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Abstract

Monte Carlo simulation is a very powerful tool in understanding performances of positron tomographs as well as
in assessing image reconstruction algorithms and their implementations. We present an object-oriented Monte Carlo
simulator developed for 3D positron tomography. Results from phantom simulation studies including absorption and
scattering of the photons in the field-of-view are presented. Scatter fractions determined from these studies are in
good agreement with measured scatter fractions published in the literature. Limitations and future prospects are
discussed. © 1999 Elsevier Science Ireland Ltd. All rights reserved.
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1. Introduction

The Monte Carlo method allows to simulate
statistical processes following from the stochastic
nature of radiation emission and detection. Con-
sequently, it has been widely utilised in medical
radiation physics [1] since more than 30 years and
was notably used to develop dosimetry [2] and to

simulate characteristics of scintillation cameras
[3]. Apart from being thoroughly exploited to
model detectors for positron emission tomogra-
phy (PET) [4–8], Monte Carlo simulation of
three-dimensional (3D) PET data has proved to
be a very powerful tool to estimate performances
of 3D positron tomographs [9–16] as well as to
assess 3D image reconstruction algorithms and
their implementations [17,18]. Since it allows to
obtain separate images of unscattered and scat-
tered events, it helped developing and evaluating
3D attenuation and scatter correction techniques
[19,20]. Furthermore, providing its design is easily
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extensible, it represents an effective tool for ex-
ploring different schemes for sampling the 3D
X-ray transform [21].

In PET, pairs of 511 keV photons resulting
from electron-positron annihilations are detected
in coincidence. A positron emission tomograph
contains a set of detectors usually arranged in
adjacent rings that surround the field-of-view
(FOV) in order to image the spatial distribution
of a positron emitting radiopharmaceutical ad-
ministered to the patient (Fig. 1). In two-dimen-
sional (2D) PET, data acquisition was limited to
coincidences detected within the same detector or
adjacent detector rings. With the information ob-
tained from detectors belonging to the same de-
tector rings, images representing the tracer
distribution in the planes of the detector rings
(direct planes) are obtained. With the information
obtained from detectors belonging to adjacent
detector rings, we reconstruct images representing

the tracer distribution in the planes between the
detector rings (cross planes). Here, a 3D PET
scanner consisting of N detector rings gives (2N-
1) images representing the tracer distribution in
adjacent cross-sections of a patient. Transverse
sections of the image volume obtained are then
stacked together to allow the spatial distribution
of the radiopharmaceutical to be viewed in 3D. In
fully 3D PET, data acquisition is no more limited
to coincidences detected within each of the detec-
tor rings, but oblique lines of response (LORs)
formed from coincidences detected between differ-
ent detector rings are also used to reconstruct the
image.

In addition to true coincidences corresponding
to the detection of 511 keV annihilation pairs,
scattered and random coincidences are also de-
tected by the imaging system. Fig. 2 illustrates the
detection of these different types of coincidences.
True coincidences detected for a given LOR allow
to estimate the line integral of the annihilation
distribution along the LOR, whereas scattered
coincidences, where at least one of the two annihi-
lation photons is scattered prior detection, are
falsely assigned to the LOR and result in a blur-
ring of the reconstructed image. Random coinci-
dences come from the detection of two
non-correlated single photons within the time
window set for coincidence measurement and can
be easily corrected for.

In this paper, we present an object-oriented
Monte Carlo simulator developed for 3D positron
tomography. Results from phantom simulation
studies including absorption and scattering of the
photons in the FOV are presented and future
prospects discussed.

2. Methods

2.1. Software description

Unlike procedural programming languages
which separate data from operations on data
defined by procedures and functions, object-ori-
ented programming languages consist of a collec-
tion of interacting high-level units, the objects,
that combine both data and operations on data.

Fig. 1. Originating from the decay of the radionuclide, a
positron travels a few mm only to be annihilated by a nearby
atomic electron, producing two 511 keV photons emitted in
opposite directions. A positron emission tomograph contains a
set of detectors usually arranged in adjacent rings surrounding
the FOV. Pairs of annihilation photons are detected in coinci-
dence. The size of the FOV is defined by the number of
opposite detectors in coincidence.



H. Zaidi et al. / Computer Methods and Programs in Biomedicine 58 (1999) 133–145 135

Fig. 2. Schematic of a simulation model for 3D positron tomography. Detection of true, random, object scattered and detector
scattered coincidences are indicated along the corresponding LORs. Dash lines indicate photon paths.

This renders objects not much different from ordi-
nary physical objects. This resemblance to real
things gives objects much of their power and
appeal. They can not only model components of
real systems, but equally as well fulfil assigned
roles as components in software systems. This
programming paradigm appears to be quite well
appropriate to Monte Carlo modelling as there is
a direct correspondence between objects of the
application domain—source and scatter volumes,
detectors—and objects of the computational
model—source, scatter and detector objects—.

The Monte Carlo simulator, Eidolon, was writ-
ten in Objective-C [22], an object-oriented pro-
gramming language based on ANSI C and runs
under NextStep 3.3 [23] on an Hewlett-Packard
712/60 workstation with 48 Mb RAM memory. A
graphical user interface allows one to select scan-
ner parameters such as the number of detector
rings, detector material and sizes, energy discrimi-
nation thresholds and detector energy resolution.
It also allows one to choose a set of simple 3D
shapes, such as parallelepiped, ellipsoid or cylin-
droid for both the annihilation sources and the
scattering media, as well as their respective activ-
ity concentrations and chemical compositions.
One may view the reference source image and
measured 2D coincidence histograms, the sino-
grams, as they are generated.

2.2. Design and implementation

In order to ease the job of incrementally adding
capabilities to the Monte Carlo simulator, a mod-
ular design featuring dynamically loadable pro-
gram elements or bundles was adopted. The basic
building block is a model element object class
which allows elements to be browsed, inspected,
adjusted, created and destroyed through a graphi-
cal inspector (Fig. 3). This was then used to
implement simple parametric source, detector and
scatter object classes and sinogram and image
object classes to view and save the generated data.
A controller object oversees the simulation pro-
cess (Fig. 4). The reference image and sinogram
displays are periodically updated.

The model assumes a cylindrical array of detec-
tor crystals and known spatial distributions of
annihilation sources and scatter phantoms. Radial
samples are assumed to be equidistant, although
ring curvature can be taken into account for
sampling. Pairs of annihilation photons are gener-
ated uniformly within the source objects, they are
tracked until extermination of their history either
by interacting with scatter or detector objects, or
by escaping the positron tomograph geometry
and FOV. Positron range and photon non-
collinearity due to thermal motion of the electron-
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Fig. 3. User interface inspectors of the Monte Carlo simulator Eidolon describing scanner geometry (top left) and source distribution
(bottom left). The reference image (top right) and the sinograms (bottom right) may be viewed as they are generated.
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Fig. 4. A flow diagram showing the main components of the Monte Carlo simulator.

positron pair are not taken into account in the
results presented here, but were included in the last
version of the software.

Photoelectric absorption as well as incoherent
and coherent scattering are taken into account to
simulate photon interaction with scatter and detec-
tor objects. Interaction cross-sections and scatter-
ing distributions are computed from parametriza-
tions implemented in the GEANT simulation pack-
age [24]. The total cross-section at the energy of the
interacting photon determines the length of interac-
tion. The relative ratios of the cross-sections for
photoelectric effect to Compton (incoherent) and
Rayleigh (coherent) scattering are used to choose
randomly which process occurs at each interaction
vertex. The distance x travelled by the photons
before interacting is randomly generated according
to the exponential distribution function me–mx,
where m represents the total linear attenuation
coefficient. The Klein–Nishina angular distribu-
tion is used to sample the direction of the Compton
scattered photons. The Marsaglia algorithm [25]
was used to generate uniformly distributed pseudo-
random numbers. This sequence of 24 bit pseudo-
random numbers has a period of about 2144 and has
passed stringent statistical tests for randomness and
independence.

Interaction within scatter or detector objects can

be switched on and off. In case interaction within
detector objects is switched off, any photon imping-
ing on a detector is assumed to deposit all its energy
in the detector crystal. In the other case, photon
pairs are recorded once two photons resulting from
one annihilation event have passed the energy
window set for discrimination. Random coinci-
dences are not simulated. At each interaction
vertex, the energy lost by the absorbed or scattered
photon is assumed to be converted to scintillation
light. Instead of tracking scintillation light in the
detectors, energy resolution DE/E of the detector
is simulated by convolving the deposited energy
with a Gaussian function. DE/E is assumed to be
proportional to 1/
E.

3. Phantom simulations and computing time
performances

Eidolon was used to simulate a uniform water-
filled cylindrical phantom and the Utah phantom
(Fig. 5) which was designed with a high degree of
inhomogeneity both transaxially and axially in
order to compare and test scatter correction tech-
niques in 3D PET [26]. Phantom data sets were
generated for the ECAT-953B PET scanner oper-
ated in 3D mode (16 rings of 384 detectors each
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Fig. 5. Diagram of the Utah phantom.

with a ring radius of 38 cm) [27] both with and
without scatter simulation. Detector energy reso-
lution DE/E was set to 23% for 511 keV photons.
The outer compartment of the Utah phantom,
which is generally used to provide activity from
outside the FOV, was left empty. Although stud-
ies of this effect could easily be performed with
the program. Before reconstruction, attenuation
correction was applied to those data sets gener-
ated with scatter simulation, attenuation correc-
tion files were created by forward projecting the
3D density map estimated with a constant linear
attenuation coefficient of 0.096 cm−1. No scatter
correction was applied to the sets generated with
scatter simulation. Generated data sets were re-
constructed using four different 3D reconstruction
algorithms implemented on a high-performance
parallel platform [28].

In Fig. 6, projections of the central slice of a
uniform phantom reconstructed before and after
applying attenuation corrections to the data set
generated with scatter simulation are shown. Fig.
7 shows transaxial slices of the Utah phantom
reconstructed using the reprojection algorithm
(PROMIS) [29], the fast volume reconstruction
algorithm (FAVOR) [30], the Fourier rebinning
algorithm (FORE) [31] and the single slice re-
binning algorithm (SSRB) [32].

The time needed to perform a simulation study
depends on the complexity of the chosen sets of
source, scatter and detector objects and on se-
lected interactions. The average time to track one
coincident detection for the ECAT-953B PET
scanner is 1.15 ms without scattering and attenua-
tion. It increases to 11 ms if photon interactions
are simulated within a single uniform scatter ob-
ject corresponding to a 20 cm diameter cylinder
filled with water and to 15.2 ms if they are simu-
lated within both the scatter and detector objects.

4. Results

Eidolon was used to obtain unscattered and
scattered energy distributions of coincident detec-
tions (Fig. 8), as well as to study line-spread
functions (Fig. 9) and scatter fractions for the
ECAT-953B PET scanner. In a real measurement,
scatter components in the detectors and in the
FOV are indistinguishable from other secondary
effects. Monte Carlo simulation of energy distri-
butions provide insight into the scattering pro-
cesses arising in 3D positron tomography.

The scatter fraction is defined as the ratio be-
tween the number of coincident detections with at
least one photon scattered in the FOV and the
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Fig. 6. Central slice and projections of a uniform cylindrical phantom. (A) Reference image. (B) Image reconstructed from a data
set generated without scatter simulation. (C) Image reconstructed before attenuation corrections from a data set generated with
scatter simulation. (D) Image reconstructed after applying attenuation corrections to the same data set as in C.
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Fig. 6. (Continued)

total number of coincident detections. The scatter
fraction was evaluated using the events’ Monte
Carlo history. Table 1 shows scatter fractions
obtained with Eidolon for three different radial
positions of a line source placed in a 20 cm
diameter cylinder filled with water. Ten million
annihilation events were generated for each radial
position of the line source. To allow comparison
with measurements, detector scatters were not
counted, since they are usually not differentiated
from the trues in experimental data. The scatter
fraction determined with the line source in the
centre of the phantom is 0.37. In the same detec-
tion conditions, a real measurement of this scatter
fraction gave 0.42 [33], it was estimated to be 0.46
using a different Monte Carlo simulator [9]. The
discrepancy between our value and the one given
by Michel et al. [9] results from the fact that we
did not consider those photons scattered only
within the detector crystals as part of the scatter
fraction. Consistent with the real measurements,
our results show that the scatter fraction decreases
when the source moves off-axis.

Our investigation of detector crosstalk shows
that the proportion of detected photons deposit-
ing only part of their energy in the first crystal of
interaction is significant and exceeds 50% which is
in good agreement with the results reported in the
literature [34]. Scatter fractions determined using
simulation of the Utah phantom when varying the
lower energy discrimination threshold are shown

in Fig. 10. As the threshold is lowered, the scatter
fraction increases steadily [33].

5. Discussion and conclusion

Although variance reduction techniques may be
used to reduce computation time, the main draw-
back of the Monte Carlo method is that it is
extremely time-consuming. Object-oriented pro-
gramming also results in an undeniable comput-
ing time performance penalty associated with the
service requests between the objects, because they
are implemented as function calls. Moreover, ob-
jects are created and destroyed at a huge rate and
the dynamic memory allocation/deallocation in-
creases the execution time.

Nevertheless, the burden of computing time
may be circumvent with the development of faster
computers and parallel processing architectures.
Furthermore, an Objective-C compiler is provided
with the GNU C compiler available from the Free
Software Foundation [35] and the current distri-
butions of GNU CC (since version 2.7.1) include
an Objective-C compiler and a runtime library.
This makes possible to port Eidolon on most of
the current platforms and operating systems. An
implementation of Eidolon on a high-perfor-
mance parallel platform consisting of 8 PowerPC-
604 nodes recently installed in our laboratory is
presently under evaluation [36].
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Fig. 7. Eleventh slice reconstructions of Monte Carlo data sets of the Utah phantom generated without (left) and with (right) scatter
simulation using from top to bottom the PROMIS, FAVOR, FORE and SSRB algorithms. Approximately 16 million coincident
detections were recorded for both types of simulation. The maximum obliquity used for reconstruction corresponds to a ring index
difference of 11. No additional polar or azimuthal mashing was used. The image volume is a cylinder of radius 63 voxels by 31
transaxial slices. Normalised horizontal profiles through the centre of the slices are also shown.
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Fig. 7. (Continued)

Validation of image reconstruction implementa-
tions and scatter correction techniques using the
Monte Carlo method have received considerable
attention during the last decade. Monte Carlo
modelling allows to separate the detected photons
into their components: primary events, scatter
events, contribution of down-scatter events, etc.
and to perform detailed investigations of the spa-
tial and energy distribution of Compton scatter
which would be difficult to perform using present
experimental techniques. Although several ap-
proaches have been proposed for scatter correc-
tion for 3D PET, five basic approaches have been
taken to this correction: multi-energy window ap-
proaches, integral transformation approaches, an
approach relying on an auxiliary, septa extended
scan, curve-fitting approaches and model-based
approaches. A comparative evaluation of the per-
formance of different correction techniques is one
of the interesting applications of the simulator.

The powerful constructs promoted by object
technology can yield elegant, quality code. The
object-oriented paradigm makes it possible to en-
vision incremental refinements to any of the ele-
ments described in this paper with maximum code
reuse by providing a framework for effectively
defining standards using the inheritance mecha-
nism. This approach streamlines development and

Fig. 8. Energy distributions of coincident detections resulting
from the simulation of a line source placed in the centre of a
20 cm diameter cylinder filled with water. Photons impinging
on a detector are assumed to deposit all their energy in the
detector crystal. Energy resolution is proportional to the in-
verse square root of the deposited energy and is simulated by
convolving the deposited energy with a Gaussian function
whose FWHM is 23% for 511 keV photons. Both photons of
a coincident detection have to pass an energy window set
between 250 and 850 keV. Distributions of photons resulting
from exactly one or two successive Compton scatterings in the
field-of-view are shown.
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Table 1
Comparison between Monte Carlo estimations and real measurements of the scatter fraction for different radial positions of a line
source placed in a 20 cm diameter cylinder filled with water

Radial position (mm) Eidolon Spinks et al. [33] Michel et al. [9]

0.370 0.42 0.46
0.36 0.4040

0.300.2980

Same detection conditions as in Fig. 8 apply, except that interaction within detector objects was switched on and energy window
was set between 380 and 850 keV for comparison with published data.

Fig. 10. Variation of scatter fraction determined for the Utah
phantom as a function of the lower energy discrimination
threshold.

improves reliability. It makes Eidolon a very pow-
erful tool that can be further improved to evalu-
ate new possible designs for future high-
performance positron tomographs. Eventually,
Eidolon will be exploited to explore different
strategies of sampling schemes of the 3D X-ray
transform and possibly as a forward pro-
jector that includes accurate attenuation and scat-
ter modelling for iterative reconstruction al-
gorithms.

Fig. 9. Sum of one-dimensional transaxial projections resulting
from the simulation of a line source placed in a 20 cm
diameter cylinder filled with water. Same detection conditions
as in Fig. 8 apply.

6. Program availability

The program running under the NextStep envi-
ronment as described in this paper is freely avail-
able from the authors.

Acknowledgements

This work was supported in part by the
Schmidheiny Foundation, the Swiss Federal



H. Zaidi et al. / Computer Methods and Programs in Biomedicine 58 (1999) 133–145144

Office for Education and Science under grant
E3260 within the European Esprit project HAR-
MONY (CE 7253) and the Swiss National Science
Foundation under project 2100-043627.95.

References

[1] P. Andreo, Monte Carlo techniques in medical radiation
physics, Phys. Med. Biol. 36 (1991) 861–920.

[2] M. Tagesson, M. Ljungberg, S.-E. Strand, A Monte
Carlo program converting activity distributions to ab-
sorbed dose distributions in a radionuclide treatment
planning system, Acta Oncol. 35 (1996) 367–372.

[3] M. Ljungberg, S.-E. Strand, A Monte Carlo program for
the simulation of scintillation camera characteristics,
Comput. Methods Programs Biomed. 29 (1989) 257–272.

[4] G. Tsang, C. Moisan, J.G. Rogers, A simulation to model
position encoding multicrystal PET detectors, IEEE
Trans. Nucl. Sci. 42 (1995) 2236–2243.

[5] S. Delorme, R. Frei, C. Jospeh, J.-F. Loude, C. Morel,
Use of a neural network to exploit light division in a
triangular scintillating crystal, Nucl. Instrum. Method A
373 (1996) 111–118.

[6] K.A. Comanor, P.R.G. Virador, W.W. Moses, Al-
gorithms to identify detector Compton scatter in PET
modules, IEEE Trans. Nucl. Sci. 43 (1996) 2213–2218.

[7] D. Vozza, C. Moisan, S. Paquet, An improved model for
energy resolution of multicrystal encoding detectors for
PET, IEEE Trans. Nucl. Sci. 44 (1997) 179–183.

[8] D. Bollini, A. Del Guerra, G. Di Domenico, M. Galli, M.
Gambaccini, G. Zavattini, Sub-millimeter planar imaging
with positron emitters: EGS4 code simulation and experi-
mental results, IEEE Trans. Nucl. Sci. 44 (1997) 1499–
1502.

[9] C. Michel, A. Bol, T. Spinks, D.W. Townsend, D. Bailey,
S. Grootoonk, T. Jones, Assessment of response function
in two PET scanners with and without interplane septa,
IEEE Trans. Med. Imag. 10 (1991) 240–248.

[10] C.J. Thompson, J-M. Cantu, Y. Picard, PETSIM: Monte
Carlo program simulation of all sensitivity and resolution
parameters of cylindrical positron imaging systems, Phys.
Med. Biol. 37 (1992) 731–749.

[11] R.L. Harrison, S.D. Vannoy, D.R. Haynor, S.B. Gillispie,
M.S. Kaplan, T.K. Lewellen, Preliminary experience with
the photon history generator module for a public-domain
simulation system for emission tomography, in: Conf.
Rec. IEEE Med. Imag. Conf., San Francisco, 1993, pp.
1154–1158 (New York IEEE, 1994).

[12] M.I. Lopes, V. Chepel, J.C. Carvalho, R. Ferreira Mar-
ques, A.J.P.L. Policarpo, Performance analysis based on
a Monte Carlo simulation of a liquid Xenon PET detec-
tor, IEEE Trans. Nucl. Sci. 42 (1995) 2298–2302.

[13] R.R. Raylman, B.E. Hammer, N.L. Christensen, Com-
bined MRI-PET scanner: a Monte Carlo evaluation of

the improvements in PET resolution due to the effects of
a static homogeneous magnetic field, IEEE Trans. Nucl.
Sci. 43 (1996) 2406–2412.

[14] S. Pavlopoulos, G. Tzanakos, Design and performance
evaluation of a high-resolution small animal positron
tomograph, IEEE Trans. Nucl. Sci. 43 (1996) 3249–3255.

[15] W.W. Moses, P.R.G. Virador, S.E. Derenzo, R.H. Hues-
man, T.F. Budinger, Design of a high-resolution, high-
sensitivity PET camera for human brains and small
animals, IEEE Trans. Nucl. Sci. 44 (1997) 1487–1491.

[16] D.W. Litzenberg, F.D. Becchetti, D.A. Roberts, On-line
PET monitoring of radiotherapy beams: image recon-
struction and Monte Carlo simulations of detector ge-
ometries, IEEE Trans. Nucl. Sci. 44 (1997) 1646–1657.

[17] A.K. Herrmann Scheurer, M.L. Egger, C. Joseph, C.
Morel, A Monte Carlo phantom simulator for positron
emission tomoraphy, in: H.J. Hermann, D.E. Wolf, E.
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