology according to the IEEE 1355
standard, allowing data transfer at up to 75 Mbytes/s. The communication controller
is integrated in the processor nodes through the PCI bus. PCI is also the standard
which is used in the I/O modules and customer-speci®c I/O functions. All the nodes
are directly connected to the same router which implements an active hardware 8 by
8 crossbar switch for up to 8 connections using the HS link. A schematic repre-
sentation of the CC node is given in Fig. 2. It combines a memory controller (MPC
104) with a MPC 604 PowerPC processor and its local memory through an on-board
PCI bus. The system board uses the MPC 105 chip to provide memory control,
DRAM refresh and memory decoding for banks of DRAM and/or Flash. The CPU
bus speed is limited to 66 MHz while the PCI bus speed is 33 MHz at maximum.

The software is based on IBM's AIX 4.1 UNIX operating system together with
Parsytec's parallel programming environment Embedded PARIX (EPX). Thus, it
combines a standard UNIX environment (compilers, tools, libraries) with an ad-
vanced software programming development environment. The system was integrated

Fig. 2. Schematic layout of the parsytec CC node, showing the main PowerPC 604 CPU, its local memory

through an on-board PCI bus, and the MPC 105 chip for memory control.

H. Zaidi et al. / Parallel Computing 24 (1998) 1523±1536 1527

to the local area network using standard Ethernet. Currently a CC node has a peak
performance of 266 MFlops. The peak performance of the 8-node CC system in-
stalled at Geneva University Hospital is therefore 2.1 GFlops. A schematic view is
shown in Fig. 3. To develop parallel applications using EPX, data streams and
function tasks are allocated to a network of nodes. The data handling between
processors requires just a few system calls. Standard routines for synchronous
communication such as send and receive are available as well as asynchronous
system calls. The full set of EPX calls establishes the EPX application programming
interface (API). The destination for any message transfer is de®ned through a virtual
channel that ends at any user de®ned process. Virtual channels are user de®ned and
managed by EPX. The actual message delivery system software utilises the router.

3.2. Porting the simulator on the parallel system

The Eidolon Monte Carlo simulation software was developed for cylindrical 3-D
positron tomographs [27]. The main application sought is to generate data sets in a
controllable manner to compare di�erent volume reconstruction algorithms [28]. The
original code was written in Objective-C and run under the NeXTSTEP (version 3.3)
object-oriented development environment (NeXT Computer, Inc., Redwood City,

Fig. 3. Schematic view of the parsytec CC8 system installed at Geneva University Hospital and integrated

to the local area network (LAN). It consists mainly of a router, a networked entry node, one I/O node and

six computing nodes housed in the same 19'' rack.

1528 H. Zaidi et al. / Parallel Computing 24 (1998) 1523±1536

CA 94063) taking advantage of its powerful graphical user interface libraries and
toolkits. Objective-C is a superset of ANSI C and provides classes and message
passing similar to Smalltalk. Although, the NeXTSTEP environment provided a
great tool allowing to reduce the amount of time necessary for writing applications,
the portability issue still remained hard to solve since these applications were tied to
machines running NeXTSTEP. Fortunately, the GNU C compiler (gcc) available
from the Free Software Foundation (Free Software Foundation, Boston, MA 02111-
1307 USA) comes with an Objective-C compiler since version 2.7.1. The current
distributions of gcc (version 2.8.0) includes an Objective-C compiler and a runtime
library. Hopefully, this makes possible to port Eidolon on most of the current
platforms and operating systems. Eventually, a problem was encountered during
installation of gcc on the Parsytec CC system because Objective-C with gcc was
broken for the PowerPC-AIX 4.1 architecture. Though we were able to get gcc and
the Objective-C runtime library compiled properly, there was a problem apparent
during run-time which was due to the fact that the Objective-C constructors were not
gathered and executed upon application start-up as they were supposed to. This
functionality is provided through the collect2.c program within gcc. Thanks to Scott
Christley from the GNUstep project 1, we were able to hand patch gcc in order to
make it work. A general-purpose class library of non-graphical Objective-C objects
designed in the Smalltalk tradition was also installed and method calls changed
accordingly. The libobjects library is to GNU's Objective-C what libg++ is to
GNU's C++. The parallelised code consists of the following processes:
1. a master `control' process to generate tasks;
2. a number of slave `simulation' processes to execute tasks and to generate results;
3. an `analysis' process to collect data and to analyse results.

A simpli®ed ¯ow chart of the parallel simulator is given in Fig. 4. Information
about the number and identity of nodes on which to perform the simulation, in-
teraction within scatter medium and/or detector blocks (scatter-free, or considering
scattering and attenuation) as well as details of scanner geometry, source and scat-
terer parameters are speci®ed within series of ASCII ®les. The control process reads
those ®les from the disk, performs the simulation, then writes the results. To avoid
possible ®le corruption when two processes are editing the same ®le, a small delay
between execution of the program on the selected processors has been arranged.
Each processor writes a ®le named `phantom' followed by its identi®cation number
(1±12). The random nature of the Monte Carlo method results in the fact that each
processor could be writing data to its ®les at any time, making it impossible to safely
add the resulting data ®les from many processors for analysis. A separate program is
called to carry on the analysis phase and is launched only when all processors

1 The GNUstep project (http://www.gnustep.org/) is an e�ort of many di�erent parties to deliver a free

implementation of the OpenStep speci®cation as published by NeXT & Sun companies in 1994. The

motivation behind GNUstep is to make porting applications easier, to leverage the bene®ts of the

Objective-C language, and to push the idea of OpenStep as a common object oriented API; especially on

systems which are not covered by commercial implementations of this standard.

H. Zaidi et al. / Parallel Computing 24 (1998) 1523±1536 1529

®nished the calculations. The EPX partition management software (NRM) was used
to de®ne sets of partitions consisting of one processor each. Each individual pro-
cessor run its own simulation with di�erent initial con®gurations. One designated
processor (entry node) serves as a controller which supplies other processors with
some parameters that govern the simulation processes. Besides running its own se-
quence, the controller assesses the status of the whole simulation.

Fig. 4. Flow chart of the parallel simulation processes.

1530 H. Zaidi et al. / Parallel Computing 24 (1998) 1523±1536

3.3. Distribution of random number sequences

For many computational science applications, such as Monte Carlo simulation, it
is crucial that the generators have good randomness properties. This is particularly
true for large-scale simulations done on high-performance parallel computers. Al-
though powerful random number generators (RNG) have been suggested including
shift register, inversive congruentional and combinatorial, the most commonly used
generator for random numbers is the linear congruential RNG (LCRNG) [2,14]
which has the following form

un�1 � a un � c� � mod�m�; �1�
where m is the modulus, a the multiplier, and c the additive constant or addend. The
size of the modulus constrains the period, and is usually chosen to be either prime or
a power of 2. Recently, Monte Carlo researchers have become aware of the ad-
vantages of lagged Fibonacci series. With extremely long periods, they are generally
faster than LCRNG and have excellent statistical properties. The lagged Fibonacci
series RNG (LFRNG) have the following general form [15]

un � unÿ1
 unÿk mod�m�; 1 > k; �2�
where
 may be one of the following binary arithmetic operators +,),*; l and k are
the lags, and m is a power of 2 (m� 2n). In recent years the additive lagged Fibonacci
RNG (ALFRNG) has become a popular generator for serial as well as scalable
parallel machines because it is easy to implement, it is cheap to compute and it does
well on standard statistical tests, especially when the lag k is su�ciently high (such as
k� 1279). The maximal period of the ALFRNG is 2k ÿ 1� �2nÿ1 [6] and has 2�kÿ1��nÿ1�

di�erent full-period cycles [18]. Another advantage of the ALFRNG is that one can
implement these generators directly in ¯oating-point to avoid the conversion from
integer to ¯oating-point that accompanies the use of other generators. However,
some care should be taken in the implementation to avoid ¯oating point round-o�
errors.

Instead the ALFRNG can be parameterised through its initial values because of
the tremendous number of di�erent cycles. Di�erent streams are produced by as-
signing each stream a di�erent cycle. An elegant seeding algorithm that accomplishes
this is described in Ref. [18]. An interesting cousin of the ALFRNG is the multi-
plicative lagged-Fibonacci RNG (MLFRNG). While this generator has a maximal-
period of 2k ÿ 1� �2nÿ3, which is a quarter the length of the corresponding ALFRNG,
it has empirical properties considered to be superior to ALFRNGs [15]. An inter-
esting aspect for parallel computing is that a parameterisation analogous to that of
the ALFRNG exists for the MLFRNG. This later algorithm was used in this work
for generating uniformly distributed random numbers. The sequence of 24 bit ran-
dom numbers has a period of about 2144, and has passed stringent statistical tests for
randomness and independence [16].

There are many approaches to vector and parallel random number generation in
the literature [21,24]. We can distinguish three general approaches to the generation
of random numbers on parallel computers: centralised, replicated, and distributed.

H. Zaidi et al. / Parallel Computing 24 (1998) 1523±1536 1531

In the centralised approach, a sequential generator is encapsulated in a task from
which other tasks request random numbers. This avoids the problem of generating
multiple independent random sequences, but is unlikely to provide good perfor-
mance. Furthermore, it makes reproducibility hard to achieve: the response to a
request depends on when it arrives at the generator, and hence the result computed
by a program can vary from one run to the next. In the replicated approach,
multiple instances of the same generator are created (for example, one per task).
Each generator uses either the same seed or a unique seed, derived, for example,
from a task identi®er. Clearly, sequences generated in this fashion are not guaran-
teed to be independent and, indeed, can su�er from serious correlation problems.
However, the approach has the advantages of e�ciency and ease of implementation
and should be used when appropriate. In the distributed approach, responsibility for
generating a single sequence is partitioned among many generators, which can then
be parcelled out to di�erent tasks. The generators are all derived from a single
generator; hence, the analysis of the statistical properties of the distributed generator
is simpli®ed.

A Monte Carlo particle history is a Markov chain because the next interaction
or movement of a particle is always determined by the current state of the particle.
The histories of two particles became identical only when the same random
number sequence is used to sample the next state. The MLFRNG is initialised
through the function start_random_number (int seed_a, int seed_b).
Supplying two seeds to start_random_number is therefore required once at
program start-up before requesting any random numbers. The correspondence
between pairs of seeds and generated sequences of pseudo-random numbers is
many-to-one. If we choose the seeds carefully, then we can ensure that each
random sequence starts out in a di�erent cycle, and so two sequences will not
overlap. Thus the seeds are parameterised (that is, sequence i gets a seed from cycle
i, the sequence number being the parameter that determines its cycle). The question
now becomes, how to initialise separate cycles to ensure that the seed tables on
each processor are random and uncorrelated? This problem is addressed by Ma-
scagni et al. [18] where they describe a canonical form for initialising Fibonacci
generators. This canonical form is determined by l and k, but is independent of m.
In general, the canonical form for initialising Fibonacci generators requires word
(l) 1) to be set to all zero bits and the least signi®cant bits of all words in the
register to be set to zero, with the exception of one or two characteristic bits that
depend on l and k. Using this methodology, one can actually distribute random
number seeds to di�erent processors for doing the same calculation and ensure
that particles for a speci®c process will not start at the same position of the
sequence.

4. Performance and timing results

Besides the ®delity of the simulated PET data and the ease with which software
models can be prepared, the remaining important consideration in performing

1532 H. Zaidi et al. / Parallel Computing 24 (1998) 1523±1536

simulation of PET imaging systems is the computational time required to generate
adequate data sets. Timing of a single MPC 604 processor was carried out against
the HP9000/712 station. The same simulation benchmark was used in the timing in
which a line source was simulated in the centre of a water-®lled cylindrical phantom
for the ECAT-953B PET scanner (CTI PET Systems, Knoxville, TN 37933) operated
in 3-D mode (16 rings of 384 detectors each with a ring radius of 38 cm) in scatter-
free imaging, and when considering attenuation and scattering within the phantom
and detector blocks. The resulting computing time in minutes and the ratios between
4,8,12 and one single node to track 10 million annihilation pair photon histories are
given in Table 1. Time required by slave processors to write data sets on disk is not
included in the time quoted in Table 1. The time required to perform the I/O op-
erations and summation of data sets is negligible compared to that required for large
simulation studies. A linear scaling of the computing time with the number of
processors has been achieved.

Since high statistics are necessary to model imaging simulations, the computing
time needed to track photons becomes of paramount importance. To illustrate the
e�ect of statistics on the quality of reconstructed images, projections of the Jaszczak
phantom (Data Spectrum Corporation, Hillsborough, NC 27278) with spheres insert
having total counts ranging from 1 to 50 million were generated. The simulation
included all of the degrading factors present in the physical imaging process. Before
reconstruction, attenuation correction was applied to the data sets; attenuation
correction ®les were created by forward projecting the 3-D density map estimated
with a constant linear attenuation coe�cient of 0.096 cmÿ1. Scatter correction was
not performed. Fig. 5. shows transaxial slices of the simulated phantom containing
six cold spheres with diameters ranging from 9.5 to 31.8 mm reconstructed using the
widely-used reprojection algorithm of Kinahan and Rogers [12]. According to visual
inspection, the quality of the reconstructions is superior when the projections are
obtained with good statistics. As a result of the enhanced quality, the small cold
lesions are clearly visible when compared to those of the low count studies. This
type of studies is useful to assess contrast recovery and to quantitatively predict the
e�ect of di�erent image reconstruction techniques on human accuracy for lesions
detection.

Table 1

Comparison of the computing times for di�erent simulation studies

HP 9000 Parsytec Parsytec Parsytec Parsytec

712/60 CC1 CC4 CC8 CC12

Scatter-free imaging 72.33 25.88 6.38 (4) 3.7 (7) 2.2 (11.2)

Detector-scatter imaging 1425.65 436.55 110.26 (4) 54.6 (8.2) 36.7 (11.9)

Object-scatter imaging 2256.2 493.35 122.1 (4) 63.97 (7.7) 42.5 (11.6)

Full-scatter imaging 2540.45 657 170.5 (3.9) 83.66 (7.8) 55.7 (11.8)

Computing times required to track 10 million annihilation pairs on both the HP 9000 712/60 workstation

and the Parsytec CC system having 1, 4, 8 and 12 computing nodes are given in minutes. The speed-up

achieved is also reported.

H. Zaidi et al. / Parallel Computing 24 (1998) 1523±1536 1533

5. Discussion and conclusion

The object-oriented Eidolon Monte Carlo code developed to simulate fully 3-D
cylindrical positron tomographs was successfully implemented on the Parsytec CC
parallel system using PowerPC 604 nodes under AIX 4.1. We anticipated that the
possibilities o�ered by the software need to increase steadily according to the re-
search application of interest. Therefore software changes would be unavoidable
within the following years. Besides extendibility, maintainability was thus very im-
portant as existing code must be reused and new features must be introduced in a
straightforward manner. The object-oriented programming paradigm meets all these
requirements and has proven to improve productivity, quality, and innovation in
software development. It provides modelling primitives, a framework for high-level
reusability, and integrating mechanisms for organising knowledge about application
domains. In order to get higher speed, Monte Carlo applications make extensive use
of parallel computers, since these calculations are particularly well suited to such
architectures and often require very long runs.

A linear increase in computing speed was achieved with the number of computing
nodes used. There is no theoretical limit on the number of processors to be used.
Upgrade of the system is reasonable to obtain better performance. The techniques
developed in this work are also suitable for the implementation of the Monte Carlo
code on other parallel computer systems. A potential application of Eidolon will be

Fig. 5. E�ect of limited statistics on the quality of reconstructed images and lesion detection. The phantom

consists of a water-®lled cylindrical phantom containing uniform activity in which six cold spheres with

diameters ranging from 9.5 to 31.8 mm are included. The reference image (top left) and reconstructed slices

generated with 1 Mcounts (top right), 10 Mcounts (bottom left), and 50 Mcounts (bottom right) are

shown.

1534 H. Zaidi et al. / Parallel Computing 24 (1998) 1523±1536

to compute photon detection kernels, which will be used to build system matrices for
simulating PET projection data for use during the forward projection step in iter-
ative image reconstruction algorithms.

Acknowledgements

This work was supported by the Swiss Federal O�ce for Education and Science
under grant 96.193 within the European Esprit LTR project PARAPET (EP23493).
The authors are indebted to Scott Christley from the GNUstep project for his help
during the installation of the GNU compiler. They also gratefully thank their
partners within the PARAPET project.

References

[1] G.M. Amdahl, Validity of the single processor approach to achieving large-scale computing

capabilities, AFIPS Conference Proceedings Washington, DC, Vol. 30 (1967) 483±485.

[2] P. Andreo, Monte Carlo techniques in medical radiation physics, Phys. Med. Biol. 36 (1991) 861±920.

[3] C.R. Askew, D.B. Carpenter, J.T. Chalker et al., Monte Carlo simulation on transputer arrays, J.

Parallel Computing 6 (1988) 247±258.

[4] R.G. Babb, L. Storc, Developing a parallel Monte Carlo transport algorithm using large-grain data

¯ow, Parallel Comput. 7 (1988) 187±198.

[5] V.C. Bhavsar, J.R. Isaac, Design and analysis of parallel Monte Carlo algorithms, SIAM J. Statistical

and Scient. Comput. 81 (1987) 73±95.

[6] R.P. Brent, On the periods of generalized Fibonacci recurrences, Math. Comput. 63 (1994) 389±401.

[7] F.B. Brown, W.R. Martin, Monte Carlo methods for radiation transport analysis on vector

computers, Progr. Nucl. Energy 14 (1984) 269±299.

[8] A. De Matteis, S. Pagnutti, Controlling correlations in parallel Monte Carlo, Parallel Comput. 21

(1995) 73±84.

[9] A. Geist, A. Beguelin, J. Dongarra et al., PVM±A users' guide and tutorial for networked parallel

computing, MIT Press, Boston, 1994.

[10] D.R. Haynor, R.L. Harrison, T.K. Lewellen, Energy-based scatter correction for 3D PET: A Monte

Carlo study of best possible results, in: P. Kinahan, D. Townsend (Eds.), Conf. Rec. of the

International Meeting in Fully Three-Dimensional Image Reconstruction in Radiology and Nuclear

Medicine, Nemacolin Woodlands, UPMC, Pittsburgh, 1997, pp. 52±54.

[11] A.K. Herrmann Scheurer, M.L. Egger, C. Joseph, C. Morel, A Monte Carlo phantom simulator for

positron emission tomoraphy, in: H.J. Hermann, D.E. Wolf, E. P�oppel (Eds.), Proceedings of the

Workshop on Supercomputing in Brain Research: From Tomography to Neural Networks, J�ulich,

1994, World Scienti®c, Singapore, 1995, pp. 205±209.

[12] P.E. Kinahan, J.G. Rogers, Analytic 3D image reconstruction using all detected events, IEEE Trans.

Nucl. Sci. 36 (1989) 964±968.

[13] D.R. Kirkby, D.T. Delpy, Parallel operation of Monte Carlo simulations on a diverse network of

computers, Phys. Med. Biol. 42 (1997) 1203±1208.

[14] C.-M. Ma, Implementation of a Monte Carlo code on a parallel computer system, Parallel Comput.

20 (1994) 991±1005.

[15] G. Marsaglia, A. Zaman, Some portable very-long-period random number generators, Computers in

Physics 8 (1994) 117±121.

[16] G. Marsaglia, A. Zaman, Monkey tests for random number generators, Comp. Math. Applic. 23

(1993) 1±10.

H. Zaidi et al. / Parallel Computing 24 (1998) 1523±1536 1535

[17] W.R. Martin, F.B. Brown, Status of vectorized Monte Carlo code for particle transport analysis, Int.

J. Supercomputer Appl. 1 (1987) 11±32.

[18] M. Mascagni, S.A. Cuccaro, D.V. Pryor, M.L. Robinson, A fast, high-quality, and reproducible

lagged-Fibonacci pseudorandom number generator, J. Comput. Phys. 15 (1995) 211±219.

[19] K. Miura, EGS4V: Vectorization of the Monte Carlo cascade shower simulation code EGS4,

Comput. Phys. Commun. 45 (1987) 127±136.

[20] K. Miura, R.G. Babb, Tradeo� in granularity and parallelization for a Monte Carlo shower code

(EGS4), Parallel Comput. 8 (1987) 91±100.

[21] R. Sarno, V.C. Bhavsar, E.M.A. Hussein, Generation of discrete random variables on vector

computers for Monte Carlo simulations, Int. J. High Speed Comput. 2 (1990) 335±350.

[22] M.F. Smith, C.E. Floyd, R.J. Jaszczak, A vectorized Monte Carlo code for modeling photon

transport in SPECT, Med. Phys. 20 (1993) 1121±1127.

[23] M. Snir, S. Otto, S. Huss-Lederman, D. Walker, J. Dongarra, MPI: The Complete Reference, MIT

Press, Boston, 1996.

[24] A. Srinavasan, D.M. Ceperley, M. Mascagni, Random number generators for parallel applications,

in: D. Ferguson, J.I. Siepmann, D.G. Truhlar (Eds.), Monte Carlo Methods in Chemical Physics,

Advances in Chemical Physics series, Wiley, New York, 1997.

[25] C.C. Watson, D. Newport, M.E. Casey, A. deKemp, R.S. Beanlands, M. Schmand, Evaluation of

simulation-based scatter correction for 3-D PET cardiac imaging, IEEE Trans. Nucl. Sci. 44 (1997)

90±97.

[26] H. Zaidi, Quantitative SPECT: Recent developments in detector response, attenuation and scatter

correction techniques, Physica Medica 12 (1996) 101±117.

[27] H. Zaidi, A. Herrmann Scheurer, C. Morel, An object-oriented Monte Carlo simulator for 3D

positron tomographs, Comput. Methods Programs Biomed (1998), in press.

[28] H. Zaidi, A. Herrmann Scheurer, C. Morel, Development of an object-oriented Monte Carlo

simulator for 3D positron tomography, in: P. Kinahan, D. Townsend (Eds.), Conf. Rec. of the

International Meeting in Fully Three-Dimensional Image Reconstruction in Radiology and Nuclear

Medicine, Nemacolin Woodlands, UPMC, Pittsburgh, 1997, pp. 176±179.

1536 H. Zaidi et al. / Parallel Computing 24 (1998) 1523±1536

	PII: S0167-8191(98)00069-6
	page 2
	page 3
	page 4
	page 5
	page 6
	page 7
	page 8
	page 9
	page 10
	page 11
	page 12
	page 13
	page 14

