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Zusammenfassung: In dieser Arbeit wird das Verhaltnis Ry, des Wirkungsquerschnitts fiir den
Prozess ete~ — Z° — bb zum Wirkungsquerschnitt ete™ — Z° — Hadronen fiir 9 Energien
in der Umgebung des Z%Pols bestimmt. Dieses Verhéltnis kann zu einer Abschitzung der
Masse des noch nicht entdeckten! top-Quarks benutzt werden. Die Analyse basiert auf 900000
hadronischen Z°-Ereignissen, die in den Jahren 1991 und 1992 mit dem L3 Detektor bei LEP
aufgezeichnet wurden. Fir die Ereignisse auf dem 7°-Pol wurde ein Mittelwert von Ry =
0.2200 + 0.002 (stat. Fehler) & 0.009 (sys. Fehler) bestimmt. Dies ergibt eine obere Grenze
fiir die Masse des top-Quarks von my,, < 375GeV (95% CL). Ein modellunabhangiger Fit,
der das Verhiltnis der Wirkungsquerschnitte fiir alle 9 Energien berticksichtigte, ergab fir die
partielle Breite I'y, = (381+16) MeV. Unter Einbeziehung der von L3 gemessenen Werte fiir die
Vorwirts-Riickwarts Asymmetrie des b-Quarks konnten die schwachen Kopplungskonstanten fir
das b in einem modellunabhiingigen 2-Parameter Fit bestimmt werden zu gg, = —0.518 £0.054
und g,, = —0.32340.083. Diese Werte bestitigen die Annahme eines schwachen Isospinpartners
fiir das b-Quark.

Zur Selektion der b-Ereignisse wurde ein Neuronales Netz verwendet. Als Eingabegrofien
dienten 5 Variablen, die jeweils die Eigenschaften der beiden hochstenergetischen hadronischen
Jets beschreiben, sowie eine globale Ereignisvariable. Damit war es moglich einen Datensatz zu
gewinnen, in dem der b Anteil gegeniiber dem im urspriinglichen Hadrondatensatz um ca. 140 %
angereichert wurde bei einer b-Effizienz von 50 %.

Abstract: The topic of this thesis has been the determination of the cross section ratio R
of the process ete™ — Z° — bb to ete™ — Z° — hadrons at 9 energies in the vicinity of the
Z° pole. This ratio can be used in an estimate for the mass of the top quark, which is still
undetected®. The analysis is based on 900000 hadronic events, taken during 1991 and 1992 with
the L3 detector at LEP. For the events taken on the Z° pole the mean value for the fraction
has been measured to Ry, = 0.2200 & 0.002 (stat. error) & 0.009 (sys. error). This leads in turn
to an estimate for the upper limit of the top mass ms., < 375GeV (95% CL). All 9 cross
section ratios have been used as input to a model-independent fit yielding the partial width
Ty = (381 + 16) MeV. Using in addition the values for the forward-backward asymmetry of
the b quark, which have been published by L3, the weak coupling constants of the b could be
determined to g, = —0.518 £ 0.054 and g,, = —0.323 = 0.083. These numbers confirm the
necessity of a weak isospin partner for the b quark.

A Neural Network has been applied for the selection of the b events. 5 input variables have
been used, describing respectively the properties of the two most energetic hadronic jets, and
furthermore one global eventshape variable. Using the net as discriminant, it was possible to
achieve a datasample with the b contents enriched by 140 % compared to the original hadron
sample with a b efficency of still 50 %.

1Meanwhile the CDF collaboration has reported strong evidence for the top quark at 174 =& 10 + 13GeV.
(FERMILAB-PUB-94-116-E, May 1994)
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Chapter 1

Introduction and Overview

The Large Electron-Positron Collider (LEP) at CERN, Geneva started its operations in August
1989. The main task during its first phase (LEP1) with a center-of-mass energy around 91 GeV’
has been a precise measurement of the properties of the Z° gauge boson. Another topic has
been the search for new particles, above all the top quark and the Higgs boson. None of them
was found and in the meantime the lower mass limit for the top has been set to 108 GeV [1].
Therefore it has become a matter of interest to give at least an estimate to the upper limit of
the top mass.

One of the physical processes, which are well suited for this task, is the decay of the Z° boson
into a pair of b quarks. Because the top is the weak isospin partner of the b, it couples relatively
strong virtually to the Zbb vertex, introducing large corrections to the tree-level diagram [2]
(Figure 2.4). A particular clean observable in this context is Ry, the fraction of b events in
the entire hadron sample. This quantity is sensitive only to vertex effects!, because the oblique
contributions in the Z° propagator [3] are the same for all final states and cancel out in the
ratio. The Z° is a copious source of b, thus the underlying statistics will be high.

The subject of this thesis is to describe the measurement of Ry for the data taken with the
L3 detector during the years 1991-1992. The result obtained has been used in order to determine
several parameters of the Standard Model.

Another emphasis of this work is a closer analysis of the applied selection method. In order to
distinguish the b events from the ones coming from lighter quarks a Functional-Link Nethas been
used. This algorithm constitutes a very fast implementation of a Bayes Classifier. Such classifiers
divide a datasample into disjunct classes and try to reduce the number of misclassifications to its
optimal value. Another classification algorithm widely used, is the Feedforward- Backpropagation
Net. The behaviour of such a net has been examined but because of the high computational
effort required by this algorithm, it had not been applied in the physics analysis. The results of
these studies can be found in appendix B.

The thesis is structured as follows. The next two chapters will give a short review of the
theoretical basis needed for the later analysis. The first one will deal with the process of fermion
pair production in eTe™ collisions. The second one will cover Bayes classification and Neural
Networks. The experimental apperatus, i.e. the L3 detector, is briefly presented in chapter
4. After these introductionary remarks the description of the actual analysis starts with the
extraction of a hadronic sample out of the raw data. Out of this sample the b events have been
selected with the help of the Functional-Link Net. Several variables, describing the characteristic
energy flux pattern of a b event in contrast to events from hadrons made up of lighter quarks,

1This is true only for one-loop corrections.




were defined and used as input to the net. The definitions of these variables and the performance
achieved by the classifier are discussed in chapter 6. The value for Ry, is determined in chapter 7
and systematic uncertainties are discussed in the following section. In the end the measured value
for Ry is used in order to determine the partial width of the decay Z° — bb, the weak coupling
constants gqp and gyp, and an upper limit for the top mass. All results are then summarized in
the last chapter. _ S

To provide a basis for the understanding of the tests performed in appendix B, a derivation
of the Backpropagation algorithm by Rummelhardt can be found in the first appendix. The
results of studies, dealing with the training performance of a Feedforward-Backpropagation Net,

are presented in the following appendix. Appendix C reports of a further approach t6 b selection =

using only the energy and the angular distribution of the clusters deposited in the calorimeter
as input to a Neural Net. In order to judge the performance of the Functional-Link Net used in
this thesis a review of convential methods for the b selection is given in appendix D. Appendix E
describes briefly the program packages ZFITTER and FUNPLO, which were used to determine
the Standard Model parameters. ‘ v

Throughout the thesis holds o = ¢ = 1.




Chapter 2

Fermion Pair Production in
Electron-Positron Collisions

2.1 The process ete™ — ff in lowest order

The process ete~ — fF is described by the Standard Model (SM) in the frame of a relativistic
gauge field theory with a spontaneous broken SU(2)r @ U(1)y symmetry [4]. Herein the elect-
roweak interactions between the fermions are mediated by vector bosons corresponding to the
generators of the gauge groups, namely the photon, the 2%, and the W=.

In general the s-channel exchange of Z° and 7 is the essential process for electron-positron
scattering at center-of-mass energies around the Z° mass (= 91 GeV). For Bhabha scattering
though the pure QED t-channel exchange of a 7 becomes the dominating fraction of the cross
section for small scattering angles. The exchange of a Higgs is small and therefore will be
neglected in the following.

For unpolarized initial states, summing over all helicities of the final states, and neglecting
the electron mass, the differential cross section for ete™ — f f (f # e,v.) in the lowest order
can be written® as [5)

do 3

deosd — 8 N(J;" oQED B {G1(8)(1 + cos? 9) + Ga(s)(1 - 8% sin? ¥ 4+ G3(s) B cos 19} (2.1)

with the QCD colour factor Ng., the QED cross section oggp = 4ma?/3s, the velocity 8 =
y/1 — 4m%/s, and the scattering angle 9 as given in figure 2.1. For LEP1-energies (= 91 GeV)

the fermion masses can be neglected (8 = 1) except for the b-quark, for which 8 ~ 0.993. The
expression for the total cross section follows immediately }

1 da’ | U'QED 9 )
Gros = /_1 27 —dcosd = NL T2 B (263 (s) + (1 - B7)Gals)) . (2.2)
The cofactors Gy, Ga, and Gs contain the various couplings via the electrical charges ¢ as
well as via the vector and axial-vector coupling constants g, and g,. They consist of three
terms, the first one describing the photon exchange (~ qfq?), the second one the Z° exchange

1Tn order to avoid divergencies during the calculation of the higher-order terms the various elements of the
Lagrangian — such as the coupling constants, spinors and propagators — have to be redefined properly, a process
called renormalisation. The renormalization scheme used for the calculation of (2.1) is the on-shell scheme [5].
Herein as, o, Gy, mz, my, and mz serve as input parameter to the theory.




Figure 2.1: The scattering angle ¥ is defined as the angle between the momentum of the
incoming electron and the outgoing fermion.

(~ [goe® + gac?llgos® + 9as?]), and finally an y-Z interference term (~ geqfGvedus)-

G]_(S) QSQ§ + 2gvegvaGQf §R(X(3)) + (g‘l‘mz + g‘aez)(g‘vfz + gaf2 - (1 - ﬁz)gafz) ‘X(s)IZF
Gay(s) = — 2gacdardeds ROX(8)) + (gue? + dae)gus Ix(8)|?
Gs(s) = — 29aedardeqs R(X(3)) + GveFacGusdas 1X(8)I (2.3)

Herein x(s) is the ratio of the photon and the Z propagator

1 s
X(s) B 4sin2 @W cos? ®W ' 8 — m"é + imzrz

and the weak coupling constants g,s and g,y have been defined as

Jaf = I:{
Gog = I —2¢psin?Ow : (24)

where Ig is the third component of the weak isospin. In the on-shell scheme the Weinberg angle-
sin? O is determined by the boson masses B

m? ' .
sin? @ =1 - Wz , (2.5)
QoMmyz o

(2.5) holds for all orders of perturbation theory [6]. go = 1 in the lowest order of the SM. .
For cms-energies /s close to the Z° mass, the terms for the photon exchange as well as the
interference term can be neglected in (2.3) and (2.2) reduces to

3 — B

G? . mis
o = Né géﬂ; (gv82 + gaez) * (ﬂ 2 gvf2 + ,B3gaf2) - ( Z

s —m%)? + miT%

where G, is the coupling constant in the Fermi model of four-fermion interactions. Gy is
measured with high precision in p decays. The last equation defines the partial decay widths
T4 of the Z° boson into a fermion pair ff

3 a2
Ty = G\’}gf : (ﬂ3 2ﬂ gos +.339a,f) (2.6)




After radiative corrections are taken into account, the mass mgz, the total width I'z, and the .
partial decay widths I's into fermions can be derived from the position, width, and height of the
resonance curve, describing the cross section as a function of /s as shown in figure 2.2.

Because of an interference of the axial-vector current (JFC = 1**) with the vector current
(JPC = 177) the differential cross section varies asymmetrically with ¥. This behaviour is reflec-
ted by the linear cosine term in (2.1) and has been specified as Forward-Backward Asymmetry

O —0p

Apy =
f or+0p

where or and op are the cross sections in forward and backward hemisphere, respectively.
Neglecting again the photon exchange and the-interference terms in G,, G4, and G3 for the
situation on the Z pole, the forward-backward asymmetry can be written as 5]

3 29ye9ae zﬂgvfgaf ~§ 29veZae 2,Bgvfgaf (1+5f)
2

Aqglmz) = - . ~ .
fb( Z) 4 g've2 + ga.e:2 gg-:zﬂ_zzgouf2 + ,62gaf2 4 gve2 + ga.e:2 g'uf2 + ga,f

with the mass correction term
5 — 4m§  —gus” + 9as”/?2
s Gos? + Jos 2

The correction for the b quark turns out to |6;] < 107* as a result of an accidental cancellation of
the coupling constants (gy2 = gap?/2). Therefore the mass correction for the asymmetry can be
neglected even for the b quark. A measurement of the partial width and of the asymmetry can
be used for an independent determination of the absolute value of the weak coupling constants.

2.2 Higher order corrections

The formulas given in the last section are not sufficent to describe the experimental results
correctly at higher energies and for precise measurements. Diagrams of higher order of the
perturbation expansion have to be taken into account [5]. They consist of photon bremsstrahl-
ung in the initial and final states (QED corrections), gluon radiation in the final states (QCD
corrections), and electroweak corrections, which themselves again fall into three classes, namely
propagator corrections, vertex corrections, and box diagrams.

QED corrections

For the treatment of the photonic corrections the bremsstrahlung is divided into two parts, a
soft contribution with the momentura k < AE and a hard one, for which holds AE < k < ;+/5.
The hard initial bremsstrahlung is described by a radiatorfunction R(z, s) with z = (ps+ p7)*/s,
which gives the probability of the radiation of a photon with the energy k£ = Bheam(1 — 2). It is
one of the advantages of the on-shell renormalization scheme, that the QED correction can be
handled simply by convoluting the improved Born cross section oy (see below) with the radiator
function. R(z,s) has been calculated up to O(c?) [7].

o(s) = /1 2/s oo(28)R(z,s)dz o 2.7)

47”';

The impact of initial photon radiation is large on the Z° pole, because the inital radiation leads
to a shift in the effective cms-energy. Due to this reason, the peak cross section is reduced by
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Figure 2.2: The cross section for the process 79 — bb calculated at tree level and including
- radiative- corrections to O(a) and O(a%). The corrections have been calculated
with the program package ZFITTER 4.5 [75].

about 25% and the maximum is moved by about 122 MeV toward higher energies. Moreover
the resonance curve becomes asymmetric (Figure 2.2). The final state radiation exhibits a much
smaller effect, which corresponds to an overall correction factor of

3
(1+8qmp) =1+ 320} + O(c?)

It amounts a 0.019% effect for the b-quark. The contribution of the bremsstrahlung interference
is also very small and can be neglected.

QCD corrections

Beside the photon bremsstrahlung also gluon radiation is possible in the final state of a hadronic
decay of the Z°. Because of the large coupling constant of the strong interaction ayg, the QCD
contributions are rather large compared to the final state photon bremsstrahlung. Until now
the higher-order terms for m, = 0 are calculated up to O(c%) and up to O(aj) for mg # 0 [8].
As for the final photon bremsstrahlung, the correction can be collected into one multiplicative
factor

(84 61 2 [ 3
1 60.,1; — Ca,v __i) a,v (___S) a,v (___S_> ..
(1+6gep) =14+C ( - + C; g Cs - +




” o o Cs
Vector 1432 1.41 -12.8
Axialvector || 1+ 3u®In(4/p?) 1.41+& f(m,) -12.8

Table 2.1: Due to the breaking of the chiral symmetry, the correction coefficents for the axial-
vector and the vector coupling are different. f(m;) can be found in [9]. p? = 4mfg /s.

Weak corrections [10]

Weak corrections arise from non-photonic, i.e., genuine weak higher-order diagrams. There are
three groups of weak corrections

1. Propagator (also called self-energy) corrections (Figure 2.3)
Propagator corrections amount for the biggest part of the electroweak corrections. They
are the same for all final states. Because a fermion loop decouples from a photon for higher
fermion masses, whereas the coupling of a fermion to the Z° is proportional to my, the
largest contribution for cms-energies ~ mg results from the top quark.

2. Vertex corrections (Figure 2.4)
The vertex corrections do depend on the fermion species in the final state. But for light
fermions up to the mass of the ¢ quark the vertex corrections can be neglected. This is
not true for the b, where large corrections arise from top quark effects due to the high top
quark mass. The reason for these large corrections in case of the bb production lies in the
fact, that the top is the weak isospin partner of the b. Therefore, the respective diagrams
are not suppressed by off-diagonal elements of the CKM-matrix.

Figure 2.3: Propagator and box corrections
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Figure 2.4: Vertex corrections for the process 7% — bb in the Standard Model.

3. Box diagrams (Figure 2.3)
The genuine weak box diagrams are those: containing WW and ZZ exchange. Their
contributions are non-resonant, hence their effect is small (< 0.02 %) for energies close to
the Z° mass.

The weak corrections are treated by an adjustment of the various constants in the lowest-order
Born formulae, yielding the so-called improved Born approzimation [11]. In particular, the
corrections to the v, Z%-propagators can be absorbed in an adjustment of the coupling constant
o and the propagator x. The effects on the ~—Z%-mixing are handled by an adjustment of the
weak mixing angle or of the weak coupling constants gas and g,y respectively. This leads in
turn to the so-called effective mizing angle or the effective coupling constants. Higher order
corrections to the self energies are treated by an expansion of the go in equation (2.5) with the
Ag parameter [3]

92 2
o=1—-97=1+Ap with Ag:m
1672

Vertex corrections are incorporated again by corrections to the effective coupling constants. In
this framework the coupling constants and the Z° width become s dependent [11].

o’ 1 1
als) = 1 - Aa(s) (o= 87 a(mz) = 129

S
Iz — rZ(3)='m—2rz
z

o —

sin? O — sin? O = sin? Ow + cos? OwAp
Gas — Tag(s) = \Jes(s) - T4 (2.8)
Gos — Tog(s) = \/ef(S)'(Tg ~ 2k¢(s)qy sin® Ow) (2.9)

Both, ¢ and , although in principle dependent on the final fermion species f, are to a good
approximation equal for all light fermions.




The Zbb vertex

Vertex corrections due to the top quark cannot be neglected any longer in the decay Z° — bb
and a further adjustment of the effective quantities is required

4
o = o(1- ’:,;AQ)
— 2 —
sinf @ = (1+ gAg) sin’ O {2.10)

The impact of the vertex corrections to the Zbb vertex can be observed best in the partial
width T';. Whereas the partial width for lighter fermions becomes broader with rising top mass,
propagator and vertex effects just cancel out for Iy 2], leaving 'y almost unchanged with m;
as plotted in figure 2.5. Thus a measurement of the difference I'gg — I'sp or the cross section ratio
Ry, = —hb— can be used for a determination of the top mass. Due to the small variation of Ry
within the expected range of the top mass a precision of 5 MeV on T'yp or 1 % on Ry is Tequired
for a meaningful estimate [12].

— 390 s 022
> - rl
2 - x
3 385 |
— - 0.218
30 |
. 0.216
375 \
- 0.214
370 |—
365 E__ 0.212
360 I | | N . I J IR S 0.21 LS . l | T | | | S T
100 150 200 250 100 150 200 250
My, [GEV] M, [GeV]

Figure 2.5: I'y; and Ry as a function of the top mass. The band indicates the theoretical error
due to a variation of the Higgs mass from 100 GeV to 1000 GeV.




Chapter 3

Neural Networks

Xy
S~
synapse axon X,
nucleus ' .
. 0, if Zwx; < W,
1, if Zwx; > w,
X

Figure 3.1: Real neuron and the model of McCulloch and Pitt

“Neural Network” is the generic term for a whole set of mathematical algorithms applied in
multi-variate analysis. They are used for such different tasks like classification [13], optimization
problems [14], clustering [15], track fitting [16], image processing [17], associative memories [18],
or expert systems. All these algorithms have in common that they implement a heavily parallel
and linked processing of the input data. This approach is contrary to the purely sequential
processing of a von-Neumann machine and thought to be similar to the working of the brain.
This equivalence is not limited to the global view. The basic quantity, which is calculated in
many (but not in all). Neural Network algorithms is equivalent to a very simple model of a
neuron suggested by McCulloch and Pitts [19]. Herein a neuron possesses several inputs z;,
which couple with the strength w;, respectively. The neuron outputs a signal (it “fires”), when
the weighted sum of all inputs becomes higher than some given threshold value wo.

1,if Yo, wi- 2 > wo
= * d
output { 03 5w - 2 < wo (3.1)

Nevertheless the equivalence for the majority of Neural Network algorithms and neuroscience
is weak. This is particular true for the algorithm applied in this work. Because of that the

10




biological aspect won’t be treated here in more detail. _

For the analysis performed in this thesis, a Neural Network has been used for the selection
of b events out of a data sample containing hadrons of all flavours. This constitutes a problem of
optimal classification and therefore a short summary of decision theory is given in this chapter.
First the Bayesian approach is reviewed. A special kind of Neural Network, the Percepiron,
is applied in order to implement a discriminant function. Afterwards so-called training algo-
rithms are outlined, which are used to adapt the Perceptron to a particular problem. The two
most popular training algorithms, the pseudoinverse and error-minimization procedures, will
be discussed. The classification performance of a linear discriminant decreases on non-gaussian
probability distributions. Thus the concept of the linear Perceptron has to be extended, leading
either to a multi-layered network or to the Functional-Link Net.

3.1 Bayes classification

The basic entities in decision theory are events and classes. An event k is described by several
parameters z; (i = 1...n), which make up the components of the event vector & € F CR™
Q = {wj,ws...w.} is a set of labels, i.e. isomorph to a finite subset of N, and a unique’ mapping
F — Q: &), — w; might exist. F is called feature space. The elements w; of ) are referred to as
classes, () itself as class-member space. '

If the class membership of an event is unknown, a minimum-risk analysis founded on classical
probability theory [21] suggests to decide always in favour for the one assignment, which yields
the highest class conditionally prebability? p(w;|&) in order to achieve a minimal overall number
of misclassifications.

Bayes Decision Rule Assign 3, to class w = wp, if and only if

P(wm|Fr) > plwr|Ex) (3.2)
foralll=1...c, m # 1, where p(w|&}) are the class conditionally probabilities for class 1.
The class conditionally probability p(w;|@:) can be derived from

P(w;) = the a priori probability that an event belongs to wy, regardless of the identity
of the event. (¥; P(w;) = 1)

p(Zr) = the probability that an event is &g, regardless of its class membership.
(Trp(Er) = Tp Ti p(Fxlwr) - Plwr) = 1)
p(Zxlw) = the conditional probability that an event is &, given that it belongs to class

wi

The observation of the event &} changes the a priori probability P{w;) into the a posteriori
conditional probability P(w;|%), which can be computed with the Bayes Relation

p(Felwr) - P(w1) .
p(Zx) (3:3)

p(wi|Zr) =

Because p(#}) is class-independent, the joint probability p(wr, #x) = P(w) - p(&k|wr) might be
used instead of p(w;|@k). The application of (3.2) leads in fact to a maximum overall probability

!The more general case of overlapping classes is a subject of Fuzzy Logic. See e.g. [20]
2Discrete probability distributions are labeled with capital P, continuous ones with small p.

11




for a correct classification. If the feature space is partitioned into r (r > c) arbitrary regions R,
than holds

< P(correct) >5 = 2 / plwilZr) - p(Ex) de

i=1..r

T / p(Zr|wr) - P(w,) ( ) de

=1...r p(mk)

Z / p(&p, wi) dz

i=1..r

Z P(z e Ri,wi)

1=1..r

The expression will become maximal, when the regions R; are choosen in such a manner that
the integrands become maximum, i.e. when (3.2) holds. ‘ " '

3.2 Linear discriminants

Bayes classification can be implemented in. several ways. In case a closed representation of the a
posteriori probability p(w;|Z}) can be given, the most direct one would be an explicit computation
[22]. Another approach uses the boundaries of the decision regions R; as discriminant. Herein
‘a discriminant is a function or an operator, that, when applied to an event, yields an output
that is an estimate of the class membership. In other words, the action of a discriminant is to
produce a mapping from feature space to class-member space. An event & is classified according
to its position relative to the boundaries.
The boundary between two classes can be described analytically by the condition

p(wi, &) = p(w;, &) for all j # ¢ and any event k
In the case of only two classes, where both probability distributions are n-dimensional Gaussians

. exp |—3(Z — @) E7H(E - @)
o) = Flr): | (2 w)N/z\/IZE_zI ]

with the covariance matrices ¥; = Z3 = X, the boundary is given by

#o[7 -] = () (4

This is the equation of a hyperplane with the distance In (f%‘i‘—%) from zero. (3.4) is called a
linear discriminant. The position of # relative to the hyperplane, i.e. its class membership, is
given by the sign of the dot product.

A classifier, i.e. a classification algorithm, which exploits the concept of a linear dlscnrmnant
is the Perceptron by Rosenblatt [23]. In principle, it constitutes a slight reformulation of the
model of McCulloch and Pitts. The weight vector 4 contains the properties of the distributions,
i.e. 71 . (jiy — fi1), and the threshold wg is given by the ratio of the a priori probabilities
In(P(w1)/P(ws2)). The position of Z is mdu:ated by a threshold function®.

1=1,2

0 < & belongs to class 1 (3.5)

signum (W - & — we) = { 1 &  Z belongs to class 2

3The terms transfer function or activation function are often used synonymously.
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Usually the weight vector & and the threshold wy are not known and have to be determined
with so-called training procedures.

3.3 Training of a linear discriminant

A linear discriminant is determined entirely by its normal vector & and its distance to zero wo,
which themselves are given essentially by the joint probablilities p(Z,w:). In order to adapt the
classifier to a given problem, one uses a set (trainingsample) of events, which are distributed
in the same manner as the events in the real classification problem. Two approaches exist,
supervised learning and unsupervised learning. The distinction is that with supervised learning,
one knows the class assignment for each event, whereas with unsupervised learning one does
not. Only two procedures for supervised learning a two-class problem, i.e. w € {1,2}, will be
presented in the following

The pseudoinverse

Given a trainingsample 7 = {(Z,w)slk = 1...t} with the event vector & = (1,23 .. .2,,) and
let w € {1,2} according to the class membership of #. Then the pairs (#,w)r have to fulfill
the following system of linear equations (The learning of the threshold wg has been included by
extending # with a dummy component 2o = 1. To simplify writing, this notification will be kept
in future and no distinction will be made between weights and threshold any longer.)

Wo
1 217 212+ Zi1n w; wy
1 =21 @22 - 220 wy
) = (36)
1
1 2y @ - T : W
¢ n W,

(3.6) can be solved by
XTxd=xTs - d=X"x)'x%6=x"s

where X1 is called the pseudoinverse. Though this procedure yields an exact result for w (when
XTX is nonsingular), it is not yet widely applied. The reason is that one would like to have a
high statistics* in order to reproduce the probability distributions p(Zx,wi) to a sufficent degree,
causing the problem to invert a very large matrix X TX . Nowadays programs like Mathematica
[23] are able to handle this task rather easily [24]. Because for the analysis presented in this
thesis, such a powerful package was not available, the gradient-descent algorithm prese’nt‘ed: in
the next section has been applied.

The Widrow-Hoff Learning Algorithm

The original Widrow-Hoff Learning [25] was developed for a Perceptron (8.5), which uses a
signum function as transfer function. This version is of no big interest for practical applications,
thus only the version for a generalized Perceptron shall be outlined in the following.

The approach of the Widrow-Hoff Learning is founded on a risk analysis where every misclas-
sification yields some loss. The overall loss for a given configuration of the Perceptron, ie. a

*In this analysis n == O(10) and t = O(100000).
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Figure 3.2: The Fermi function

given set of weights w0, is determined and then @ is modified in order to minimize this loss. The
following quantities can be used to give an estimate for the loss

Mean-Squared Error:®

err = % Z(wk — out(%y))* (3.7)
k=1
Entropy Error [26]:
err = Z {wr - log(out(Fx)) + (1 — wi) - log(1 — out(Zx))} _ (38)

k=1

with the (&, ws) drawn from a trainingsample 7 as defined in the previous section and out(Z)
is the output of the Perceptron as computed with the actual set of weights .

Usually the mean-square error is applied as a measure for the obtained loss. Some tests to
study the application of the entropy error have been undertaken y1el.dmg no significant impro-
vement. Results are presented briefly in appendix B. :

In order to minimize (3.7) or (3.8), @ is modified proportlonal to —V gerr. Because the
signum function is not differentiable, it is approximated by a sigmoidal function, which is
continuous and differentiable. Usually a Fermi Function (Figure 3.2)

1
eXp (_ E wi:i'ﬂ:,"‘tU()) + 1

or a tangens are choosen for this purpose. For the Fermi function holds

F(F) = | (3-.9)

lim .7-”(5:') = signum(;i}' - Z - wo)

5This mmumzatlon of a mean-square error is a common source of the misunderstanding a Neural Network
being “something like an n-dimensional fit”. Neural Networks presented in this chapter are realizations of a
decision algorithm, and one out of several methods to obtain its parameters is a fit.
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The training starts with a random set of weights. The elements of the trainingsample 7 are
presented as input to the Perceptron one at a time and the deviation between the desired output
wi, and the actual output value is calculated. Afterwards the weights are changed by

derr

Bwi

Apw; = -7 = —n{(wy, — out(Zr)) - f'(T- Tp) - i (3.10)
for the k-th event of the trainingsample and with any (differentiable) Perceptron transfer function
f. When a Fermi Function (3.9) is used as transfer function, (3.10) simplifies to

Ay w; = —1 (Wi ~ out(Fy)) out(Zy) (1 — out(Zy)) - (3.11)

The change of the weights may take place immediately after each presentation or is summed up
until all elements of 7 have been processed. Experience shows that the global minimum is not
found in one presentation of 7. Thus the same sample may be presented several times in order
to improve the accuracy (Figures 6.6, 6.7, 6.9, 6.12).

The tricks to accelerate the training and to avoid local minima are countless. Most of them
yield a notifiable impact only for very special situations. One of the more useful ones is the
addition of a damping term to (3.10) or (3.11). In order to smooth statistical fluctuations
during the descent, the term takes into account the direction of the most recent modification
Ak—l w;.

Apw; = —-n (wk - out(fk)) fl(’lﬁ . fk) T+l Ap_1w; O<uxl (312)

7 is a real positive number. Its size is dependend on the problem. (See table 6.1 and in contrary
table B.3.)

3.4 Non-linear discriminants

To design a linear discriminant very stringent restrictions have been made with respect to the
properties of the probability distributions. In order to generalize the concept of discriminants to
any distribution the event vector # is mapped into an intermediate space, where the probability
distributions are linear separable [27]. It was shown by Kolmogorov [28] that such a mapping
.always exists.

Theorem 1 (Kolmogorov) Given any continuous function f : [0,1]* — ™, f(¥) =7, f can
be made up of two functions g(Z) = Z and h(Z) = §

f . [O, 1]n S, p(2nt1) LN R™

where holds .
gk(i’):E/\’“\I/(xj+ke)+k k=1...2n+1
J=1
with the real constant A and the continuous real monotonically increasing function ¥ independent

of f (though dependent on n) and € a rational constant with 0 < € < é for an arbitrarily chosen

positive constant §. And
2n41

h1(2)= Z@z(zk) t=1...m

with the ®; are real and continuous and depend on f and e.
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Figure 3.3: A Feedforward-Backpropagation Network consists of at least three layers. The
hidden layers perform the mapping of the input vector into an intermediate space,
where the classification problem is linearly separable. The output of each neuron
in the layers R™ ... R! is given by f(3 w;-&;—wp) with the transfer function f and
the threshold w,. The action of f is not shown in the picture due to the limited
space. Usually f is the same for every node.

Unfortunately the proof of the theorem is merely an existence proof and nothing is known about
the very nature of the functions ¥ and ® or about the e. Nevertheless it is always possible to
work with an expansion into a series of orthonormal functions. Two networks of this type will be
presented in the following. The Functional-Link Net constitutes the most general realization of
this idea. The Feedforward-Backpropagation Net exploits only the first order of the expansion.
Because this net is still the most widely applied classifier in HEP analysis, it will be briefly
discussed though.

The Feedforward-Backpropagation Net

It is a very neat approach to imagine the Feedforward-Backpropagation Net as being built of
connected processing units instead of working with mapping functions. In this picture, the
Feedforward-Backpropagation Net is made up of several layers of processing units (Figure 3.3).
All units in one layer are processed in parallel and their outputs serve as input to the nodes in
the next layer. The nodes in the first layer are merely fan-out units distributing the components
of the event vector & to the nodes of the second layer. The units in the upper layers consist
of generalized Perceptrons. In order to deal with multi-class problems, the output layer may
possess several units, each one representing one class, respectively. The layers between the input
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layer and the output layer don’t have any connection to the outer world and thus are referred to

as hidden layers. They perform an approximation to the desired mapping of the input vector Z

into a space, where the classification problem is linearly separable. One hidden layer is sufficent
for most classification purposes [29].

The training is a generalization of the Widrow-Hoff Learning (3.10) and takes place in two
steps. First one vector of the the trainingsample is fed into the net and the output is compu-
ted for the actual setting of the weights (feedforward). The weights of the output nodes are
changed according to (3.10). The weights in the hidden layers are then modified according the
changes in the output layer. Hence the error is backpropagated through the network. Because
a Feedforward-Backpropagation Net has not been used for the physics analysis in this thesis, a
detailed outline of the algorithm was banished into appendix A.

The Functional-Link Net

A processing unit in a Functional-Link Net [30] works similar to a generalized Perceptron, ie.
it calculates the value of a transfer function f(3; w; - z; — wg). But contrary to a Perceptron,
it provides an entire output vector. The components of this output vector are the terms of an
expansion of f(3°; w;-z;—wo) into a series of orthonormal functions (Figure 3.4). All terms up to
a certain order serve as input to succeeding nodes. Thus it has become possible to approximate
the (unknown) functions ¥ and g, which have been demanded in theorem (1).

If already the components of the event vector  are expanded in the described manner and
this expanded vector Z’ is used as input to a generalized Perceptron (Figure 3.5), a non-linear
discriminant can already be implemented with just one single node. This expansion can be
regarded as an ezplicit transformation of & into a space, which is spanned by a basis of ortho-
normal functions and where the classification problem is linearly separable. This is in contrast
to the smplicit transformation of Z in the hidden layer of a Feedforward-Backpropagation Net.
It was proven in [31] that % can always be expanded in such a way, so that the matrix X in
equation (3.6) becomes rectangular with detX # 0. For real-life applications, the expansion

g,(out)
X
X, g, (out)
. g,(out)
out = f(Zw;x;-w,) .
Xp g (out)

Figure 3.4: Concept of a functional link. The g; are a set of orthonormal functions. (f is the
Perceptron transfer function.)
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will be terminated, when the desired discrimination precision.has been reached.
The training of a single-node Fuuctional-Link Net is identical to the training of a Perceptron,
hence either one solves the system of linear equations (3.6) or applies the Widrow-Hoff Learning.

Z3
T2

84
f
!
8
!

Ln

Z1
go(z1)

91(501),

g1 (:Tl)
T2
go(z2)

gi(z2)

a1(@)

90 (;n)
a1 (zn)

91()

— out(®) = f(Q_wi-x; — wp)
. 4=1

Figure 3.5: In a single-node Functional-Link Net already the input vector is represented expli-
citly in a space, which is spanned by orthonormal functions ¢;=q...i-
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Chapter 4

The L3 Detector

The L3 detector shown in figure 4.1 is one of the four main experiments at the 'Large Electron
Positron Collider’ (LEP) [32] at CERN, Geneva. It is designed to study ete™ collision up to
200 GeV with emphasis on high resolution energy measurements of electrons, photons, muons,
and jets. Viewed from the interaction point, L3 consists of the following operating subdetector
components (at the end of 1992):

e a time expansion chamber for tracking charged particles

an electromagnetic calorimeter composed of bismuth germanium oxide (BGO) crystals

¢ a luminosity monitor composed of BGO crystals

an array of 30 plastic scintillation counters for trigger purposes

[ 4

a hadron calorimeter with depleted uranium as absorber and proportional wire chamber
readout

¢ a muon spectrometer made of multi-wire drift chambers
e 3 large magnet providing a 0.5 T field

For the analysis performed in this thesis only the two calorimeter systems are of interest. The
other detector components are described in [33]. '

The electromagnetic calorimeter

The electromagnetic calorimeter uses bismuth germanium oxide (BGO) as both the showering
and detecting medium. The remarkable features of BGO in contrast to other scintillator ma-
terials are its high density (7.13 g/em?), its narrow Moliére radius of 2.3 em, and its excellent
energy resolution of &~ 5% at 100 MeV and about 1.4 % at high energies [33]. Due to the
high density, the radiation length X is only 1.12cm. 24cm (~ 22 Xo) of BGO crystals in the
electromagnetic calorimeter are sufficent to absorb almost completely a 50 GeV electromagnetic
shower. The energy deposit of hadrons in the BGO is about 45 % of their total energy.

The narrow lateral shower profile leads to the good spatial resolution of the energy clusters
required for the presented analysis. It has been determined to [34]

_ (1.1 £0.4)mrad

04 \/—E—

and oy = 0g sind
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Figure 4.1: Pérspéctive view of the L3 detector

Further advantages of BGO are its chemical stability and the linear energy response.

The calorimeter itself consists of about 11000 BGO crystals. The inner radius of the barrel
part is 50 cm. It is made up of 7680 crystals and covers a polar angle of 42° < ¢ < 138°. The
two endcaps contain 1527 crystals each, and cover a polar angle of 11.6° < 9 < 38°. Each BGO
crystal has the shape of a truncated pyramid of about 2 - 2cm at the inner end'and 3 - 3cm
at the outer end. They point to the interaction point with a small angular offset to suppress
photon leakage. The readout of the scintillation light is done by two 1.5 em? photodiodes glued
to its rear face. The diodes are insensitive to the magnetic field and have a quantum efficency
. of about 70 %. ' ;

The hadron calorimeter

The hadron calorimeter system is built around the electromagnetic calorimeter and uses depleted
uranium as absorber and proportional wire chambers as readout. Uranium was choosen as
sampling material, because of its high density and in an effort to optimize the energy resolution
due to compensation in the response for electromagnetic and hadronic showers (35]. -

The entire system is made up of three components, the barrel part, the forward-backward
system, and the muon filter. The barrel covers the central region 35° < ¥ < 145° It is a
fine sampling calorimeter made of depleted uranium absorber plates interspersed with 7968
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Figure 4.2: The central part of the L3 detector with the electromagnetic and the hadron calo-
rimeters. The energy deposited in the luminosity monitor (LF) has not been used
in the analysis. ‘

proportional wire chambers and a total of 370000 wires. It has a modular structur consisting of
9 rings of 16 modules each. The wires are grouped to form readout towers. In the ¢ projection
the towers point to the beam axis with a constant angular interval. Typically, a tower covers
AY = 2°, A® = 2°. The segmentation is 9 layers in ¢ and z and 10 (8) in the radial direction
for the long (short) modules. The thickness including electromagnetic calorimeter and support
structure is at least six nuclear absorption lengths in the barrel part.

The endcaps of the hadron calorimeter, which have been build at the I. Physikalischen
Institut of the RWTH Aachen in collaboration with the Tata Institute in Bombay, cover the
polar angle regions 5.5° < ¥ < 35° and 145° < ¢ < 174.5° over the full azimuthal range, and thus’
extend the coverage of the hadronic calorimetry to 99.5% of 47. Each endcap consists of three
seperate rings, an outer ring and two inner rings. The rings are stainless steel containers filled
with alternating layers of brass tube proportional chambers and 5 mm thick absorber plates of
depleted uranium. The amount of material traversed by a particle originating at the interaction
point varies between 6 and 7 nuclear absorption lengths. The wire signals are grouped to form
3960 towers for each endcap, with A® = 22.5°, Ad = 1.5° — 1.8°. ‘ '

A muon filter is mounted between the hadron calorimeter barrel and the support tube' and
adds 1.03 absorption lengths. It consists of 8 identical octants, each made of six 1cm thick brass

The support tube houses the inner detector components.
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absorber plates, interleaved with five layers of proportional tubes and followed by 1.5 cm thick
“absorber plates matching the circular shape of the supporting tube.

The proportional wire chambers are operated with a gas mixture of 80% Argon and
20 % CO,. The energy resolution of the calorimeter has been determined to [33]

o 55%

E  VE
The fine segmentation allows the measurement of the axis of jets with an angular resolution of
approximately 2.5°, and the total energy of hadronic events from Z° decay with a resolution of
better than 10 %.

+5%

Trigger and readout

After each LEP beam crossing (= 22 us in 4-bunch mode), the data collected by the various
subdetectors are read as analog signals within a few us. When the level-1 trigger decision (see
below) is positive, the analog signals are digitized for each detector component, collected by a
FASTBUS system and, after passing the level-2 and level-3 trigger, written to tape. The entire
data acquisition is steered by a VAX cluster, consisting of a central VAX 8800, several smaller
VAX computers for each sub detector, and multiple workstations for online control.

It is the purpose of the trigger system to decide whether an event should be recorded. The
trigger itself consists of three levels. The level-1 trigger is built with fast logic devices and uses
the combined analog® signals from the various subdetectors. Based on its decision, either the
digitization of the analog data starts or the readout electronic is reset. The decision and the
reset has to be done before the next beam crossing, this is within 22 us. There are essentially
four subtrigger in level-1, the energy trigger, the scintillator trigger, the charged track trigger,
and the muon trigger. Hadronic events are triggered by the first three of these subsystems

1. Energy trigger The energy trigger uses the informations of 256 trigger cells within the
electromagnetic calorimeter and of 384 trigger cells within the hadron calorimeter. It is
set, when 10 GeV have been deposited in the BGO barrel, 15 GeV in BGO barrel and
endcaps, or 20 GeV in both calorimeter systems. The rate is about 2 Hz.

2. Scintillator trigger At least 6 out of 30 scintillator are required to have pulsed. The
rate is about 0.2 Hz. : S

3. Charged track trigger At least two tracks with a transverse momentum (relative to ihe
beam axis) higher than 0.15 GeV are required within the TEC. The angle between these
tracks has to be larger than 120°. The rate is typically 1.5 Hz. :

The rate of the level-1 trigger is about 5 Hz and largely dependent on the beam conditions.
The dead time of the detector is smaller than 3%. Typically two of the four subtrigger are set
during one event. This redundance guarantees a high trigger efficency. .

The level-2 trigger decision is working on the same data as the first level, but is implemented
with fast processors allowing for a more complicated analysis. After a positive decision of the
level-2 trigger the data of the various detector components are collected (event building) via
a FASTBUS system and then fed into the level-3 trigger. The level-3 trigger consists of three
processing units, which each emulate an IBM/3081 E computer. The analysis of this trigger
level is able to consider all the data of the whole event. Ouly after a positive decision of level-3
the event is written to tape. '

2The signals are digitized by very fast Analog-Digital Converters with less resolution (9-11 bit) than in the
actual readout (12-20 bit}. ’ i
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Data processing

After the tapes have been written by the VAX cluster, they are processed on an IBM 3090/180J
computer. In a first step (validate step), the integrity of the data is checked. In the next phase
(Pass 1), the events on tape are reconstructed. This reconstruction takes place in two steps
[38]. First the data of all subdetectors is treated independently. Herein the basic entities are
collected into larger objects. Time dependent informations like calibration constants or different
detector setups had been tracked in a database and are used in the reconstruction. In a second
step, the objects reconstructed for each detector component are put together to form even larger
objects spreading across the entire detector. An example for this procedure is the building of
ASRCs and ASJTs, which is described in detail in chapter 5. This modular approach bears
the advantage, that e.g. new calibration constants for one detector component don’t require the
reprocessing of the entire tape, but only for this particular subdetector.

Detector simulation

" Simulated hadron events are necessary in order to train the classifier applied for the b selection
and to determine the detector acceptances for b and for light quark events. For this purpose the
JETSET 7.3 program [39] has been used. This programs generates the energies and momenta
of the fragmentation products coming from the process ete™ — hadrons. A more detailed
discussion can be found in chapter 8.

"Then the generated particles are tracked through a detector simulation using the GEANT
program [36]. This program takes into account effects like energy loss, multiple scattering,
interactions and decay inside the detector material or the beam pipe. The processes inside
the hadron calorimeter are simulated in particular by the program library GHEISHA [37]. The
simulation programs generate an output format of hits and energy depositions, which is identical
to the format written by the real data acquisition. Thus these simulated data can later be
processed in the same manner like the real data.
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Chapter 5

Selection of Hadronic Events

The selection of the b events is done in two steps. First a preselection takes place to obtain a
datasample, which contains almost only hadronic events, i.e. processes of type Z° — ¢§. Then
the actual b selection is carried out with the help of a Functional-Link Net. In this chapter the
cuts applied in the preselection are presented. Because the hadron cuts, as well as the variables
used as input to the classifier, are built out of energy clusters and jets, the process of finding
these entities shall be discussed to some more detail now. _ » ‘
In a first step, the hits in the BGO and the HCAL, which are higher than a certain thr‘esholld
energy (2 MeV for BGO, 9 MeV for HCAL), are grouped together into clusters. This is done '
separately for the two calorimeters. A BGO cluster (bump) consists of a most energetic crystal,
the central crystal, and the neighbouring ones. In the hadron calorimeter hits are grouped
geometrically (HGCL) [38]. Afterwards, the bumps are combined with the HGCLs which are
located in a 3° cone behind them, viewed from the interaction point, in order to build an ASRC.

(The A indicates, that it is about an object, which extends “A.cross L3” and the SRC stands for »

Figure 5.1: A jet is defined as the 30° cone around the radius vector of the most energetic
ASRC not yet assigned to another jet. In order to avoid double assignment of an
ASRC it has been required, that the angle between the two most energetic jets is
larger than 90°.
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“Smallest Resolvable Cluster”.) The direction of an ASRC is the vector sum of the direction of
its constituting hits. Herein the “length” of a hit is defined by its energy. Its direction is given
by its polar coordinates. The nature of the shower, either electromagnetic or hadronic, can be
inferred from the longitudinal and transversal shape. An isolated bump without any HGCLs
behind is taken as a electromagnetic ASRC. In general, one ASRC is supposed to correspond
to one physical particle. The angular p051t1on of a hadronic ASRC is known with a precision
of 10 mrad [40].

Jets are built from ASRCs and muons and are referred to as ASJT. The algorithm starts
with the most energetic ASRC in the event. Its direction is taken as the jet axis. All ASRCs
and muons in a 30° cone around this direction are gathered and the new direction is calculated
from the momenta of all the included particles. This'procedure is repeated as long until no new
ASRC can be found in the 30° cone. After one jet is found, the procedure is applied again
on the remaining ASRC's until all are used up. (A minimal energy of 1 GeV is required for an
ASJT.) The angular resolution for jets was determined to be 36 mrad [41]..

As described in chapter 4, all events taken with the L3 detector are written to one single data
streamn without any distinction. Thus the raw data tape contains besides the desired hadron
events also leptonic processes of the type Z — ee, pp, and 77. Moreover, the non-resonant
background consists of two photon events, beamgas and beampipe interactions, and cosmics.
The following cuts have been used in order to discriminate against the background

(i) 0.6 < Egpt/+/3< 1.4

(ii) |Eyl/+/s < 0.4 with E the energy im‘bala.nce parallel to the beampipe
(iii) E;/+/s < 0.4 with E, the energy imbalance perpendicular to the beampipe
(iv) Nasrc > 18 with Naspc the number of ASRC'’ in the event

where FE,,; is defined as the sum over all ASRCs, i.e. the whole energy deposited in the two
calorimeters. The energy of an ASRC was required to be larger then 100 MeV to suppress
noise,

running period b light quarks

9la 0.9651 & 0.0007 | 0.9486 + 0.0005
91be 0.9591 4 0.0007 | 0.9460 £ 0.0004
92 0.9586 + 0.0006 0.9447 + 0.0003

Table 5.1: The acceptances for b and hght quark events in the three runmng periods after the

cuts have been applied. Due to modifications of the ] L3-detector-the-numbers-are
slightly different for the running periods, respectively.
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Due to the special definitions of the input variables of the Functional-Link Net (see next chapter)
two further cuts were required

(v) at least 2 jets with Eje; > 10 GeV and Nyspey/jet > 4
(vi) q(Jety,Jeta) > 90°

The distributions of the variables are shown in figure 5.2. The bullets are the distributions
for the data taken in the second half of 1991 (91bc), the histograms show the Monte-Carlo
prediction for the variables. The MC events were generated with the JETSET 7.3 program [39]
with string fragmentation and full detector simulation. The agreement between data and MC is
very good in the signal region, except for the number of ASRCs. Here the multiplicity is higher
than expected due to low energetic bumps, which are not contained in the Monte-Carlo?.

Leptonic events have a low cluster multiplicity and are discriminated by the N4spc-cut. A
further reduction of the process Z — pp, 77 is achieved by a cut in E,,:/+/s. Cosmic muons
also have a low multiplicity and a low energy deposit in the calorimeters. Beamgas and beam-
wall interactions as well as two-photon-processes feature a low total energy and show also an
imbalance in the energy deposit. After the cuts (i)-(iv), the fraction of remaining background
processes is smaller than 0.5 % [41]. Since the calorimeters cover 99.5 % of the full solid angle,
the trigger efficiency is very high, (99.15 + 0.03) % [41].

running period V/3[GeV] Nevent
91a 91.254 151871
88.480 3885

89.479 8338

90.228 12157

91bc 91.222 87936
91.967 16805

92.966 10399

- 93.716 8067

92 91.294 658619

Table 5.2: The number of hadron events collected during 1991 and 1992 at the various energy
points. The 1991 data are split into two parts reflecting the improved LEP energy
calibration after August 1991. T

1n the meantime the problem has been overcome using an improved version of the GEANT program.
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Figure 5.2: The plots show the distributions of the cut variables. The bullets are for the data
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give the Monte-Carlo prediction. Due to the missing energy carried away by the
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Chapter 6

The Classrﬁer used for the b
Selectlon

Inclusive leptons have already been used in the L3 analysis to tag b events [42]. This method
is reviewed shortly in appendix D. The analysis presented in this thesis however is based on
event and jet shape variables. Shape variables are built from the energy flux pattern measured
in the calorimeters. The relativly high mass of the b quark results into an event shape, which
is different from the event topologies made from lighter quarks. Six variables have been defined
in order to describe the differences. These variables are calculated respectlvely for each single
event and then serve as input to a Neural Network. According to the output of the net, the
event is classified as coming from a b or a light quark. The advantages of this approa.ch are its
independence of the sermleptomc branching ratio and the high underlying statistics.

In the first part of the chapter the differences in the shape of b'events in contrast to events
from lighter quarks are discussed as well as the variables, which have been designed in order
to quantify these differences. The second part will report of the training and the achieved
performance of the classifier.

6.1 Variables used as input to the classifier

In the hadronization of the b quark, very little energy is radiated in the form of gluons due to its
high mass [44]. Thus, the fragmentatlon of the b is hard and the resulting b hadron carries off
a large fraction of the beam: energy ‘At LEP1 energies this is typically 70 % fot a b hadron but
only 50 % for a prompt ¢ hadron [43]. The b hadron then decays into several particles in a weak
process with the energy ‘evenly distributed at the resulting decay products In contrast, most
of the energy of a light quark is radiated out in the form of gluons leading to a broad energy
spectrum of particles. Thus, the energy gaps between the leading particles are larger for light
quark jets. Also the light leading hadron being stable can still be fairly energetic. Figure 6.1
shows the most probable energy of the four leading clusters in the most energetic jet.

In addition, the mass of the b quark affects the jet characteristics. The jet sphericity is high
as a consequence of the large rest mass of the b hadrons [45]. This effect can be enhanced further
if the jet sphericities are measured in a Lorentz frame, which is a result of a boost toward the
b hadron restframe. The jet boost (7 B = p/p with p the invariant mass) is also smaller for b
quark jets. For LEP1 energies v 3 ~ 8 for a b jet.

Based on these considerations five variables have been reﬁned They are calculated for each
of the two most energetic jets of the event. The information used is based on calorimetric clusters
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Figure 6.1: Most probable energy of the four most energetic clusters in a jet. The descend in

energy for successive clusters is much steeper for lighter quarks.

only. For the calculation of the invariant mass, the clusters, i.e. the final particles, are assumed
to be massless, hence E = p. In particular, the variables are defined as follows

1.

2.

4,
5.

(ESRC) The energy of the most energetic cluster in the jet.
(EGAP) The difference between the first and the fourth most energetic cluster in the jet.

FE; - Fy

EGAP = ———
EJet

The expression has been normalized to cancel out uncertainties in the energy calibration
constants (g-factors). Several differences were tested and the one between the first and
the fourth cluster was found to yield the best selection performance, when used as input
to the classifier.

(SPHE) The boosted jet sphericity is defined as

>l
SPHE =
Y p?

where the momenta are in the jet rest frame and the transverse momentum is with respect
to the jet direction. (For the definition of a jet see chapter 5.)

(GBJET) The jet boost ¥ 3 has been calculated for the entire jet
(GBSRC) The jet boost v 3 of the set of the four leading clusters in the jet.

In addition, it was found that the fraction of visible energy outside the two most energetic
jets improved the selection performance quite a lot though there is no difference between the
distributions for b and light quarks (Figure 6.13).

6.

(DJET)
Eiot — (Eget1 + Eges2)

DIJET =
Eiot
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Again the expression has been normalized in order to cancel out uncertainties in the g-
factors.

The distributions of the variables are plotted in figure 6.3 and 6.4. In general, data and MC agree
rather well, except for the SPHE and the EGAP variable. These disagreements result from
the occurence of low energetic clusters in the data, which is higher than predicted in the MC.
(See footnote on page 26.) They yield a higher energy difference between the leading clusters in
the jet. Also the sphericity is lower due to faked particles with lower momentum.

It is claimed one of the features of a Neural Network algorithm, that it is still capable to
classify even noisy data in a correct manner. In fact this statement holds also true in the actual
case. The bad agreement for the sphericity and the energy gap is not propagated to the output
distribution of the net (Figure 7.1). Only this distribution is of interest for the b selection and
here data and MC agree very well. Because the net is obviously able to handle sufficently the
noisy data and on the other hand the application of these quantities improves the selection
performance of the classifier quite a bit (Figure 6.2), it seems acceptable to keep them as input
variables. A

The MC predictions for the b have been checked using data events __with a high p; muon
(p: > 1 GeV, p, > 4GeV), where p; is the momentum of the muon transverse to the jet axis.
The b purity of a sample tagged with inclusive muons is almost 80 % [46].

Figure 6.2: The selection performance is n
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Figure 6.3: The histograms show the distributions of the input variables as predicted by MC.
The white bullets are the hadronic data taken during 1992. The disagreement
between data and MC for SPHE and EGAP are due to low energetic clusters
found in the data. The triangles are those events, which contain an inclusive muon
(~ 80 % b purity). The numbers at the end of the variable name indicate the jet.
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Figure 6.5: The way the classifier works

6.2 Training and performance of the classifier

A single-node Functional-Link Net, as described in chapter 3, has been used as classifier for the
b selection. The 11 variables presented above are calculated for each event, respectively, and
then normalized to their mean. The purpose of this normalization is twofold. First the values
of the variables have to stay within some limits to take into account the periodic nature of the
Fourier terms. Second, uncertainties in g-factors cancel out. Afterwards the first four terms of
the Fourier series are calculated for each variable and this, so called, ezpanded event vector z
serves eventually as input to the genuine classifier, which consists of a single Perceptron node.
The Perceptron evaluates the weighted sum of the components of &’ together with a threshold
wg and issues a value out(Z) € [0, 1].

In order to obtain different distributions of out(Z) for b and for light quarks, the classifier
has to be trained, this is, the weights of the Perceptron have to be determined properly. This
was done with the Widrow-Hoff Learning Algorithm (3.11) using in addition a damping term
(3.12). A trainingsample consisting of 40000 JETSET 7.3 hadron events, fully reconstructed
for the detector setup during the running period 1991bc and a cms-energy of the Z° mass, was
presented to the classifier about 300 times®. To obtain a balanced training, the sample contained
equal numbers of b and light quark events. The weights were updated according equation (3.12)
after every single sweep. The best training performance was achieved with the parameter setting
listed in table 6.1. For the events of the training set the squared-error measure (3.7) reaches a
stable value after at least 100 cycles (Figure 6.6). For an independent testsample (see below)
the error continues to decrease slightly even at 300 cycles. But because no further significant
improvement was expected, the training was terminated at this point. ‘

After the training, the classifier remains unchanged for the rest of the analysis. This means
in particular that the same weights were used the whole time. (Actually, the set of weights
obtained after 284 cycles has been used in the further analysis, because the network output
at this time yielded the best x? in the fit described in the next chapter.) It has not been.

11n the slang of Neural Network people a single presentation of an event vector iscalled a sweep. A presentation
of the whole training set is referred to as cycle. Hence the training consisted of 300 cycles with 40000 sweeps,
respectively.
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Orthonormal functions sin(i - 7 - 2) + cos(i -7 - z)

Order of expansion 4
Learning parameter 7 v 0.001
Damping factor p 0.5
Temperature T 5.5

Size of training sample 40000 events (20000 b, 20000 light quarks)

Number of training cycles 284

Table 6.1: The parameters of the Functional-Link Net applied for the analysis.

retrained for input data taken with different detector setups, other cms-energies, or the checks
for systematic errors described in chapter 8.

The selection performance of the classifier was tested with an independent sample of 300000
fully reconstructed JETSET 7.3 events. This time, the fraction of the quark flavours was as
predicted by the Standard Model. (Rp = 0.22). Figure 6.7 shows the evolution of the classifier -
decisions during the training period. Due to the use of a Fermi Function as an approximation -
of the signum function, the crisp {0,1}-output of an ideal classifier has been smeared into the -
whole intervall [0,1]. In order to regain the optimal behaviour of a Bayes Decision Machine, as
defined in chapter 3, it has become necessary to apply a cut, where the Fermi Function intersects
the leap of the signum function. This is the case just at the turning point of the Fermi Function,
for which holds: @ - % = wp, so that the denominator in the exponential becomes zero and
F(Z) = 0.5. Thus a cut on the output distributions at 0.5 yields an optimal classification by the
net. Figure 6.8 shows in fact, that the number of misclassifications becomes minimal at 0.5, so
that the used Functional-Link Net really implements a Bayes Classifier. Figure 6.9 shows, that
though the maximum of purity - ef ficiency still rises sightly after 300 cycles, the location of the.
maximum becomes stable almost immediatley after a few trainings cycles. It should be stressed,
that the choice of the “temperature” T of the Fermi function does not affect the location of the
cut, so that this choice has no impact on the optimal error rate of the classifier (Figure 6.10).
Tts choice is of great importance for the training performance though (Appendix B).

Figure 6.11 shows the possible combinations of b efficiency and the sample purity?, when the
output is used as a continuous discriminant. ‘ :

Contrary to a selection founded on cuts in 1-dimensional distributions, Neural Networks are
also able to take into account relations between the input variables. This capability shows up for
the application of variable DJET. Although there is no difference between the distributions of
signal and background for this variable, used together with the other variables the discrimination
power of the classifier is notably improved (Figure 6.13).

The use of orthogonal functions other than the Fourier terms, eg. polynomials (10th order) or
Bessel functions (4th order) in order to expand the event vector, resulted in a worse classification
performance of the net.” Variations of the training procedure, as for instance accumulating the

2Lt b the number of b events and z the number of light quark events in the sample obtained with a cut at the
classifier output, and let' B the number of all b events in the total hadron sample. Then ef ficency and purily
are defined: ef ficiency = % and purity = b_%.
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updates and changing the weights only after each cycle or decreasing the learning parameter 7
from 0.01 to 0.001 during the training yielded no improvement. The same holds true for the
sequence of the presentation. It did not matter, if the events were presented sequentially or
selected randomly during one cycle. Further tests for sytematic effects are presented in chapter

8.

err’

0.5

0.4

0.3

0.2

0.1

testsample

PSP PRSP P

training sample

Figure 6.6: The squared-error measure (3.7) normalized to the number of events has been

calculated after each cycle, once for the training sample itself and twice for an in-
dependent test sample. Although the error decreases still very slightly, the training
was terminated after 300 cycles.
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Therefore this quantity will be used in the further analyis.
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Chapter 7

Determination of Ry,

In principle, the number of b events can now be determined by counting all hadron events, which
yield a classifier output of at least 0.5, correcting this number for the classifier efficiencies for
b and light quarks as well as for the detector acceptances. The cut at 0.5 would ensure the
minimal possible number of misidentifications. The statistical error is influenced quite a bit by
the uncertainty in the efficiencies though. Because the classifier suppresses more than 60 % of
all light quark events and still 20 % of the b events, these uncertainties are intrinsically rather
high.

In another approach, which exploits the whole underlying statistics, the trained classifier is
used merley to map the multi-dimensional probability distribution of the event vectors # onto
the interval [0,1] € R. Then a fit is performed to make up the output distribution outpgta, as
obtained from the hadron data, of the two distributions for b and light quarks, outy and outy,
as predicted from Monte-Carlo. outy and out, contribute just with the actual fraction of b and
light quarks in the hadron sample.

outData = Rpp - Outy + Ry - outy = Rpp - outy + (1 — Ryp) - outy (7.1)

Herein out, and out, are normalized to the data and still have to be corrected for the detector
acceptances accy and acc,, respectively. Ry, can be determined by minimizing the following x?
quantitiy using the CERN program MINUIT [47]. The output was divided into 100 bins to take
into account properly the steep rise of the distributions at the edges of the interval.

g _ R (outpata(i)) — outyc(i))? 9
=) 5 5 (7.2)
. =1 aData + UMC
assuming the error to be Gaussian distributed, i.e. o = /7, and the normalized linear combi-
nation of the output distributions
outaro (i) = accy - Ry - outy (i) + aceg - (1 — Rpp) - out (1) | (7.3)

acey - Ry + accg - (1 — Rup)

The normalization of outprc takes into account, that the overall acceptance is dependent from
Ry, and therefore cannot be determined from MC but has to be part of the fit itself. A lossin
the acceptances cancels out exactly, if it is the same for b and non-b.

A useful side effect of the fit method consists in the resulting x?, which constitutes a measure
of the agreement between data and Monte-Carlo predictions.

Because of these advantages, the fit method has been given preference to the usage of the
Functional-Link Net as a Bayes Classifier. A whole sample of approximatly 900000 ‘hadron.
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events collected on the Z° peak during 1991 and 1992 has been used in this analysis (Table 5.2).
The output distributions were corrected with the detector acceptances listed in table 5.1. For
each running period, the appropriate Monte-Carlo, describing the particular detector setup, was
used to determine the estimated output for signal and background. The classifier was trained
only once with the MC describing the L3 detector in the period 1991bc running at a cms-energy
of 91.222 GeV, but is used for all three periods as well as for data taken at offpeak energies. This
procedure is reasonable, because later the relevant MC was used to determine out, and out;
for the deviant detector setups or energies, respectively. In order to simulate events for offpeak
energies with sufficent statistics, the standard MC was used but the cluster energies were scaled
with respect to the beam energy. Afterwards the various input variables for the classifier were
calculated from the scaled clusters as described in chapter 6. The output distributions for MC
and data agree very well for all periods and energies and are plotted in figures 7.1 and 7.2.

The results for all three running periods as well as for the offpeak energies are listed in table
7.1. The cross sections os have been calculated using the L3 results for the hadronic cross
sections [41], [48]. Because the errors on the hadronic cross section are rather small compared
to the ones of the b cross section, their effect can be neglected.

running period Vs|GeV] Rep x2/dof opp [1b]
9la 91.254 0.224 + 0.005 2.00 6.82 £ 0.14
88.480 0.221 + 0.021 1.25 1.14 £ 0.11
89.470 0.205 + 0.015 1.16 2.07 £ 0.15
50.228 0.201 £+ 0.012 124 3.64 +£0.23
91bc 91.222 0.214 4+ 0.005 1.64 6.48 + 0.14
91.967 0.216 + 0.011 1.21 5,29 + 0.26
92.966 0.207 £ 0.014 1.32 2.97 + 0.20
93.716 0.206 £ 0.015 1.51 2.06 + 0.15
92 91.294 0.220 + 0.003 1.53 6.69 = 0.09

Ras = 0.220 £ 0.002]

Table 7.1: The values of Ry for the various energy points together with the x? of the fit (7.2).
Ry is calculated from the three values measured at the Z° peak, each weighted with
its statistical error. The too small MINUIT estimate for the statistical error has
already been corrected for (Chapter 8).
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The bullets give the classifier output for the data taken on the Z° pole in 1991a,
1991bc, and 1992. The dashed line is the distribution for light quarks, the straight
one for the b. The light shaded area shows the sum of the two MC distributions.
The MC distribution for the b has been checked with inclusive p events as was
done in chapter 6.
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Figure 7.2: The classifier output for the data taken offpeak during 1991.
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Chapter 8

Systematic Effects

Several sources might possibly contribute to the systematic error on Rys. They can be divided
into two categories. First, the applied analysis method, this is the Functional-Link Net and
the fit to the output distributions, could already influence the result. Second, the errors in the
theoretical predictions due to uncertainties in the Monte-Carlo parameters as well as the errors
in the data due to limited detector resolution, will propagate into the final value of Rp.

Except for the check concerning the systematic effect of the “temperature” to the fit result,
all studies have been performed with the same set of weights, which has been used in the
actual determination of Ry in chapter 7. The impact of uncertainties in the input variables has
rather been studied in spoiling outarc(F). Therefore MC events have been generated, where the
input parameter of interest had been varied by +1 0. The half difference between the fit results
obtained with each pair of extreme values allowed for the parameters is then taken as systematic
error.

8.1 Effects from the classifier and the fit to the output

Several studies concerning the stability of the classifer with respect to the training period have
already been presented in chapter 6 (Figures 6.6, 6.7, 6.9, 6.12). All in all, the system seems to
have reached a more or less stable state after about 200 training cycle.

Two further checks have been performed to examine the dependency of the fit to the training
period. As for the other stability studies, the weights obtained after every training cycle have
been used in order to generate outpre (%) and outpaia(%). The upper plot in figure 8.2 shows
the result of the fit for data taken in the 91bc running period. The band indicates the 1o
error of the fit for ~ 300000 MC and 90000 data events. The fit becomes stable after ~ 250
cycles. Probably because of the slight disagreement in the output distributions for data and
MC (Figure 7.1), the system settles down at a later time than for the other tests, which were
done with MC only. To obtain the lower plot, half of the MC events have been taken as pseudo
data, i.e. 0utpgie(Z) has been generated with MC instead of real data. Because the Ry, of a
MC sample is of course well know, the reliability of the fit can be tested. Obviously the true
value, indicated by the thick line, lies off more than 1o of the fit result. For a more detailed
study of this finding, the fit has been performed for 10 pairs of statistically independent outayc
and outpgt, distributions. (outpeta generated by pseudo data.) The deviation of the true value
and the fit result (Rppsrye — Robriz)/0Fi: Was found to be Gaussian distributed around zero with
o ~ 1.5 (Figure 8.1). This number has been confirmed by an F-test [49] yielding a 98 % CL.
Hence the assumption, that the errors in (7.2) would be Gaussian distributed, is not correct and
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T Ry, x°

1 0.221 + 0.003 | 89/99
100 | 0.221 4+ 0.003 | 109/99
1000 | 0.221 4 0.003 | 101/99

Table 8.1: The fit result is not dependent on the “temperature” T'.

the number given by MINUIT was multiplied with a correction factor of 1.5.

As a last check concerning the fit and the classifer, the impact of the “temperature” T in
the Fermi transfer function (3.9) has been examined. It was shown already (Figure 6.10) that
the choice of T has no impact on the location of the optimal cut at the output, though a major
one on the training speed (Figures B.1-B.6). In general, the shape of the output distributions is
determined by T, which might yield some effects on the fit. The net has been trained for three
“temperatures” yielding three different sets of weight. Then the fit was done with the output
generated by these three sets. No effect has been found. The results of the fit are listed in table

8.1.

3 x'/ndf 06080 / 5
Constant 1.484
Mean 0.9237E-01
Sigma 1.498
2 |

| P T S e X
1 2 3 4 5
(ru(true)—ru(Fit)) /o (Fit)

Figure 8.1: The deviation of the fit result for Ry and the true value.
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8.2 Uncertainties of the Monte-Carlo predictions and detector
effects

The values of the shape variables serving as input to the classifier are determined by the energies
and the angular distributions of the final particles in the process Z° — ¢§ — hadrons. This
process is simulated by Monte Carlo programs according to four different steps

1. production of gg(7) (electroweak)
2. gluon radiation (perturbative QCD)
3. hadronization of quarks and gluons (phenomenological models)

4. decay of unstable particles

In order to model the perturbative QCD the JETSET Monte-Carlo [39] program applies the
Parton Shower method. This approach is based on an approximation of the full matrix element
expressions. The version of the program used works within the framework of the Leading Log
Approximation (LLA), i.e. only the leading terms in the perturbative expansion are kept.

Because QCD is not well understood at low energy scales, the fragmentation of colored quarks
and gluons cannot be calculated by perturbative QCD. One needs to rely on phenomenological
models. The separation between perturbative and fragmentation phase is generally characterized
by an energy scale (Qo) with a typical value of a few GeV. Several different fragmentation models
have been developed. The one, which was found to describe the data in the best manner [50],
is the String Fragmentation model [51]. The string model is derived from the QCD inspired
idea that a color flux tube (string) is stretched between quark and anti-quark pairs, with gluons
corresponding to kinks in the string. Particles are generated in the formalism of string breaking.

The following sources of systematic errors have been examined for the different stages of the
MC simnulation listed above

" 1. Because the mass of the ¢ quark (1.3 GeV [53]) is the closest to the mass of the b, a change
in the fraction of ¢ events with respct to all light quarks might also have some influence
on the measured Rp,. The ¢ contents of the MC sample was enriched or reduced at the
expense of the lighter flavours respectivly by the error given in [53].

2. The energy dependence of the strong coupling constant c is given bei Agep.

_ 127w

as

with N; the number of flavours and Q? the momentum transfer. Due to several ambi-
guities in the LLA description, especially in the renormalization, the parton shower scale
parameter App extracted from LLA models through comparison with data does not cor-
respond exactly to the QCD scale parameter Agep. The value and the errors for Az
“used for the systematic check were taken from [50].

3. The process of hadronization is determined by several parameters.

e The fragmentation of light quarks is given by the LUND symmetric functibn_[52]_

z

£(z) o 2 (1= 2)7 exp (J’ m; )
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where z = (E + p”)had/ (E + p”)qua,k is the fraction of energy taken away by the
resulting hadron, m; is the transverse mass of the system, and a and b are the frag-
mentation parameters.

e The fragmentation of the ¢ and the b quark can be descibed by the Peterson Frag-

mentation function [54]
z -2
f(z) = y (1——l— 6.;_)
z

z 1-2z

where N is a normalization constant and ¢, (¢ = ¢,b) are the fragmentation parame-
ters for the heavy quarks.

o The transverse momentum spectrum p; is described by the Gaussian function

2
f(pe) o< exp (—.21_7’;2)
q

where o4 is a free parameter.

a, b, and o, were set to the values. pubhshed in [50]. Due to the strong correlations between
a and b, only b has been varied with a = 0.5. TheJ ETSET default values for ¢, and €
have been used and changed by the errors denved from [42]." ;

4. The error in the branchmg ratio for the decay b — uvX yields an uncertamty in the
amount of the missing energy carried away by the neutrino. Similar to the check of Lo
the b fraction of the MC sample was enriched or reduced with inclusive muon events by
the value given in [42] as error on the branching ratio.

The value of the b mass together with the error were taken from [53]. The parton shower
termination parameter Qo was set to Q¢ = 1 GeV. L '
 The errors on Ry, which are inflicted by the uncertainties in the listed parameters, have been
determined as described in the prolog of this chapter. In order to distinguish a deviation due
to systematic effects from statistical fluctuations a very high number of MC events is needed.
Because a full blown detector simulation would require an immense amount of CPU time, the
systematic effects caused by uncertainties in Az, o4, ™M, and all fragmentation parameters
have been tested with a fast detector simulation. Herein events had been generated with the
JETSET program and the energies and angular positions of the stable particles have been
smeared according the detector resolutions. The checks concerning the branching ratios I'cc and
I'y_,; have been performed with full reconstructed MC and real data.

The impact of the finite detector resolution has been examined in the same way but (of
course) with full detector simulation. The energy resolution of 13. 2% [56] of the calorimeters
has been worsened by using a different set of g-factors. The angluar coordinates of the clusters
have been smeared according a Gaussian with a o of 10 mrad, the ones of the jet axis with a o
of =~ 36.7 mrad. Because dead cells in the hadron calorimeter haven’t taken into account during
the reconstruction of the data at that time, their impact is estimated by setting to zero the
hadronic part of 0.1 % of all clusters.

For the tests concerning the QCD parameters, 200000 MC events have been generated with
respectively one parameter varied by 1 ¢ in one direction. The checks for the systematic effects
by Iee, To—i, and the lower energy resolution were based on 300000 MC events. 150000 MC
events and 150000 pseudo data have been used to test the impact of the uncertainties in the
angular position of clusters and jet axis and of the dead cells in the hadron calorimeter.
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Figure 8.3: The agreement between data and the HERWIG Monte-Carlo is bad. The fit yields
a x? = 557 for 99 degrees of freedom.

8.3 Different fragmentation models

Contrary to JETSET the HERWIG Monte-Carlo program [55] works with the Cluster Fragmen-
tation Model. To estimate the impact of a different fragmentation model outprc was generated
using ~ 170000 fully reconstructed HERWIG events. The agreement between the output for
data and HERWIG Monte-Carlo is bad (Figure 8.3), the fit yields a x% = 557 for 99 degrees of
freedom. Thus it had been abstained from including the deviation caused by the application of
HERWIG model into the systematic error.

8.4 Summary

All in all, the biggest contributions to the systematic error are due to the uncertainties in Arr
and in the energy resolution. The first result has been found also by [57] and [58]. '

The final number for the error has been obtained by adding the deviations given in table 8.2
in quadrature. The error due to the application of a different fragmentation model (HERWIG)
has been ignored. The number for the systematic error becomes eventually

Ag,, = +0.009
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| Value

Source of systematic error Variation ARy
branching ratio 2% — c¢ 0.126 | +0.003 0.002
Arr [GeV) 0.3 =£0.03 0.004
o, [GeV] 0.39 | +£0.03 0.002
b [GeV 2] (a=0.5) 0.76 | £0.08 0.003
€ 0.008 | £0.0024 0.003
€ 0.07 | £0.002 0.002
my [GeV) 5.0 | +0.5 0.000
branching ratio b — urX 0.113 | £0.012 0.001
energy resolution of the calorimeters AE=136%| -10%-AE | 0.005
angular position of jet axis 37 mrad 0.001
angular position of ASRC 10 mrad 0.001
dead cells in HCAL 0.1% 0.001
fragmentation model (HERWIG 5.1) 0.021 (x% = 557/99)
MC error 0.001
ARy = +0.009

Table 8.2: Systematic errors on Rp. All parameters have been respectively modified by +1o
according to the errors given in the cited literature.
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Chapter 9

Standard Model Parameters

The values of Ry, measured at the various energy points (Table 7.1) have been used to calculate
several parameters of the Standard Model. Herein the FUNPLO program has been applied
as an interface to ZFITTER 4.5 in order to perform the necessary fits. Both programs are
described in appendix E. The fits take into account only the QED radiative corrections. This
method is called model-independent, since no relations predicted by the SM are imposed between
the measured quantities. This approach is possible because the radiative corrections can be
separated into QED corrections and weak corrections (Equation (2.7)). The QED corrections,
which depend on the acceptance on the detector and on cuts applied in the analysis, are always
taken into account for calculating the theoretical predictions. Since the weak corrections cannot
be calculated exactly outside the SM, these corrections are absorbed into the fitted parameters.
These parameters are the effective parameters introduced in section 2.2.

9.1 Properties of the Z° and the partial width of Z° — bb

Already the cross sections for the b pair production alone can be used in order to constrain the
basic properties of the Z9, including mass, total width and the partial decay width (2.6) into b.
A model-independent fit with the cross sections measured at all energy points scanned during
1991 and 1992 as input, has been performed. The 1-parameter fit uses the values for mz and
T'; published in [41]. The results are collected in table 9.1. The one of major interest is the

value of L':
T = 381+ 16 MeV

‘1 parameter ~ 3 parameter
mz || (91.195GeV) 91.203 £ 0.043 GeV
Tz (2.490 GeV) 2.38+ 0.07GeV
Ty || 38116 MeV 351+ 24 MeV
x2 = 6.9/8 dof x? = 4.4/6dof

Table 9.1: Properties of the Z° obtained from fits to the cross section data of the b. The values
in brackets have been fixed to the values published in [41].
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Energy [GeV] opp[1b] Al}b + (stat.) £ (syst.)
89.67 2,074+ 0.15 0.051 £+ 0.051 £ 0.007
6.82 + 0.14
91.24 6.48 + 0.14 0.097 £+ 0.017 + 0.007
6.69 + 0.09
92.81 2.97+0.20 = | 0.062 +0.042 £ 0.007 .

Table 9.2: The numbers for the cross section and the forward-backward asymmetry applied in
the fit to gapg.5. The errors for the cross section are statistical only.

GulGev?] | o | 5 160] | 0.[61] | gucl6] | sin® B [62]
1.166388 - 105 . 137.0359895-1 l 0.117 ] -0.4996 ’ -0.0360 } 0.2336

Table 9.3: The numbers for the SM parameters used in the fit. (The ZFITTER default values
have been applied for G, and o) :

The error combines the statistical and the systematic error, as well as the energy error of LEP.
The Higgs mass was fixed at 300 GeV and the top mass at 150 GeV. The result'”improves the
number given by the prior L3 measurement [42], which has used inclusive leptons to tag B
events, by more than 30 %. The prediction of the SM is 378 + 3 MeV [5], so that the result of
the fit agrees within the measurement errors.

9.2 Weak coupling constants of the b quark

A model-independent 2-parameter fit has been performed using the b forward-backward asym-
metry measured by L3 at three energies [41] and the corresponding b cross sections determined
in this thesis. The values are given in table 9.2. The fit program assumes negative signs for
both coupling constants by default, taking into account recent results from PETRA, PEP, and
TRISTAN [59]. For the effective mixing angle the number published in [62] has been applied.
The value for sin? W is about 0.4 % higher for a top mass of 150 GeV due to weak corrections
in the Zbb vertex and can be assumed equal within the errors. The results of the fit is given in
table 9.4. The good agreement with the SM predictions confirms the existence of a weak isospin
partner for the b quark, in other words the existence of the top.

Fit SM
gap || —0.518 £ 0.054 -0.50
gup || —0.3231+0.083 -0.34
x% =5.9/6dof

Table 9.4: The results for the coupling constants g,z and g,,},. The _corréla.tion between the two
variables is —0.4273 - 1072,
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Figure 9.2: The weak coupling constants of the b quark. The contour shows the 68% and 95%
confidence level of the fit result. :
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9.3 Top mass

The mean value for Ry, = 0.22 as determined in this thesis is correlated with a top mass already
been excluded by the Tevatron experiments [1]. But at least an estimate for an upper limit can
be given

Miop < 375 GeV (95% CL)

Herein the Tevatron exclusion has been considered by taking as upper limit the value, where
the integral of the residual distribution above 108 GeV becomes 95 % [53].

0.22

0.21

0.2

My, [GEV]

Figure 9.3: Ry as a function of the top mass. The curve shows the prediction by the SM. The
number for Ry, determined in this work is indicated by the dashed line. The grey
band is the 1 o error. The region below 108 GeV has already been excluded by the

Tevatron experiments.
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Chapter 10

Summary and Conclusion

The subject of this thesis has been the measurement of Ry, the fraction of b quarks in all
hadronic decays of the Z° boson. The analysis is founded on a sample of 900000 hadrons,
collected with the L3 detector during the years 1991 and 1992. One event shape and 5 jet
shape variables, calculated respectively for the first two jets, have been used for the selection
of b events. These quantities served as input to a Functional-Link Net. In general, the output
distributions of a Neural Network allow for the best possible separation of signal and background
events for a given set of discriminating variables. This behaviour has been exploited to fit the
net output for the hadron data to the Monte-Carlo distributions for b and light quarks in order
to determine the b fraction.

Ry, has been measured at 9 energy points, in particular three on the Z° pole. The result
obtained, averaging only the values on the Z° peak, is

Ry = 0.220 £ 0.002 (stat.) =+ 0.009 (syst.)

This result is in good agreement with the average of all four LEP experiments (Figure 10.2),
but too high for a reasonable top mass (Figure 9.3). [63] have suggested additional Z bb vertex
corrections in the frame of the Minimal Supersymmetric Model by light charginos and an s-top
(Figure 10.1) with their masses close to the experimental bounds [64]. These contributions would
increase the value of Ry,. If this is the case then the chargino and the s-top should be visible at

LEP200.

=
720 Heeo 2 k.
VW\/’ lt v\N\/’ |t
- ~
~o 1 So i

Figure 10.1: Vertex corrections due to 'New Physics’ [63]. The left process yields a negative
contribution to Ry, the right one a positive.
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Figure 10.2: LEP averages for Ry

When the output of the net is taken as discriminant to select b events, the b fraction of the
hadron sample can be enhanced from originaly 20 % up to 52 % with still a 50 % b efficiency.
This is a 75% improvement compared to algorithms commonly applied in multi-variant analysis,
eg. the ‘Canonical Discriminant Analysis’ [68]. Purities up to 80 % can be achieved with about

8 % efficiency, a number comparable to lepton tagging.
The b cross sections for the 9 points were used as input to a model-independent fit to the

partial width of the decay Z° — bb
T, = 381 £ 16 MeV

The error improves the number given by the prior L3 measurement [41], which has used inclusive

leptons to tag b events, by 30 %.
Together with the L3 results for the forward-backward asymmetry of the b quark, the weak

coupling constants g, and g,» have been fitted.

gap = —0.518+0.054
g = —0.323+0.083

This result proofs the existence of an isospin partner for the b quark, with other words the

existence of the top.
The error on Ry is still rather high, so that the upper limit for the top mass [65] cannot be

improved. With the result obtained for Ry, one gets
Miop < 375 GeV  (95% CL)

The application of a Neural Network for  selection yielded a notable improvement to pre-
vious measurements based on lepton tagging [42]. Even when the input data were rather noisy
due to too many low energetic clusters in the calorimeters, the events were still classified in
a correct manner. Furthermore the net was able to exploit correlations between the event va-
riables, allowing for use of variables with no difference between signal and background in their

1-dimensional distributions.
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But further progress in the determination of Rpp is obviously limited by the large uncertainties
in the QCD parameters (Chapter 8). Therefore future work in this field should concentrate first
on a more precise determination of these numbers. As another approach, the combination of
lepton tagging with event shape analysis [57] provides a possibility of a less model dependent

analysis.
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Appendix A

The Rummelhart Algorithm for
Multi-layered Neural Networks

The concept of a multi-layered net of Perceptrons as processing units was already known in 1965
[27], but it was only in 1986 that a learning algorithm was found [66]. Because the knowledge
of the concept is needed for the understanding of the tests discussed in the next appendices, the
Rummelhart Algorithm will be outlined in the following.

The algorithm of Rumelhart et al. treats multi-layered networks with any number of hidden
layers and any number of output nodes. It is a generalisation of the Widrow-Hoff Learning, i.e.
it is founded on the minimization of a mean-square error measure. For m output nodes the

\ >

out,

um

Figure A.1: The architecture of the network used in the derivation.
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definition (3.7) can be generalized

err =

N =

Z f:(wk,- — out(:i:'x‘,)i)2 (A.1)
k=1 1=1

with the (&, ) drawn from a trainingsample 7 = {(Z,&)slk = 1...1} and out(Zy); the output
of the 4-th node in the output layer as computed with the actual set of weights w. The regarded
net (Figure A.1) shall consist of an input layer w, one hidden layer v, and an output layer u.
(The final result can be generalized immediately to any number of hidden layers.) Then the
input to and output of a node in layer v is

net, = Z Wy OULy out, = f(nety)
for any transfer function f. The same holds for the nodes in layer u
net, = wa out, out, = f(nety,) (A.2)

For each single presentation the weights of a node in layer u shall be changed proportional to

the gradient of (A.1)
: derr

Swyy

The error is expressed in terms of the outputs out,, which itself is a nonlinear function of the
input net,. Thus the partial derivate g;": can be evaluated using the chain rule

Awyy = /i

Berr __. derr Onet,
OWwyy  Onety, Owy,

Using (A.2), we obtain

%ﬁ: = -37”8; Zwm, out, = out,
We now define
P derr
“ Onet,,
and write
- Awy, = 16, out, (A.3)

similar to (3.10). To compute &,, we use the chain rule to express the partial derivate in terms
of two factors, one expressing the rate of change of error with respect to the output outy, and
the other expressing the rate of change of out, with respect to the input to that same node.

That is, we have
5 = Jerr Oerr Oout,
“7  QOnet,  Oout, Onet,

The two factors are obtained as follows

derr
Bout. — —(wa, — outy,)
and Sout
out,
Onet, fi(netu)

From which we obtain for 4,
by = —(wy — outy) f'(nety)
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for any output layer node u, and we have for (A.3)
Awyy = 1 (wy, — outy) f'(nety) outy,

Circumstances are different if the weights do not affect output nodes directly. We still make the
ansatz:

Berr
Oy
Berr Onety,
M Snety Owm

Berr
7 Onet,,

( derr Boutv) out
1 Hout, Onet, ¥

n (—— ('98;::,,) f'(net,) outy, = 1, outy

vaw = —-N

outy,

1l

I

However, the factor derr/fout, cannot be evaluated directly. Instead, we write in terms of
quantities that are known and other quantities that can be evaluated. In particular, we write
for m nodes in the output layer

Oerr Z Berr Onet,
dout, 4 Onet, Jout,

derr Is}
= 2 (*5;7) Bty 2t um Ut

derr
= Z (_ 3netu> Wuw = 2;5” Wuw

We see that, in this case
611 - flu(netv) Z 5u Wyp
u

That is, the deltas at an internal nodes can be evaluated of the deltas at an upper layer, they
are backpropagated.
Summarizing, and using the index ¢ to denote the event number from the trainingsample,

we have for the a-th weight of node 3
Aswga = 165 0utia (A.4)
If the nodes 3 are output layer nodes, we have
b1 = (wig — out(Zy)p) f'g(netip) (A.5)

However, if the nodes $ are internal nodes, we need to evaluate 616 in terms of the deltas at a
upper layer v; that is

étﬂ = f,ﬁ(netgﬁ) Zb‘tq ’w,yﬁ (A.G)
m

For a Fermi function (38.9) as transfer function, it holds

doutg

= outg (1 — out
Fnety outg (1 - outg)
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Now for the nodes in the output layer (A.5) simplifies to
(A.5) — 868 = (wig — out(TFy)g) outsp(1 ~ outsg) (A7)
and for the inner nodes (A.6) becomes

(A.ﬁ) hand 5,3,3 = Outtﬂ(l el O’U;ttﬂ) Z 6,57 Wy (A.S)
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Appendix B

Performance of a Multilayered
Neural Network

The behaviour of a Feedforward-Backpropagation Net is determined by a rather large number
of parameters, in particular, the number of hidden layers, the number of nodes in each hidden
layer, the transfer functions of the units, and the “temperature” T. The training might be
influenced by the initialization of the weights, the applied error measure, and the parameters
arising in the formulas given by Rumelhard (Appendix A), hence the 7, the “temperature” T,
and, if a damping term (3.12) has been used, the p.

To gain a first impression of the behaviour of the Feedforward-Backpropagation Net, several
tests were done for a toy problem. In particular, the effect of several parameters on the training
performance has been studied. The toy problem consisted in the learning of the XOR function:
(Table B.1). The XOR problem has become famous, after Minsky and Papert could show [67],
that it is not solvable by a single Perceptron but that one hidden layer with at least two nodes
is needed [27]. Such a net is able to solve the task exactly. Therefore the XOR problem is well -~
suited to study the performance of a Neural Net, because the end of the training is well defined,: -
i.e. after all four states have been learned. s ‘ C

The Feedforward-Backpropagation Net, which has been studied, possessed one hidden layer -
and used a Fermi Function (3.9) as transfer function. If not explicitly notified, the error measure -
has been the mean-square (3.7). The parameters 7, 4, the “temperatur” T', and the number of
nodes n in the hidden layer have been varied within the range tabulated in B.2.- The net was
trained on a Cray X-MP /48 for every combination of 5, p, T, and n until either the problem
had been learned completely or 250 sweeps' had been reached. After the optimal combination

LA sweep is a presentation of one single training pattern.

1 ig vout(:cl, 222)

| R == R}

1
0
0
1

- = O

Table B.1: Definition of the XOR function

65 ..




Parameter || Range | Stepsize
n 0.1...5 0.1
7 0.1...1 0.1
T 0.1...5 0.1
n 2...24 1

Table B.2: The parameters of the studied Feedforwa.rd-Bdckpropagation Net.

Configuration n T 5 p | Numbers of training sweeps
— 18 0.3 2.6 0.5 70
different initialization || 20 0.4 3.5 0.5 82
entropy error 20 0.3 0.9 0.8 28

Table B.3: The optimal parameters for the three configurations studied.

of parameters had been found, the training was repeated, now varying only one parameter and
leaving the other three fixed at their optimal value, in order to study the vicinity of the optimal
parameter setting. The parameters, which yielded the optimal performance are 1f§ted in table
B.3. Figures B.1-B.4 show the performances for two different initializations of the weights,
figures B.5 and B.6 the one for a training, which applied the entropy error (3.8). The entropy
error yielded the best performance (28 sweeps), though only for a very small parameter region.
The result that a rather large number of internal nodes yields a faster training than a small
number with less weights to be determined, comes a bit as a surprise. Another curious point
. is the rather large value of the optimal 5. The reason therefore can probably be found in the
small number of states, which had to be learned. _ _

These studies show that looking for the one parameter set, which yields the optimal trai-
ning performance, requires a big effort and reminds on alchemistry. The only promising way
to obtain a fast training seems to be to keep the number of weights small. This is the case
for the application of a Functional-Link Net. In spite of the expansion of the input vec-
tor (Figure 6.5), the complexity of the system still remains small compared to the one ari-
sing in a typical Feedforward-Backpropagation Net. No studies on the XOR problem have
been done with a Functional-Link Net, but appendix C shows that for a rather complica-
ted problem the training performance of a Functional-Link Net is superior to the one of a
Feedforward-Backpropagation Net.

66




error

25 3 35

temperet e

swee
P o 08 1 5 2

The plots show the training performance of the net. The number of the nodes
in the hidden layer n {upper plot) and the “temperature” T (below) have been
varied, respectively, with the other three parameters kept at their optimal setting.

Figure B.1:
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Figure B.2: The same situation as in figure B.1, but now 7 (upper plot) and (below) have
been varied.
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Figure B.3: The training performance as function of n (up) and T (below), but using a different
inital setting of the weights. - '
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Appendix C

b Selection with low-level Variables

The input variables of the classifier, which have been used in the main part of the thesis, have
been rather complicates quantities built from the energy clusters in the calorimeters. On the
other hand, biological systems receive only very primitive informations, for instance the location
and the brightness of an object. Thus the grouping of these low-level input in some usefull
manner is apparently done by the system itself. (If at all!)

With this in mind, it had been studied, if a Neural Net is able to find meaningful relations
itself, when presented merely very simple variables. Inspired from the example above, the input
vector was made up by the energy E; and the polar angles (¥9;, ¢;) of the 10-most energetic clusters
of an event. To ease the task of the net, the positions of the clusters have been transformed
into a coordinate system, which uses the thrust axis of the event as z-axis and its major axis as
z-axis. Herein the thrust is defined as [50] ’

i 1Pi
where 7; is the momentum of the i-th particle. The direction 7, which is called the thrust azis,
is choosen to maximize the expression. The major is defined the same way but is maximized in
a plane perpendicular to the thrust axis. ,

The studies have been performed with 20000 fully reconstructed JETSET 7.3 events for
training and 20000 events for testing. The same cuts have been applied as were in chapter 5.
The distributions of the clusters in the (9, ¢)-plane is shown in figure C.1.

The classification performance of a single-node Functional-Link Net, a Feedforward-
Backpropagation Net, and a single-node Perceptron have been studied. The Functional-Link Net
used the 20 first terms of the Fourier series in order to expand the input vector, hence ~ 1200
weights had to be determined. The achieved performances are shown in ﬁgure' C.2. Though
the performance of the input variables used in the thesis has not been reached, the one of
the Functional-Link Net is still amazingly good. Probably a Feedforward-Backpropagation Net
would have been able to obtain a similar performance like the Functional-Link Net, but due
to its more complicated structure and the resulting numerical effort (matrix multiplication)
a long (real) time of training is required. The Feedforward-Backpropagation Net was trained
about a day on an Apollo 10000, compared with 1-2 hours of the training required for the
Functional-Link Net. Nevertheless its performance remains poor. The poor ranking of the
Perceptron is certainly founded on the fact, that the problem is not linear separable.
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is virtually no difference.
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Appendix D

Further Methods for Quark Flavour
Separation

About 70% of the Z° produced at LEP1 decay into hadrons. Whereas the selection of hadronic
events is a rather easy task, the further seperation of the hadrons into the respective quark
flavours constitutes a far more complicated problem. This appendix shall give a short review of
the methods commonly applied for flavour separation.

The properties of a quark, which can be exploited for separation, are its mass, its lifetime,
its charge, and its decay. In general, the methods fall into two categories

1. Identification of the quark flavour by classifying the hadron, which contains the respective
quark. For LEP1-energies this is only meaningful for the heavier quarks, hence the b and
_ the ¢, because the lighter hadrons are also be generated during fragmentation.

2. Identifying the type of quark, i.e. up-type or down-type, by measuring the charge. This
assumes the universality of the coupling of the quarks in the up-sector and down-sector

(gg,v = g;,v a’nd gg,v = g;,v = 92,0)-

Inclusive leptons

Because the semileptonic branching ratio BR (b — [) is about 11 %, about 22% of the b hadrons
decay into evX or urX ,i.e. at least one electron or muon can be found in about 44% of the
Z° — bb-events. Unfortunately, the cuts necessary to obtain a sample, which is enriched with
inclusive lepton events, reduce the overall efficiency for this type of event to 4 %.

The use of inclusive leptons for b and c-tagging is based on the specific properties of the leptons
resulting from the high mass of their mother quark.

e Due to the hard fragmentation of the heavy quarks, the prompt leptons possess a high
momentum.

o The transveres momentum of the leptons relative to the jet axis is high. (< piL >= mg/ 4)

The sample can be enriched with bb-events by applying cuts in the p, 5\ -spectra. The typical
purity achieved is ~ 80%. A further advantage of this tagging procedure consists in the possibi-
lity of the quark charge determination by measuring the charge of the lepton. Beside the limited
statistics the uncertainty of the semi-leptonic branching ratio of about 10 % adds a relative large
systematic error to the result of Ry. [46]

76




Reconstruction of heavy hadrons

The reconstruction of exclusive decays of hadrons is a direct method to enrich a hadron sample
with a desired quark flavour and is used mainly on b and c hadrons. The obtained statistic is
rather low but the advantages of this approach is the low background and the full information
concerning the heavy hadron. ' - '

Jet- and eventshape variables

As already discussed to some detail in chapter 6 the relative high mass of the b-quark leads
to characteristic shapes of the jets and events. This manifests into a broader b jets due to the
higher 7, of the decay particles of the b and into different distributions in the energies of the
clusters due to the harder fragmentation of the heavy quarks. Variables frequently used are eg.
thrust, sphericity, energy of the first clusters, invariant mass of the jets etc. These variables are
used as input to a multivariant-analysis, for instance CDA (Canonical Discriminant Analysis
[68]) or a Neural Network. In general, Neural Network have shown a much better performance

than CDA. Typical values for CDA are 30 % purity for 50 % efficiency.

The use of shape variables for b tagging has the advantage, that the measurement is indepen-
tent of the error of the leptonic branching ratio. Also, the statisticis very high, because virtually
all hadronic events can be used. On the other hand, uncertainties in the QCD parameters highly
dominate the systematic error.

Secondary vertices [69]

The typical lifetime of b and ¢ hadrons is ~ 106-125. For LEP1-energies this results in decay
lengths of several mm. Contrary, the decay length for strange particles (K°, A°) is in the ma-
gnitude of several cm. Therefore the reconstruction of secondary vertices (i.e. the decay vertex
of the original hadron) can be used to separate the quark flavors. Provided that the detector is
equipped with a micro-vertex detector, which allows a precise measurment of secondary vertices
and impact parameters, this method is probably the most promising.

J/¥-mesons [70]

On the Z°-resonance J/¥-mesons are created almost exclusivly from decays of b hadrons accor-
ding to b — cés — ¥ + X. The creation of J/¥ out of gluons is small and can be neglected.
The J/¥s can be identified rather easily by their decay into lepton pairs. At LEP the process
b — J/¥ has already been used for the determination of the b lifetime and of the fragmentation
parameter €.

N

Mesurement of the jet charge

The total charge of all the particles in a jet is correlated to the charge of the primary quark. This
effect is washed out by low-momentum particles coming from the fragmentation of the opposite
quark and have been scattered back into the observed jet. In order to reduce this effect for the
calcultation of the total jet charge, each particle is weighted by its momentum

Qret = Sulpi-er|t-a
et — — —
> IPi"eTl

(X




where |p; - €3] is the component of momentum of the particle ¢ parallel to the thrustaxis, ¢; its
charge, and & is a weighting parameter and dependent on the sensitivity of the measurement.
The main source of uncertainty is the limited knowledge of the process of fragmentation.

A measurement of the forward-backward jet charge asymmetry allows a determination of
sin? @w [71]. A further application is the determination of the mixing parameter xp. Herein
the b events are identified with inclusive leptons. The charge of the first quark is determined
by the charge of the lepton and the charge of the second by the jet charge. The results [72]
are in good agreement with the ones obtained by using events with two inclusive leptons. The
jet charge method is dominated by the systematic error and the dilepton measurement by the
limited statistic.

Prompt photons [73]

Photon bremsstrahlung can occur after the decay of the Z into a quark pair and before their
fragmentation. The probability for this process is proportional to the squared quark charge.
Assuming universality for the coupling of the up-type and down-type quarks to the Z, the
number of expected g§y-events can be cast like

5
1
Nygy < Y ¢iT; = 58Ty + 8T'2) - (D.1)

=1
where ¢; is the quark charge, I'; the partial width of a single quark flavour, and I‘% , I‘§ are the

partial widths of all quarks from the up- (¢; = %) and the down-sector (g; = 3), respectivly. On
the other hand the total hadronic width of the Z is given by

5
Thed = ZI‘,- = 3I‘§ + 21‘% (D.2)

=1

(D.1) and (D.2) can be used in order to determine the partial widths. Also for this method, the
systematic error is dominated by our limited knowledge of the fragmentation process. The main
background for prompt photons consists of isolated, high energetic 7°- and 7-mesons, which can
fake a photon. In order to estimate the error, simulation of the energy spectra and production
rate of these particle are necessary. Therefore further understanding of these processes is needed.
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Appendix E

The Program Packages ZFITTER
and FUNPLO

Many analytical programs for specialized applications in ete™ annihilation are available. These
programs are to fit for parameters of the Standard Model (SM). The input to the fits consists of
cross sections and asymmetries measured at a series of /s values, already corrected for detector
effects, together with the theoretical predictions of the analytical programs. One of the most
popular of these programs for LEP1 physics is the ZFITTER package. The program FUNPLO,
written by a member of the L3 collaboration [74], actually performs these fits, taking into account
correlations in the input data and their errors.

E.1 ZFITTER

The analytical program ZFITTER 4.5 [75] performs calculations for fermion-pair production in
ete~ annihilation. The following models are implemented in ZFITTER:

¢ analytical SM formulae with highef order corrections

¢ model independent ansatz using effectiv e axial-vector and vector couplings of fermions to
the Z° boson

¢ model independent ansatz using partial decay widths of the Z° to fermion species

e S-matrix ansatz using S-matrix theory for a global description of the hard scattering
process :

ZFITTER calculates the following observables:

e SM cross sections and forward-backward asymmetries as functions of mz, Mep, MH, and
as )

e SM 7-polarization anf forward-backward T-polarizat ion as functions of mz, Myop, MmH,
‘and ag

¢ model-independent cross sections and asymmetries as functions of the normalization form
factors (p) amd the effective vector and axial-vector coupling constants (Jags Gvy)s TESDEC
tively

79




¢ model-independent final-state polarization in 7-pair production as a function of the nor-
malization factors and the effective coupling constants

e model-independent cross sections as functions of the partial and the total Z width
e model-independent cross sections, based on an S-matrix inspired ansatz

ZFITTER 4.5 contains a complete O(a) electroweak treatment using the DIZET 4 weak library,
including:

soft photon exponentiation

higher order QED corrections for initial-state radiation

complete m; dependent O{a) terms

leading O(a®m¢) terms

¢ complete O(aag) terms plus leading parts in O(aasm?)

ZFITTER is the standard analytical program used by three LEP collaborations, including L3,
to make fits of parameters of interest to the data.

E.2 FUNPLO

The ZFITTER program calculates observables measured at LEP as functions of interesting
parameters of the underlying model. A fit has to be performed in order to determine the
best values of these parameters, i.e. those, which best reproduce the measured data. For this
purpose, fit programs like FUNPLO have been wr itten, which calculate the appropriate x2
or likelihood function for the data set used and minimize these quantities by calling the CEN
program MINUIT [47] in order to extract the best parameter values. FUNPLO takes into
account common and correlated systematic errors, effects of the beam-energy calibration of
LEP and effects of the beam-energy spread.

Fitting Function

The FUNPLO fit is performed by minimizing a x? quantity. The x? contains measurements
obtained from data in channels f at cms-energy point ¢ of year n, usually measured values
for cross sections, o(f,,n), and asymmetries (forward-backward and polarization, though the
latter is not of interest in the frame of this thesis), A(f,%,n). In the case of quarks, only the b
quark can be treated seperately. Otherwise the hadronic cross section is summed over all quark
flavours.

The fit variables form a vector & with components z;, which contain two sets: First, there are
the varia bles, which have a physical meaning within the theoretical model, for instance the mass
and width of the Z° in the SM. Second, there are the variables, which are of a more technical
nature. The are also called correction terms, because they implement common correlated errors
between several measurements used in the fit. Variables of both sets can be constrained to a
mean Z within a range §Z. o

Furthermore, “external” measurements, giving additionial constraints yx + §yk, for instance
measurements of the Y% mass ratio from collider experiments, can be taken into account in the

ZO
fit,
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After all the x? function has the following

= Yl

form:

o'(f,1,n) — o (Frism, f)] 2
5‘_7(f: 1,7, 5)

fin
[A(F 5 n) = An(f6n, 8]
+ g;ﬁ(fa"an)[ 6fi(f,z',n,5) ]

2 Z 12

2; —Z; Yr — Yth

+ a; | =2 + ) b [—__’T]
Zj: J{ 8z; ] ZI; §7r(Z)

The factors a, B, a, and b are set either to 0 or 1 to determine if the term is included in the x?
function or not, respectively.

The cross sections o’(f,%,n) and asymmetries A'(f,4,n) entering the x? contain the correc-
tion terms z mentioned above, taking th e correlated part of the total measurement errors, i.e.,
the common systematic errors, into account:

al(f7 i n) = mLum(n) : zfy,(f, n) : U(fs ) n)
A(f,i,n) = A(fin)+eh,(fin)

The correction terms  are treated as Gaussian distributed random variables with mean Z either
0 or 1 for additive or multiplicative corrections, respectively, and a 8% corresponding to the
value of the correlated error they describe. Usually, for a given channel f, the correction terms
expressing the systematic errors are identical for all /s points i of a given year n.

The correction terms z,y, refer tp the systematic errors of event selection. In the case
of fitting a cross section, an additional common systematic error arises from the luminosity
measurement, corresponding to 2Lum. This error consists of two parts, one due to the common
theoretical error in the Bhabha cross section determination, and another from the systematic e
rror in luminosity event selection.

The theoretical predictions e (f, %, 1, &) and Aw(f, i, n, &), calculated by ZFITTER, depend
of course only indirectly on i and n via the corresponding cms-energy v/3(3,n). The values of
\/5(i,n) are given by the LEP energy calibration. They in turn depend on several variables X
describing the fluctuations around the luminosity weighted mean energy of the fills belonging to
energy point i. These variables are therefore include d also in the vector . The finite spread
of the LEP beam energy of about 51 MeV [76] is included by convoluting the theoretical cross
section as a function of /3 with a normalized Gaussian of 51 MeV width around the mean
cms-energy.

The errors §5 and §A contain the uncorrelated part of the total error of each measure-
ment. The experimental errors are corrected by a factor to obtain the error as expected by the
theoretical prediction for the measurement:

sa(fyin) = do(frisn): E”é%—%‘)'
A — A? ,', "’ A ’», ,_,
i) = saon RS G
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Standard Fits
Usually, the following three types of fits are performed

e a model-independent fit to the cross section data alone, to determine the mass mz as well
as the total width T'z and the various partial widths T's of the Z°

¢ a model independent fit to the combined cross section and asymmetry data, to determine
the effective coupling constants g,y and gy

o a SM fit to the combined data set to determine the as yet unkown parameters of the SM:
m; and mpg, along with ag and mz.

These fits may or may not impose lepton universaliy or use “external” constraints.
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