-
iwmwm .
o @&.
.
wv\

. %@Wwﬂm
.

-
o

S

.
SR
L

.

.

.

.
.
.

m..,
L

@%\\
.

co

o

v

=

-
<

-

J
i

-’%:’*‘Z*?K

o

.
o

.
i m@w\w’
\m %

. o

7
i
A

.

e

SRR

.

v

o

2

.

v %\N.%

: .m«.w&

o / ﬂ.i@:
wa«v - .. . . - S o QMNMW\;M\
» , o 8l i .

i .a.\

S
o
S

«}5 % o
s
—

20

o
p—

.
o
Nmuwmm«wwm«w»ﬁ .
é@ | b \wmg
. . . y G L
o Ix - o .

St
e

.

.

\N.ﬁmw\n

o \% .

I

.
o
. S K .\F./

NE
.w«m
.

o

-
%

1

-

St

A : 7 1 i Seorar

e . .v

'z . i i : 7 T

4 Tl 7
> . - :

;

o

o
o

/

i

o

b ]
o

&.\,,v

W

o

o s..\hA:.\v
. .
i .

.
. %w\

. WN«%WNW .
o

i
v

2

, o
e L . n,.vmwu

o
o

“\m

o

o

/s

o

Ao

i

.
e
0
o
.

v
-

...
o ;mef%wmwmwm\%\ﬂ%,m%«\%w\m ,,

o

e
o m%&
o

.

o
o

.

.

o

i

-

o

.
7
.

.
.

v
-

Y

i

7
il
o

.
. . .
wm% .

m\u

. . 0 o

il
|
o \,@.

. .




LOCAL MULTIPLICITY FLUCTUATIONS
AND INTERMITTENT STRUCTURE
INSIDE JETS



LOCAL MULTIPLICITY FLUCTUATIONS
AND INTERMITTENT STRUCTURE
INSIDE JETS

Doctoral Dissertation

to obtain the degree of doctor
from the University of Nijmegen
according to the decision of the Council of Deans
to be defended in public
on Thursday, June 12, 1997,
at 1.30 pm

by

Sergei Chekanov

born in Minsk (Belarus) on June 9, 1969



LOCAL MULTIPLICITY FLUCTUATIONS
AND INTERMITTENT STRUCTURE
INSIDE JETS

Een wetenschappelijke proeve op het gebied
van de Natuurwetenschappen.

Proefschrift

ter verkrijging van de graad van doctor
aan de Katholieke Universiteit Nijmegen,
volgens besluit van het College van Decanen
in het openbaar te verdedigen
op donderdag 12 juni 1997,
des namiddags om 1.30 uur precies,

door

Sergei Chekanov

geboren op 9 juni 1969 te Minsk (Belarus)



Promotores: Prof. Dr. E. W. Kittel
Prof. Dr. V. I. Kuvshinov (Minsk, Belarus)

Manuscriptcommissie: Prof. Dr. J. -L. Meunier (Nice, France)
Dr. W. J. Metzger

This work is part of the research program of the “Stichting voor Fundamenteel Onder-
zoek der Materie (FOM)”, which is financially supported by the “Nederlandse Organisatie
voor Wetenschappelijk Onderzoek (NWO)”. The research was partly supported by the In-
ternational Soros Science Educational Program and the Fund for Fundamental Research of
the Republic of Belarus.

Chekanov, Sergei Vladimirovich

Local Multiplicity Fluctuations
and Intermittent Structure
Tnside Jets,

Thesis, Nijmegen, The Netherlands, 1997
ISBN 90-9010518-2



Acknowledgements

It 1s a pleasure to thank all those who have encouraged and supported me since the begin-
ning of this work.

Special thanks go Lo my promoter Prof. Dr. E. W. Kiitel, who laughl me an innwmerable
amount of experimental high-energy physics and who offered me an opportunity to work on
the L3 experiment. His guidance, advice and criticism on the contents and structure of this
thesis are very much appreciated.

I am grateful to my promoter Prof. Dr. V. I. Kuushinov for introducing me the topic of
multiparticle fluctuations/correlations and many discussions on the subject. He has contin-
uously guided my steps in my discovery of the world of intermittent fluctuations.

I thank Prof. Dr. J. -L. Meunier and Dr. W. J. Metzger for discussions, careful reading
of the manuscript and for their suggestions which greatly improved the readability of this
thesis.

I thank all members of the Laboratory of Theoretical Physics of the Academy of Science
of Belarus who provided me with a good atmosphere to work on this subject. My thanks
go to my colleagues and friends D. Klenitsky, S. Sakovich, S. Shatohin, A. Saprykin, R.
Shulyakovsky and V. Shaporov for theiwr friendship and a pleasant time I shared with them.
Being always special, special thanks go to A. Zagorskaya for friendship. I am indebted to
Dr. L. F. Babichev with whom I could always discuss all software problems.

I thank all members of the high-energy physics group in Nigmegen. [ greatly benefited from
discussions with A. Buytenhuijs, H. De Boeck, S. Costantini, R. Hokobyan, H. Kuijten. I
would like to thank M. van Hoek, A. van Mil, D. Mangeol, B. Petersen, M. Sanders, V.
Sokovin and E. Visser for their friendship. I thank Dr. J. Schotanus who helped me on
various matters. I thank the secretaries of the group E. Dikmans, J. Lodesteijn and M.
van Wees for their help in administrative matters. I thank A. Oosterhof for being always
available to help me. I am indebted to P. Klok and R. Bergman who taught me computing.
I thank Prof. Dr. R. T. Van de Walle, who gave me the chance to broaden my horizon at
CERN. I thank D. Bourilkov, D. Duchesneau and J. Field for useful discussions at CERN.

I would like to thank my colleagues E. Boudinov, J. Czyzewski, I. M. Dremin, E. Grinbaum-
Sarkisyan, P. Lipa, V. Nechitailo, A. Tomaradze, W. Ochs and R. Peschansk: for inspiring
discussion on the subject of multiparticle fluctuations.

I would like to thank Fls Hopman (and her family) for warm hospitality and constant
support.

My stay in Niygmegen would not have been as nice as it was if it where not for all the
friends that I made here. I would like to thank them for their warm friendship. I thank, last
but not least, my parents and my sister for their heartfelt guidance, a lot of patience and
support across the years.



LIST OF ABBREVIATIONS

AFD - anomalous fractal dimension

BE - Bose-Einstein (correlations)

BPs - bunching parameters

CERN - European Laboratory for Particle Physics

DCA - distance of closest approach

DGLAP - Dokshitzer-Gribov-Lipatov-Altarelli-Parisi (equation)
DLLA - Double Leading Log Approximation (of QCD)
ECAL - electromagnetic calorimeter (of the L3 detector)
GF - generating function

HWHM - half-width at half-maximum of Gaussian distribution
HCAL - hadron calorimeter (of the L3 detector)

LEP - Large Electron Positron Collider

LLA - Leading Logarithmic Approximation (of QCD)
ME - matrix element approach

MC - Monte Carlo

MLLA - Modified Leading Log Approximation (of QCD)
NBD - negative-binomial distribution

NEFM - normalized factorial moment

QCD - quantum chromodynamics theory

PS - parton shower approach

SIL3 - simulation program (of the L3 detector)

SMD - silicon microvertex detector (of the L3 detector)
SRCs - smallest resolvable cluster

TEC - time expansion chamber (of the L3 detector)



Contents

Introduction

Local fluctuations and their characteristics

2.1 Local multiplicity distribution and its properties . . . . . . .. ... ... ..
2.2 Normalized factorial moments and statisticalnoise . . . . . . . . .. ... ..
2.3 Bunching parameters . . . . . . ...
2.4 Guide for further reading . . . . . . . . .. ... oo

Bunching Parameter and Intermittency in High-Energy Collisions

3.1 Imtroduction . . . . . . . . . . e
3.2 The bunching parameter . . . .. .. . . .. . ...
3.3 The BPs for the negative-binomial distribution . . . . . .. ... .. .. ...
3.4 The Lévy-law approximation . . . . . . . . .. .. ... ... ... [P
3.5 Simple approximation of the high-order BPs . . . . .. ... ... ... ...
3.6 Conclusion . . . . . . . e

Multifractal Multiplicity Distribution in Bunching-Parameter Analysis

41 Introduction . . . . . . . . e
4.2 Bunching-parameter approach . . . .. ... ... o000
4.3 Recurrence relations and generating functions . . . . ... ... .. ...
4.4 Non-linear Markov process and MNBD . . . . ... ... .. ... ... ...
4.5 Application to experimental data . . . . . ... ... ..o
4.6 Conclusion . . . . v v v e e

Generalized Bunching Parameters and Local Fluctuations
51 Introduction . . . . . . . o
5.2 Poissonian noise suppression and other properties' ...............
5.2.1 The problem of Poissonian noise . . . . . . .. ... ... ... ...
5.2.2 Multifractal and monofractal behavior . . . .. ... ... ...
5283 Examples . . .. .. ...
5.2.3.1 Random-cascademodel . .. ... ... ...........
5.2.3.2 Second-order phase transition . . . . .. ... ...
5.2.3.3 Perturbative QCD cascade . . . . . . . .. ... ... ..
5.3 Experimental definitions of BPs . . . . . ... ... .. oo
53.1 Bin-averaged BPs . . . . . ... ... ..o oo
5.3.2 Generalized distance measure . . . . . . .. ... ...
5.3.2.1 Definitions of spike size . . .. ... . ... ... ... ...

[y

—
O~ ot Ot

—

16
16
18
18
20
21

23
24
25
26
30
31
33



Content

5.3.2.2 Bunching parameters . . . . . . ... .. ...

5.3.2.3 Propagation of the statistical error for generalized BPs . . .

5.4 Statistical fluctuationsand BPs . . . . . .. .. ... ... ... ... ..
5.4.1 The bin-averaged BPs . . . ... .. S
5.4.1.1 Flat phase-space distribution . . . . . ... ... ... ...

5.4.1.2 Non-flat phase-space distribution . . . ... ... ... ...

5.4.1.3 Theoretical aspect of the problem . . . . .. .. .. .. ...

5.4.2 GHP counting topology . . . . . . . . .. ... ... ... ... ...

5.5 Local fluctuations in the JETSET 74 model . . . . . ... ... ... .. ..
5.6 Conclusions . . . . . ... ...

Bin-Bin Correlation Measurement by the Bunching-Parameter Method
6.1 Introduction . .. . ... ... .. ...
6.2 Bunching correlators . . . . ... ... oL
6.3 The lowest-order bunching correlator and its behavior . . . . . . . ... . ..
6.4 Conclusions . . . . ... ... ..

Hadron production in ete~ collisions

7.1 Theoretical description of e*e™ collisions . . . . .. .. .. ... .......

7.2 Lund Monte-Carlo generator (JETSET 7.4) . .. ... ... .. .......

7.3 Description of final-state hadrons . . . . . . .. .. ... ... ... ...
7.3.1 Single-particle variables . . . . ... ... .. ... ... .. ...
7.3.2 Event-shape variables . . . . . . . ... ... ... ... ... ...

L3 Detector and data acquisition

81 TheL3 Detector . ... .. . . .. . .. . e

8.2 Data acquisition and reconstruction . . . . . . . ... ... L.
8.2.1 Triggersystem . . . . . .. .. ... ...
8.2.2 Event reconstruction . . .. .. ... ... ... ... ... ...
823 Eventsimulation . ... ... ... .. ... ... L

Charged-hadron selection

9.1 Calorimeter-based selection of hadronic events . . . . . . . . ... ... ...

9.2 Charged-particle selection . . . . . .. . ... ... ... ... ... ...
921 Cutsonfullevents ... ... ... . .. .. ... .. ... ...
9.2.2 Selection of charged tracks . . . . ... ... ... L

9.3 Inclusive distributions . . . . . . . . . . .. ...

10 Resolution

10.1 Resolution of variables with respect to the beam axis . . . . . . .. ... ..
10.2 Resolution of variables with respect to the thrust axis . . . . . ... ... ..
10.3 Resolution of the squared four-momentum difference. . . . . .. ... . ...
10.4 Determination of the smallest binsize . . . . .. ... ... ... ... ....



Contents 1ii

11 Transformation of variables 113
11.1 Motivation . . . . . . v o o e e e e e e e 113
11.2 One-dimensional cumulative variable . . . ... .. ... ... ... .. ... 114
11.3 Multi-dimensional transformation . . . . .. . . . . . ... .o 116

12 Experimental Analysis of Local Fluctuations 119
12.1 MOWVALIOL . . . . o o e e e e 119
12.2 Experimental definitions . . . . . . .. ... ..o 120
12.3 In the detector frame . . . . . . . . . . ... 123

12.3.1 Factorial-moment method . . . .. . ... ... .. ... .. ... .. 123
12.4 In the event frame . . . . . . . . . . . . 126
12.4.1 All charge combinations . . . . . . . . . ... ... 126
12.4.2 Like-charged and unlike-charged particle combination . . . . . . . .. 128
12.5 In the four-momentum difference . . . . .. .. ... ... 130
12.5.1 Generalized integral BPs . . . . . . . ... ... oo 130
12.5.2 Generalized differential BPs . . . . . .. ... ... ..o 133
12.6 DISCUSSION - .« « - o o v e e e e e e e e e e e e 133

13 Test of Analytical QCD Predictions 139
13.1 Introduction . . . . . . . . . . . e e 139
13.2 Analytical predictions . . . . . . . ... ..o 139
13.3 Experimental procedure . . . . .. . ... ... 141
134 ADALYSIS . . . o o e e 142
185 ConcluSion . . . « v v v i e e e e e e e 144

14 Summary 149

15 Samenvatting 151

Curriculum Vitae 153

List of Publications 155



Contents




1

Introduction

The main problems addressed in this thesis concern the description and interpretation of local
particle-multiplicity fluctuations observed in high-energy collision experiments. In fact, the
quest for dynamical local fluctuations is the quest for chaotic behavior in any multiparticle
system: At the simplest level, such a chaotic behavior means that particles have a tendency
to form so-called “spikes” according to some dynamical process. In high-energy physics,
spikes are seen as high-density peaks of dynamical origin in the phase-space distribution for
individual events.

Dynamical occurrence of peaks is familiar in other fields of physics, particularly in hy-
drodynamics, where peaks are observed in velocity and temperature distributions and where
the effect has been given the name “intermittency”. Another example of intermittency can
be observed near the critical point in a system undergoing a first- or second-order phase
transition.

In a high-energy experiment, an unusual bunch of particles in a single event is not yet
a signal for intermittency because such a group of particles may be formed randomly, even
without any dynamical reason. Indeed, from probability theory, we know that for a random
distribution of particles in phase space, the probability P,(6) to find n particles in a phase-
space cell of size & is non-zero but proportional to 6". For a random distribution, this
quantity is very small for large n and small §. However, if there is a dynamical reason
for the clustering, the probability of observing n particles in a small phase-space interval
can become significantly larger. This leads to a multiplicity distribution that is broader,
with large fluctuations near the average value of observed multiplicity than in the case of
no correlations. In particular, an increase of the fluctuations according to a power law
of phase-space size §, corresponds to intermittency in particle spectra [1]. This effect is
intimately linked to (multi)fractal properties of the underlying physical process. Reviews on
the present status of experimental and theoretical studies of intermittency in high-energy
physics are given in [2].

In order to reveal intermittency in high-energy experiments, it is necessary to consider a
large number of experimental events, i.e., to have a large event sample. For a given event
sample, we can qualitatively and quantitatively estimate the strength of an intermittent
signal from the characteristics of the multiplicity distribution in small phase-space intervals.

Fluctuations in multiparticle systems can be described by correlations between particles.
Positive correlations between particles produce clustering and lead to spikes. Negative cor-
relations produce anti-clustering and lead to “dips” in phase-space distributions for single

1



2 Introduction

experimental events. In fact, the concepts of fluctuations and correlations are equivalent
because both descriptions have the same physical content. One can, in principle, choose ei
ther method; this choice only depends on the specific system and the actual questions unde:
study. In this thesis, we will mainly use the fluctuation approach in which one studies the
characteristics of multiplicity distributions in ever smaller phase-space intervals.

A peculiarity of this thesis is that it combines some theoretical progress in the theor;
of local fuctuation measurements with new experimental investigations using the highes
statistics obtained in the L3 experiment. This thesis, therefore, contains two main parts: ¢
theoretical and an experimental.

While the introduction to the theoretical part will be given just after this general in-
troduction, a few words about the experiment should be given already here. First of all, -
would like to mention that I had the rare opportunity to test new theoretical ideas in thi
rapidly developing field using the data on hadrons produced in e*e™ interactions - one o
the fundamental point-like processes. Since the initial state of this interaction is completel;
known, the study of such a process opens up the possibility of a precision test of the Standarc
Model incorporating our present knowledge on elementary particles and their interactions
In particular, ete™ annihilation into a quark and an antiquark is one of the most importan
experimental probes of interactions of quark and gluons - according to present knowledge
the basic building blocks of matter.

The interaction of quarks and gluons (partons) is described by the theory of quantun
chromodynamics (QCD), which exhibits two remarkable properties: “asymptotic freedom’
and “color confinement”. The first property means that at short distances, below the protor
size (~ 107!% cm), the color interaction becomes weak and quarks are almost free particles
Asymptotic freedom corresponds to large transverse momentum, when the QCD coupling
constant a, becomes small. In this case, the QCD characteristics of partons can be calculatec
as a power expansion in ¢, (perturbative calculations). Color confinement, on the othe
hand, means that, at distances comparable to or larger than the proton size, the colo
interaction becomes so strong that it confines quarks and gluons into composite particles
as pions, protons and neutrons. In this case, perturbative calculations become impossible
(non-perturbative regime of QCD).

Another property of QCD, which is strongly related to color confinement, is hadroniza
tion. In the hadronization process, quarks and gluons are converted into the hadrons tha
are actually seen in the detector. At present, the only detailed description of the hadroniza
tion process is provided by models, one of which, the string fragmentation model, will b
discussed briefly in this thesis.

There is another difficulty in forming a complete description of particles produced i
an ete” experiment. For high energies, this process is a multiparticle one, ie., at th
perturbative stage a large number of partons is involved. Hence, many variables are necessar:
for the description of the process. For this reason, an exact treatment according to Feynmas
diagrams is a very difficult task even at the perturbative stage.

The experimental study of a multiparticle system produced in an e*e™ reaction is, there
fore, very important. Because of their large information content on the dynamics involved
the investigation of multiplicity fluctuations and their interpretation is one of the most im
portant directions in such a study. Apart from the fact that it is a new area of confrontatio:
between (not complete) theory and experiment, the search, description and interpretatio:
of local fluctuations give rise to many new methods in this field of physics. For example
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the study of self-similar structure of the dynamics responsible for local fluctuations has been
started quite recently, together with the study of intermittency in high-energy experiments.
Within the framework of QCD, the self-similar structure is a natural consequence of parton
branching: In this process, each hard parton branches into two new partons, which in turn
branch into new ones, and so on, down to a final hadronization stage. This stage again gives
rise to a self-similar pattern. Such a self-similar mechanism can produce a self-similar struc-
ture of local fluctuations which becomes very transparent in fully dimensional momentum
phase space.

Recently, there have been many attempts to formulate and explain local multiplicity
fluctuations: within the framework of QCD, cascade models, quantum statistics, phase tran-
sition of a quark-gluon plasma, fractal space-time and so on [2]. For an ete™ interaction,
one can be confident that, at least on the parton level of this reaction, perturbative QCD
calculations can give a hint for an understanding of the problem. Calculations based on the
Double Leading Log Approximation (DLLA) of perturbative QCD show that the multiplic-
ity distribution of partons in ever smaller opening angles is inherently intermittent [3] (for
a review see [4]). However, the first comparison [5] of asymptotic theoretical predictions for
multiparton angular correlations with experimental results from e*e™ annihilations revealed
poor agreement. There can be a number of reasons for the observed disagreement: the data
are far away from an asymptotic energy and various approximations had to be made for the
analytical QCD calculations. Another obstacle in the way of a comparison of an observed
intermittent signal with QCD predictions is that the perturbative description is forbidden for
a very small phase-space window because of the large value of the running coupling constant
;. This leads to the breakdown of the intermittent behavior for small phase-space intervals
due to the filling-up of phase space by soft gluons. The hadronization effect, therefore, ap-
pears to be important for our understanding of the dynamical reason for intermittency at
small phase-space intervals.

Note, however, that the self-similar dynamics of perturbative QCD and hadronization
are not the only phenomena that can lead to the observed fluctuations. For example, an-
other candidate to explain intermittency is Bose-Einstein (BE) interference between identical
bosons. In this context, the study of large local fluctuations opens up an intriguing question
about the connection between (multi) fractal structures in four-momentum and ordinary
space-time.

The main goal of this thesis is to try to reveal and understand the behavior of local fluc-
tuations inside jets produced in ete™ reactions. For the first time we will use for this purpose
a recently proposed approach which can precisely and comprehensively measure these fluc-
tuations. This approach is applied to high statistics accumulated by the L3 experiment at
LEP in 1994. These measurements, therefore, may form a new basis for further experimental
tests of fluctuations in various reactions and the comparison with theoretical predictions.
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Local fluctuations and their
characteristics

The main goal of this chapter is to give a short introduction to the subject of local fluctuations
necessary for reading the main theoretical part of this thesis. We summarize definitions and
various relations used throughout this thesis.

2.1 Local multiplicity distribution and its properties

The first step to describe multiplicity fluctuations of charged particles produced in collisions
of elementary particles is to study the multiplicity distribution Py of observing N secondary
particles in an inelastic event. This distribution can be defined as follows

oN’ e
PN=—, gr = ZO'N, (21)
g1 N=0
where o7 is the total inelastic cross section and oy is the cross section for the production of
N particles in an event. Such a distribution reflects only event-to-event fluctuations since it
contains no information on the distribution of particles over phase space. The form of this
distribution is strongly influenced by charge and energy-momentum conservation.
In practice, the multiplicity distribution Py can be measured by counting the numbers
Ny of events with N particles in the full phase space A:

Ny
PN - Nev’

New =) Ny, (2.2)
N=0

where N., is the total number of experimental events. For Ne, — o0, definition (2.2)
would approach the true theoretical multiplicity distribution which is bounded by energy
conservation, i.e. Py = 0, for N > N, with N, being the maximum number of particles
possible at given energy. However, since in any experiment N,, is finite, the distribution is
also statistically truncated by a finite multiplicity Nya: (randomly) depending on Nev, i.e.,
Py =0, for N > Ngat, Nstat < Nen.

While the study of the multiplicity distribution in full phase space deals with limited
dynamical information influenced by charge and energy-momentum conservation, the inves-
tigation of the evolution of the multiplicity distribution with decreasing size of phase-space

5



6 Local fluctuations and their characteristic:

windows (bins), however, can provide us with detailed information on multihadron pro
duction without these trivial constraints. A deviation of the local multiplicity distributior
from that expected for purely independent particle production can be attributed to loca
dynamical multiplicity fluctuations.

In order to study the phase-space distribution of particles locally, i.e., in restricted phase
space intervals, it is necessary to measure the multiplicity distribution P, (6. ) of observin
n parbicles in the phase-space bin m of size 6, inside the full phase-space interval A. It
analogy with (2.2), this distribution can be defined as

Pulfn) = Yoom), (23

where N, (6,,) is the number of events with n particles in bin m.

In contrast to Py, P,(6) drops very rapidly with increasing n. As a consequence of finit:
Nev, fmax defined by P,(6,,) = 0 observed for n > npay, becomes much smaller than N,
and, for 6,,, — 0, even tends to zero (Py(ém) — 1, 6» — 0). So, for such a (local) multiplicits
distribution, the problem of finite statistics leading to the truncation of the observed P, (6,
becomes of primary importance.

The average value of multiplicity n,, in bin m is given by

(nm} = inmpn(ém)- (2.4

The next important step in studying the distribution P,(6..) is to find out how particle
fluctuate around (n.,). For this aim, one can define the moments {n) of the multiplicit;
distribution in bin m

(nd) = iln‘}npn(ém). (2.5

These characteristics of P,(6,,) contain redundant information, since they depend on (n,,)
To reduce this effect, one can define the scaled or normalized moments C, as

C, = ) (2.6

Such quantities are frequently used to compare multiplicity distributions in restricted phase
space bins for various processes or for different energies with different average multiplicities
In particular, the multiplicity distribution Py for full phase space A is said to admit asymp
totic Koba-Nielsen-Oleson scaling [1], if Cy = (N9)/(N)? is an energy independent constan
for all ¢. However, C, are rarely used for the investigation of the structure of multiplicit;
fluctuations in the small §,,, because they are contaminated by Poissonian statistical nois
(see below).

Note that the measurement of P,(é,,) in ever smaller phase-space intervals reflects onl:
reduced information on phase-space fluctuations. From a theoretical point of view, the com
plete information on the phase-space distribution of n particles is contained in the exclusivi
continuous distribution in 3-momentum phase space P,{p1,5s,...,Dn), Where §;, i = 1,..,1
represent the 3-momentum vectors needed to specify the position of each particle in a giver
phase space. If all final particles are identical, the distribution is symmetric in all variable:
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7:. Then, the observed multiplicity distribution P,(6,) in a small momentum volume &,
can be found as
Pal6m) = ()" [ Pals, - £2) [ d (27)
™ i=1
From an experimental point of view, to study Pn(f1, P2, - - - , Pn) is an extremely difficult task.
This is due to the fact that in a given event, one can onlv know the number of particles in
some minimally small bins defined by the experimental resolution. This leads naturally to the
investigation of P,(6,,) for different phase-space intervals (bins). Of course, the dimension
of 6,, should be smaller than or equal to that of the vectors p;.

2.2 Normalized factorial moments and statistical noise

The standard tool used to reveal local fluctuations of particles near the average (nn,) is
the method of normalized factorial moments (NFMs) introduced in high-energy physics by
Bialas and Peschanski [2]. The normalized factorial moment F;(6) of g-th order for bin m
is defined as

nld
Fo(bm) = _(<n%)>q’ 2l = np (g —1). .. (R — g+ 1), (2.8)
(nld) = i 8 P (6m). (2.9)

These moments have the following properties:

1) Contributions to the numerator (2.8) for a g-th order NFM come only from the events
containing n,, > g particles, i.e., the NFM acts as a filter for particle spikes.

2) If particles are distributed independently according to a Poissonian distribution, then
F,(6,) = 1. In the general case, for an independent distribution of particles in phase space,
F,(6,) = const. The value of the constant depends on event-to-event fluctuations.

In contrast to Cy, the NFMs have an important feature for the study of local fluctuations:
They are not contaminated by statistical noise. To illustrate this important property, let us

first define a theoretical particle density pn, in bin m of size 4., as
n
P = gﬁ (2.10)

where n,, is the number of particles in bin m in a single event. For a local-fluctuation analysis,
we need to consider very small bin sizes, i.e., §,, — 0. pm, therefore, is an asymptotic density,
since it can be defined in the limit of infinite multiplicity N (or n,) for a given event.

After that, we can define w(p,,) as a continuous probability density to observe a given
value of p,, in the limit Ne, — oco. This density is normalized by

/0 ” wo(pm)dpm = 1. (2.11)

Of course, the density p,, in bin m of size &, fluctuates around the average value

(o) = fi= [ pms(pm)dpm. (2.12)
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Since we are interested in the deviation of p,, from the average value fi, the next step is t
define the higher-order moments of w(p.,) as

(1) = fo= [ ptw(om)dpm. (2.12

However, in experimental studies, the multiplicity N per event is finite. In this case, th
number of particles n,, in bin m Hiuctuates around the theoretical value

T = PmOm (2.14

due to statistical noise. Accepting this assumption and the assumption that such statis
tical noise does not introduce new fluctuations, then the observed (discrete) multiplicit
distribution P,(4,,) of observing n particles in é,, can be described by the following Poisso
transformation

Pultn) = [ ) Pl o)y (2.15

Expression (2.15) represents a convolution of the statistical poissonian noise with mean p.,6,
with a true, dynamical distribution w(pm).

The next problem is how to compare model fiuctuations described by w{p,,) with th
experimental fluctuations defined by P,(6,). Substituting (2.15) into definition (2.9), on

has “ (pbi)
[‘ﬂ:/oo ) [ —p—"‘—i"——]d 2.16
Ny W Pm ) EXP\—PmOm Pm- :
(n)= | wlpm)exp( )Z;(n—q)! (
Defining n’ = n — ¢, the expression in square brackets can be rewritten as
= (Punbr)"
> (p_”)__ = (0m6m )7 exp(0mbm). (2.171
n'=0 n.
Hence, one has
(ndy=62f,  ¢=1,2,3..., (2.1
where f, are the moments defined by (2.12) and (2.13). Hence,
Fy(bm) = —j—c%. (2.1¢
I

The right-hand side of this expression represents the normalized moments given by a mod
distribution w(p.,). Hence, to study this distribution in experiments with finite N is equis
alent to measuring the NFMs F(6,).

Experimental definitions of NFMs

To study NFMs in an experiment, it is necessary to use available statistics as efficient ¢
possible, in order to obtain a stable result for local quantities in small bins. For this purpos
one divides the full phase-space volume A into M non-overlapping bins of size § = A/]
and averages of these bins. Then one can define two kinds of NFMs:

1) Vertical NFMs:

1

M

Fye(6) = fj ( m>_. (2.2
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Since these moments are normalized locally, they are sensitive only to multiparticle fluctua-
tions inside each bin, but do not depend on the form of the phase-space distribution.
2) Horizontal NFMs:
(

i) (2.21)
o '

h 1 <
0Nk

where {n) = N/M and N is the average multiplicity for full phase space. Due to the non
local normalization, this kind of NFM is sensitive to the shape of the single-particle density.
To reduce this trivial effect, a transformation of the original non-flat particle density into a
new flat density is frequently used (see Chapter 11).

Intermittency

As stated earlier, if particles are distributed independently in phase space, then F,(6) =
const. The remarkable property of the NFMs is that, in reality, the Fy(6) are functions rising
with decreasing bin size § due to dynamical correlations between particles. Experimental
data on various processes have revealed such a tendency over a wide range of energy (see
recent reviews [3]). In particular, if experimentally observed F(6) follow inverse power-law
functions of the bin size 9,

F(§) x 7%,  ¢g>0, (2.22)

we call this effect intermittency and the ¢, intermittency indices.

For finite multiplicity per event, this phenomenon reflects the peculiarity of P,(6) to
become broader with decreasing §. This is widely regarded as evidence of short-range corre-
lations exhibiting a self-similar underlying dynamics, since (2.22) satisfies the scaling property

F (A\8) = A% F(6). (2.23)

The subject of intermittency has motivated many theoretical investigations [3]. Since this
type of scaling is an inherent property of (multi)fractal objects, intermittency can be related
to (multi)fractal properties of phase-space distributions [4]. In this context, intermittency
indices define the anomalous fractal dimensions (AFDs) d, and the Rény: dimensions Dy as
follows

_ %
q

Ry

D,=D—d, (2.24)

where D is the topological dimension of the phase space under study. Note that a strict
relation between the Rényi dimensions and ¢, is valid only for a single event. Therefore,
different D, should be attributed for each event after splitting the total phase space into an
infinite number of bins, for an infinite total number of particles per event. If one averages
the measurements over many events, D, has to reflect an averaged property of the event
sample. In such a treatment, D, can be considered as a characteristic of a single phase-space
bin for many events.

For monofractal distributions, d, and D, are g-independent constants. Any deviation
of particle spectra from a monofractal distribution leads to a g-dependence of both AFDs
and Rényi dimensions. In this case one says that the distribution exhibits a multifractal
property.
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Pn(5m>'L_.ﬂ2n3

theoretical ‘‘tail”’

012 34 Dy n

Figure 2.1: A schematic representation of the bunching-parameter measurement.

2.3 Bunching parameters

From the experimental point of view, the measurement of NFMs suffers from a few importar
disadvantages. NFMs were designed to select the high-multiplicity tail of a multiplicit
distribution, since only events with n > ¢ particles can contribute to ¢-th order NFM
However, in practice, P,(6,) is truncated at some 7., which can be rather small for sma
6m. This means that the observed Fy(6) are not only a function of § and g, but also of Npay (¢
N, ). As a consequence of finite N, in the limit of § — 0, the NFMs obtained experimentall
never coincide with the true ones [5]. Hence, the normalized factorial moments are an ide:
tool to avoid the bias caused by finite particle statistics (N # oo), but they suffer fror
another kind of statistical bias - finiteness of the number of experimental events (N,, # oo

Secondly, the NFMs are able to extract dynamical information only on spikes, but th
equally important information on dips is lost. This is an essential shortcoming for th
investigation of reactions with a high density of secondary particles. For example, in nuclea
collisions, where the multiplicity per event is very large, unusually large dips in the densit
distribution of individual events can be explained as dynamical effects as well.

The problem of “dips” can be solved with the help of G-moments [6] which take int
account both “spike” events and events with large gaps. However, there is no clear link
this tool with the multiplicity distribution P,(6,,) itself.

Thirdly, for an accurate measurement of the NFM of order ¢, one needs to know th
n > g particle resolution. If only g-particle resolution is used, the calculation of the gth
order NFM is affected by the systematic bias due to contributions from the tail of th
multiplicity distribution measured with insufficient resolution.

To avoid these problems, one can measure the local fluctuations by means of so-calle
bunching parameters (BPs) [7-10] which are subject of the thesis. For a single phase-spac
bin, the BPs are defined as

q Pq(6M)Pq—2(5m)
-1 PZ (6m)

Ty (6rm) = ; g>1. (2.25

A complete list of properties of the BPs is given in the introduction of Chapter 5. Here, w
only note that the measurement of local fluctuations by means of BPs merely involves know!
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edge on the behavior of P,(6,,) near multiplicity ¢ = n — 1 without contributions from the
tail of this distribution (see Fig. 2.1). This ultimately leads to a significant reduction of the
statistical and systematical bias arising in the case of the normalized-factorial-moment mea-
surements. Besides, the definition of the second-order BP n,(6) involves Fo(6,,) containing
information on bins with zero content not included in the definition of NFMs.

It was found [10] that, as in the case of NFMs, 7,(6n) = const for an independent
distribution of particles in phase space. As an example, for a Poisson distribution of particles
in bin m, one obtains 7,(6,,) = 1 for all ¢ and &,.

The most important property of the BPs is that these quantities are very sensitive to the
content of local fluctuations: It was shown that very different samples may lead to rather
similar power-like behavior of the NFMs, while the BPs show the different trend [10, 11].
More properties of BPs will be given in the chapters following.

2.4 Guide for further reading

In the following four chapters, we shall give a reproduction of four selected papers dealing
with the local fluctuation analysis and published during the years 1994-1997. A complete
list of publications is given at the end of this thesis.

The papers are arranged in logical rather than in chronological order. The reproductions
contain minor editorial alterations in order to keep close to the standard of abbreviations
and definitions used throughout this thesis. It should be remarked that each chapter is to a
great extent self-contained and can be read separately.

For convenience of reading of these papers, we here sketch the major theoretical results
concerning the bunching-parameter approach:

e Chapter 3

This chapter contains the first article dealing with BPs in high-energy physics. We
introduce these parameters following an analogy with quantum optics [13], where the
BPs are used for the investigation of the radiation photon field in the theory of contin-
uous quantum measurement. We derive a general form of the generating function (GF)
for multiplicity distributions with §-independent BPs and study the case of a negative-
binomial distribution (NBD). Using Lévy-law approximation, we consider the possible
behavior of BPs for various high-energy processes. In addition, we illustrate that

Tg2(0) = 15(8),  m(6) oc 67, (2.26)

for r > 0 is a good approximation for a multifractal behavior of AFDs in various
reactions. Such an assumption leads to the following linear form of the AFDs

dy=dy(1— 1)+ dzr%. (2.27)

In this context, the parameter r can be considered as a degree of multifractality (r =0
corresponds to a monofractal behavior).
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e Chapter 4

An essential feature of BPs is that they have a direct link to the form of P,(§) itsel
Inspired by this property, we derive a general form of P,(§) leading to both mono- an
multifractal behavior. At the simplest phenomenological level, such a distribution ca
have only three free parameters: a, b and the degree of multifractality r. The first tw
parameters are 6-dependent functions. One can write

P(6) = Pu(a,b, 7). (2.26

Such a general multiplicity distribution can lead to the following cases:
1) a #£0,b=r =0, a Poisson distribution.

2) b#0, a =r =0, a logarithmic distribution

3) a=b+#0,r =0, a geometric distribution.

4)a#0,0#£0,7 = 0, a negative binomial distribution.

The fist three distributions do not lead to any fractal behavior. In the limit of § — |
the last case can lead to a monofractal behavior. However, if r # 0, the distributic
(2.28) can lead to the multifractal behavior with the AFDs of the form (2.27).

We also propose a new definition of generating functions which are convenient for t!
study of BPs. Using this mathematical tool, we derive a general form of the generatir
function for the multifractal multiplicity distributions.

Chapter 5

This chapter contains a paper most important for the experimental investigation
local multiplicity fluctuations by means of the bunching-parameter method. Here, v
show that, in the limit of 6 — 0, the BPs suppress the statistical noise as do the NFM
(see (2.19)). We summarize the main properties of BPs and propose definitions of tl
BPs involving the bin-splitting method (in analogy with the definitions of NFMs (2.2
and (2.21)), as well as definitions making use of the interparticle distance-measu
technique. Special attention is paid to an exact expression for the statistical error fi
the latter definition of BPs.

Using theoretical and numerical investigations, we illustrate that for purely statistic
phase-space fluctuations, the BPs are é-independent functions at small 6. We have al
show that the BPs provide tools for a better understanding of the differences betwes
samples with approximately the same power-like behavior of the NFMs.

Chapter 6

When one measures the local quantities inside restricted phase-space regions by mea
of the bin-splitting technique, one loses important information on fluctuations. Mo
details on the local fluctuations can be obtained from the multivariate probability d
tribution. Due to the very complex structure of this quantity, however, one usual
resorts to the study of a bivariate moment containing the information on bin-bin cc
relations. In this paper, the bunching-parameter method is, therefore, extended
measure the bin-bin correlations.
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Abstract

We introduce the parameter of bunching for an analysis of the intermittent structure of
multihadron production in high-energy collisions following an analogy with photon counting
in quantum optics. A power-law singularity is shown to exist for second-order bunching
parameters in small phase-space intervals for the case of a monofractal structure of the
multiplicity distribution and a similar form for the high-order parameters for the case of
multifractality. The approximation of the high-order bunching parameters by the second-
order provides a good description of the anomalous fractal dimensions for a number of
experimental data with multifractal behavior.

18
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3.1 Introduction

The idea of applying stochastic methods developed to study photon counting statistics i
quantum optics to particle production processes has been used for a long time [1]. A
present, a systematic and careful investigation of multihadron production by the applicatior
of methods borrowed from quantum optics is very useful because there is a large analog;
between these fields of physics. For instance, the interpretation of multiplicity distribution:
in terms of hadronic field states by analogy to photon counting [2] and the study of squeezec
gluon states [3] seem to be important directions for theoretical research. The problem o
damping of the statistical noise and the concept of factorial-moment analysis to study mul
tihadron production [4] have long been known in quantum optics [5]. Correlators in term:
of moments [6] have an analogous form in quantum optics as well {7].

The purpose of the present paper is to extend some methods of continuous quantum mea
surement in quantum optics to high-energy physics. We introduce the bunching paramete:
for the analysis of fractal structure of multihadron production. For intermittent structure o
the multiplicity distribution, a non-trivial behavior of the bunching parameters is obtainec
for small phase-space intervals.

3.2 The bunching parameter

In the theory of continuous quantum measurement, the bunching parameter 7,(6t) of orde
g for an one-mode photon field can be expressed in terms of the probability P,(ét) to have
n photons in the time interval 6t as follows [8]

q P, (6t)P,_5(6t)
g—1 P2,(6t)

q(6t) = g>1. (3.1
This parameter determines how the probability to detect ¢ photons in 6t changes relativel:
to the probability to detect ¢ — 1 photons in the same time interval. If the source of ligh
is completely coherent, then 7,(6¢t) = 1. The corresponding multiplicity distribution i
a Poissonian one. A radiation field is said to be statistically anti-bunched in order ¢ i
(6t} < 1. When #,(6t) > 1, then it is said to be bunched in 6. For a wide class of states
the bunching parameters are independent of the time interval [8].

By analogy with (3.1), let us consider the bunching parameters (BPs) 7,(6) for th
multiplicity distributions of secondary particles produced in high-energy interactions

g Py(8)Py-2(6)

, > 1, 3.2
=1 P ‘ (

ng(6) =

where P,(6) is the probability to have n particles in the phase-space interval ¢ defined i
rapidity, azimuthal angle, transverse momentum or a (multi-dimensional) combination o
these variables.
There is a large class of distributions which has é-independent BPs. By applying formul:
(3.2), any multiplicity distribution can be expressed as
n n
() I ™, n>1, (3.3

m=2

Pr(8) = Fo(6)

n!
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where A(6) = P1(6)/Py(6). If ny(6) is independent of 6, one gets the following general form
of the generating function for such a distribution,

Glz.6) = 3 2 Po(6) = G(z = 0,6)Q (2A(6)), (3.4)

n=0

where G(z = 0,8) = Py(8), the Q(2A(8)) is some analytic function of the auxiliary variable z
multiplied by a function A(6) under the condition Q(A(6)) = 1/G(z = 0,6). It is easy to see
that condition (3.4) is fulfilled for well-known distributions, such as the Poissonian, binomial
and geometric ones. The case of a negative-binomial distribution will be discussed later.
Let us remind that the observed behavior of the normalized factorial moments (NFMs)

x 5%l 550, g>2 (3.5)

is a straightforward manifestation of non-statistical intermittent fluctuations in the distribu-
tion of secondary particles produced in high-energy interactions (4,9, 10]. In (3.5), n denotes
the number of particles in 6, nl9 = n(n—1)...(n—g+1), (...) is the average over all events.
The right side of (3.5) represents the definition of the intermittent behavior characterized
by an anomalous fractal dimensions (AFDs) d, depending on the rank ¢ of the NFMs for
multifractal behavior and d, = const for monofractality.

Now we shall prove the following statement: an inverse-power é-dependence of the second-
order BP and é-independence of high-order BPs are necessary and sufficient conditions for
the monofractal behavior of AFDs. An inverse-power §-dependence of all BPs is necessary
and sufficient for multifractality.

Sketch of a proof. By applying (3.3), for the NFMs in terms of BPs, we have

Py(6) & nldl n

F6) = Tz A6 TL fm @, (36)
(1) = RO + Bi(6) S o TL o™ (37

Assuming the approximate proportionality of (n) and 6 at small 6 and the condition Py(6) —
1, for 6 — 0, we have the following approximate expression for the small interval 1)

q

Fy(8) ~ ]____[ [nm(é)]qﬂ—m : (3-8)

m=2

In the case of a power-law dependence of NFMs (3.5) with monofractal behavior of AFDs
dg = dy = const, we must require the following properties of BPs

m6) x 67%, 0<dy<1, (3.9)

Ns(6) =~ const, s> 2. (3.10)

From expression (3.8), one can conclude that for multifractality a power-law singularity of
the BPs of the order ¢ = s > 2 is necessary. Using (3.8), it is easy to show the sufficient
conditions of an inverse power-law behavior of BPs for both the monofractal and multifractal
cases.
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Now we have the possibility to write down the general form of the generating function
G™%(z, 6) for the multiplicity distribution with monofractal behavior of AFDs

G™"(2,6) = G™(2 = 0,8) (1 + 7 (6)Q™ (A(S)m(6)2)) , (3.11)

where 7,(6) is defined by (3.9), Q™™ is some analytic function with variable A(8)n,(6)z with
the following conditions

Q™" (M(8)m(6)z =0) =0, (3.12)
1
@™ (Em(0)z = XOm(E) =m0 (G~ 1) (313
The general formal form of the generating function for multifractal behavior can be obtained
from (3.3).

3.3 The BPs for the negative-binomial distribution

Since a few years, many high-energy multiparticle data at various energies have been success-
fully fitted by the negative-binomial distribution (NBD) [11] with the generating function

—k(8y)
GNBD(§y, z) = (1 + —(%i—)(l - z)) ) (3.14)
where (n(6y)) is the average multiplicity of final hadrons in the restricted rapidity (or pseu-
dorapidity) interval éy and k(8y) is a positive parameter. If k(6y) does not depend on by.
we do not have any fractal type of behavior for the NFMs of this distribution. Indeed, in
this case one can rewrite the generating function in the form (3.4).

In the general case, the BPs of a NBD are given by the expression

7P (6y) = %}% ¢=2... . (3.15)

Let us assume that k(6y) oc 6y®. In this case, n)EP(8y) o« 6y~% and nNBP(6y) =~ const.
for s > 2 at small dy. According to Sect. 3.2, one gets the monofractal type of behavior
for AFDs, i.e., d; = dy = const.. Such a monofractal behavior has already been discussed
in [12]. This analysis only illustrates the simplicity of our approach to intermittency in terms
of BPs.

3.4 The Lévy-law approximation

In this section, we shall show the possible behavior of the bunching parameters in rapidity
bins for different high-energy collisions.

At the beginning, let us note that for an investigation of intermittency in rapidity bins
&y one usually averages [4] the factorial moments over all bins of equal width §y normalizing

to the overall average number per bin (n) = M  (n,)/M, where (n,) is the average
multiplicity in the mth bin, M =Y/6y, YV being the full rapidity interval,

=i

) ¢ by~laD), (3.16)
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where ¢, is some constant. Similarly, one can introduce the BPs by averaging the probability
P™(6y) for the mth bin over all M bins,

g Py(8y)Py—a(by)
g-1 FLy(6y)

g(0y) = g>1, (3.17)

where P,(6y) = ﬁ >M_ P™(5y).
Following the same procedure as in Sect. 3.2, we can see that the approximate expression
for the NFMs (3.16) in terms of the BPs (3.17) has the same form for §y — 0 as (3.8), if we

substitute £, (8y) for F,(6) and 7;(6y) for n,(6). Then, we have

3 Fy(6y)F,a(5

(oY) = Bysy),  m(y) = L oWEea(®y)
(Fs—l(éy)>

where £1(6y) = 1 and s > 2. Using (3.16) and (3.18), we obtain the following expression for
the BPs

(3.18)

CsCs—2

T (8y) = caby~", 7s(0y) =~ C2—6y‘ﬁ’,' (3.19)
s—1
where C; =1 and
Bs = do(s— 1) +ds—z(s — 3) — 2d,_1(s — 2), 5> 2. (3.21)

Note that we can obtain (3.21) using the approximation (rld) ~ g!P*(6y) for n) <1(a
similar analysis of factorial moments in terms of the probabilities for one bin can be found
in [13]).

For an analysis of the parameters f3,, we shall use the Lévy-law approximation for the
AFDs , which has been introduced to describe random cascading models,

__ b ¢ —gq
T —2g-1"

(3.22)

with the Lévy index p. The Lévy index is known as a degree of multifractality and allows
a natural interpolation between the monofractal case (u = 0} and multifractality (¢ > 0).
The case u = 2 (d, = qd/2) corresponds to the log-normal approximation. Substituting
(3.22) into (3.21), one gets the following expression

_ ¢t + (g2 —2(¢—-1)"
= e .

In the limit of monofractal behavior of the AFDs (i = 0), we have f; = 0 for s > 2, i.e., the
high-order BPs are independent of 6y. Then, the values of 7,(6y) are completely determined
by the coefficients ¢,. Note, that in the case of multifractality, the values of E, are positive
for all ¢ and the BPs increase indefinitely for éy — 0. As we see, in the case of multifractal
behavior, one can speak of a strong high-order bunching of particles in éy. For the log-normal
approximation (u = 2), we obtain E, = 1, 8, = ds, i.e. all bunching parameters have the
same power-law behavior 7, o éy~%.

Thus, there are two important limiting cases which correspond to monofractality and
log-normal approximation for multifractality :

B, =dE, E, (3.23)

©w=0, Ta(8y) o< by~%, 7]s = const., for all s> 3, (3.24)
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©=2, Tq(0y) by~%, for all q>2. (3.25

In actual physical situations, the Lévy index p is different for different reactions [10,14-16
and, strictly speaking, it is not equal to an integer value:

(i) Nucleus-nucleus reaction S-AgBr: 'I'he Lévy index is 0 < p < .55 (in fact, it is almos
a monofractal system) [14]. The value of E, is almost zero and the BPs approximately are 6y
independent. This belavior is typical for the intermittency at second-order phase transitio:
and thus has been advocated [17] in favor of the formation of a quark-gluon plasma.

(ii) ete™, pA, AA, hh reactions with p ~ 1.3 — 1.6 [16] corresponding to the paramete
0 < E; < 0.7. In the case of up deep inelastic scattering, the Lévy index is largest, u -
2.6 — 3.7 [14,15] and 1 < E, < 5. In these cases, we have a power-law singularity in th
behavior of the BPs.

3.5 Simple approximation of the high-order BPs

Using only one free parameter p, the Lévy-law approximation allows a simple descriptio:
of multifractal properties of random-cascade models. However, using the interpretation c
intermittency via the BPs, we can make some approximation of high-order BPs in orde
to obtain a more simple linear expression for the AFDs, maintaining the number of fre
parameters.

Let us make the assumption that the high-order BPs can be expressed in terms of th
second-order BP and a constant r > 0 as

ns(8y) = m(éy),  s>2 (3.26
with
Ma(by) o< by~ %. (3.27

For the given case, the multiplicity distribution with multifractal behavior has the followin
form (n > 1)

_ (s Lt (e 481
P, (5y) = Py(8y) ,(L'y) (72 ()R (3.2

where X(8y) = P,(6y)/Po(8y) and 833 = 1, 62, = 0 for n # 2. Using (3.18), (3.26-3.27), th
AFDs of such a distribution are given by the linear expression

d, = dy(1 - 1)+ dgr%. (3.2

This linear approximation, in our opinion, is very interesting, because it allows interpolatio
between the monofractal case (r = 0) and the log-normal approximation (r = 1) as doe
the Lévy-law approximation (3.22). The results of fits of some experimental data [18-20] &
the expression (3.29) are presented in Fig. 3.1. This analysis gives good agreement with tt
experimental data. Thus, the approximation (3.26) of high-order BPs by the second-ords
is valid for such reactions.
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Figure 3.1: Ezperimental data for the behavior of AFDs [18-20]. Continuous lines show fits
using (3.29).

3.6 Conclusion

We have introduced the bunching parameters for the analysis of multiparticle production
in high-energy physics by analogy with the theory of continuous quantum measurement for
one-mode photon fields. It is shown that an inverse power-law singularity of the second-order
BP leads to monofractal behavior of the AFDs at small rapidity intervals if all high-order
BPs are independent of phase-space intervals. Using such a dependence of the second-order
BP on the phase-space interval size, we have found a general form of the generating function
with monofractality. For multifractality, an inverse power-law singularity for all order BPs
is necessary and sufficient.

Using the experimental data, we can conclude that, for éy — 0, some reactions indeed
show a strong bunching of particles in all orders. We have shown that the investigated
experimental behavior of the AFDs can be understood as a simple approximation of the
high-order BPs in terms of the second order. We believe this to be an important conclusion
as it leads to a description of the multifractal multiplicity distribution with a minimum
number of free parameters.

The use of BPs is interesting because it gives a general answer to the problem of finding a
multiplicity distribution leading to intermittency. This method is also interesting since it may
provide & link between theory of continuous quantum measurement and the investigations
of multifractal structure of multiplicity distributions in particle collisions at high energies.
Furthermore, it grants the possibility to analyze the intermittency phenomenon in quantum
optics. ' o
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Abstract

A new multiplicity distribution with multifractal properties is proposed which can be
used in high-energy physics and quantum optics. It may be considered as a generalization
of the negative-binomial distribution. We derive the structure of the generating function for
this distribution and discuss its properties.
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4.1 Introduction

Multifractal analysis in high-energy physics and quantum optics has received great interest i
recent years due to the possibility to obtain quantitative and qualitative results concernin
multiparticle production in different processes. In addition, the analysis is becoming a
important theoretical tool to discriminate between multiparticle production models.

The fact that the normalized factorial moments (NFMs)

oo (nn=1)...(n—g+1))

: o (4.

(n is the number of particles in a restricted phase-space interval 6, (...) is the average ov
all events) depend on the size of the phase-space interval (bin) as F, ~ §~%@ (intermittenc
phenomenon) is a manifestation of non-statistical fluctuations in the multiplicity distributio
of secondary particles produced in high-energy physics [1]. The multifractal behavior, whe
the anomalous fractal dimension d, = ¢4/(¢ — 1) depends on ¢, is particularly importar
because such a behavior is typical for the vast majority of experiments. It is more pronounce
in two- and three-dimensional phase-space domains. This behavior has also been found i
photon counting experiments on laser fluctuations near threshold, where § is the countin
time interval T [2]. Thus, the problem of multifractality is a common one, applying both t
high-energy physics and quantum optics.

In this paper, we shall discuss the theoretical aspect of the problem in the context of hig}
energy physics by means of bunching parameters (BPs) [3]. We have introduced this quantit
in order to get a simple and efficient method for the analysis of complicated multiplicit
distributions in restricted phase-space regions. Our consideration can be used in any field «
research, where local dynamical fluctuations are a subject of investigation.

As is well known, the negative-binomial distribution has become the focus of interes
in view of its applicability to the study of multiparticle production in high-energy physic
However, it has been noted that this distribution has no multifractal properties for sma
phase-space intervals [3,4].

The UAS5 collaboration has observed that the negative-binomial distribution fails to giv
a good fit to the data at a center of mass energy of 900 GeV [5] in full phase space due t
a shoulder structure. This structure is explained by the superposition of 2-jet events of lo
multiplicities and 3-jet and 4-jet events yielding much larger multiplicities. Moreover, th
study of charged-particle multiplicity distributions in restricted rapidity intervals conform
that the negative-binomial distribution is not sufficient to describe the data in Z° hadron:
decays due to the shoulder structure of the experimental distributions [6,7]. For exampls
in [7] it was shown that the negative-binomial distribution does not describe the experiment:
data, either in restricted rapidity intervals or in full phase space.

The conclusion must be that the negative-binomial distribution is not sufficient to d
scribe the experimental distributions, both for restricted rapidity windows and for full phas
space in definite experimental situations and, hence, true multiplicity distribution must b
more complicated.

In this paper we propose a new multiplicity distribution which has multifractal prope
ties for small phase-space intervals and is very similar to the conventional negative-binomi:
form for large phase-space intervals. We shall analyze this distribution in terms of BPs an
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bunching moments. As we shall see, such an investigation is simpler than the analysis of mul-
tiplicity distributions with the help of NFMs. Moreover, recurrence relations for probabilities
can lead to a non-traditional form of generating functions, both for well-known distributions
(Poisson, geometric, logarithmic, positive-binomial, negative-binomial distributions) and the
multiplicity distribution with multifractal properties for small phase-space intervals.

In Sect. 4.2, we give a short introduction to the bunching parameter method. In Sect. 4.3,
we consider the general form of a multifractal negative-binomial-like distribution and derive
its generating function. In Sect. 4.4, the properties of Markov branching leading to this
multiplicity distribution are considered. In Sect. 4.5, we discuss a particular form of such a
generalization of the negative-binomial distribution and illustrate its multifractal properties.
In Sect. 4.6, we present the conclusions.

4.2 Bunching-parameter approach

Normalized factorial moments have become an important and popular topic of experimental
and theoretical investigations in high-energy physics and quantum optics. Measuring the
NFMs is equivalent to measuring the multiplicity distribution. On the other hand, recently
another simple mathematical tool to investigate the behavior of the multiplicity distribution
in different phase-space intervals has been proposed. In order to reveal “spike” structure
of events, one can study the behavior of probabilities themselves by means of BPs. The
definition of the BPs is given by the formula [3]

q PqPq—Z
Mg=—=—py— 422 4.2)
q qg— 1 qu_l (
P, being the probability of finding ¢ particles inside the limited phase-space interval § 1. For
example, n, = 1 for a Poisson distribution. If the size of the phase-space interval is small
and the average number of particles in this interval is approximately proportional to 4, then
the following approximate relation between the NFMs and the BPs holds [3]

9 .
Fy = [ (4.3)
i=2

For intermittent fluctuations, one expects 7, oc 6% (ds is the second-order anomalous
fractal dimension), while the high-order BPs may have a different dependence on 6. In [3]
it has been shown that for high-energy collisions with multifractal behavior of the NFMs,
dg = d(1 — 1) + dyrq/2, power-like behavior of the BPs, 7, o 6%, m, =n5, s > 2 is valid.
The positive parameter 7 can be interpreted as a degree of multifractality (for r = 0 we have
exact monofractal behavior). Thus, the problem of a multifractal multiplicity distribution
with inverse-power é-dependence of all BPs is the central issue.

As discussed in [3], the use of BPs can give a general answer to the problem of finding
a multiplicity distribution leading to the observed intermittency. Indeed, any multiplicity
distribution can be expressed as

P[) Pl n n .
Po=2 (L) I 44
n! <Po) I__I2nz ( )

1n [3] we introduced the BPs by averaging the probabilities over all bins of equal width. Here we consider
only one fixed bin. We do this only for the sake of simplicity and it is not a physical restriction.
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On the contrary, a multiplicity distribution can not be expressed in terms of its factori:
moments if this distribution is not truncated.

4.3 Recurrence relations and generating functions

A mecessary and sufficient condition for a multiplicity distribution P, to be of ncgativ
binomial type (PY) is the recurrence relation (8]
PN a+b(n—1)

=Ch; = ——mMm@88=, n>1, 4.!
PN, n n o (

where a, b are positive constants for fixed § (b < 1). Note, that throughout this paper w
shall treat the probabilities and the parameters C,_;, a, b as continuous functions of th
phase-space interval 6. If a # 0, b # 0, iterations of (4.5) with the normalization conditio

oo PY =1 give the negative-binomial distribution. In the limit b — 0, the recurrenc
relation gives a Poisson distribution. The case ¢ — 0 at constant b shows that the negativ
binomial distribution reduces to a logarithmic distribution. For a = b we get a geometr
multiplicity distribution. For @ > 0, & < 0 and a/b integer we have a positive-binomi:
distribution. Using the definition of the BPs, expression (4.5) and the theorem of [3],
is easy to see that none of these distributions leads to multifractality, for any assumptior
chosen for the behavior of a, b in small phase-space bins.

Thus, it is important to find a multifractal generalization of the commonly used mult
plicity distributions. From a physical point of view, to find such a multiplicity distributic
means to understand the reasons of intermittency with multifractal behavior of the anom:
lous fractal dimension. However, the level of theoretical understanding of this phenomeno
is still insufficient (hadronization problem) and is quite different for various types of collisic
processes [1]. Nevertheless, from a mathematical point of view, we can propose a distribusio
that has a priori multifractal behavior.

There is a natural way to include BPs with power-law behavior into a new recurrenc
relation, in order to obtain a modification of (4.5) which can generate the multifractal mu
tiplicity distribution in the limit of small 6. To see this, let us rewrite the definition (4.2)

BPs as follows

Pq :'rlq_lpq_l (4f
P g1 ! q P 2 .
As mentioned in Sect. 4.2, for a multifractal behavior with r = 1, all BPs have the sam

power-law behavior, i.e, in the simplest case, we can write

-

Ng=gox 6P (4.7

The ( is a positive constant and is taken as a measure of the strength of the multifract:
effect. After that, by combining (4.5) and (4.6), we assume the following recurrence relatic

P, +b{n—1 —-1P,_
_a (n )+gn 1

4.8
P, n n Pn_o (

where n > 1. Here, in fact, g can be either a new parameter or some combination of tt
parameters a and b (the latter case will be discussed below). Equation (4.8) is a sufficier
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condition to construct a distribution which for a large phase-space interval (g < 1) is very
similar to the multiplicity distribution (4.5) and has multifractal behavior for a small phase-
space interval (g is not small).

The expression (4.8) can be rewritten as

l

Q

P .
=Cpoy

n—1

n
P n Z
n—1 =0

(a+bn—101-1)) (4.9)

3 |

with the sum equal to

bin—ng) k(1 —g®)+n+(g" - 1)(1 —g)7Y], forg+#1, (4.10)
b(k +0.5(n — 1)), forg=1, ’
where k™! = b/a was called aggregation coefficient by Giovannini and Van Hove [8] for the
usual negative-binomial distribution. For a compact description of the recurrence relation,
we shall use an expression for C,_; in the form of sum (4.9). Using (4.8) and (4.9), we get
for the BPs
_ 1+kYqg—-1)

S g 1+ kg~ 1-2))
We have multifractal behavior because the second term in (4.11) has power-law behavior
and, for small enough 6, will be the leading one. The multiplicity distribution corresponding
to (4.8), (4.9) is

Tlg +g. (4.11)

n-1 s

P, = % I3 da+b(s=1). (4.12)

‘520 1=0
Throughout this paper, we consider the probability P =1 — ¥.22, P, to have no particles
in 6 as a normalization constant. Since in the limit ¢ — 0 expression (4.12) reduces to a
negative-binomial distribution, we shall call this distribution a multifractal negative-binomial
distribution (MNBD) and denote it as P¥.

Let us note that we can analyze a multiplicity distribution written in terms of the recur-
rence relations by means of the generating function for P, /P,_;.

Let us define

s " P,
= . 4.1
Then, the BPs are given by
G@ .
(2) -0 (4.14)

For example, the generating function of the negative-binomial distribution has the following

form
GN(z)=(a—b)(e—1)+bze (4.15)

For the Poisson distribution
GP(2) = a(e* —1). (4.16)
In terms of the generating function, the recurrence relation (4.8) can be rewritten in the
form of the following differential equation
dGM(z) _ dGV(2)
dz =~ dz

+9GM(2) (4.17)
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with the initial condition (see (4.13))
GM(z=0)=G"(z=0)=0. (4.18
Using (4.17), we can get the generating function in integral form as follows

GM(z) = GV (2) + i g / GV (2)d*. (4.1¢

Using (4.15) and condition (4.18), one obtains the analytical solution of the equation (4.1

: b a(l—g)—b
GMZ = € Zz - — —. 9z _ 2 .
(2) N <a+b 1—g> e L (4.2

for g # 1 and, using (4.9) and (4.13), GM(z) = e*(az + b2%/2) for g = 1. Further on we sha
not consider the trivial case, when g = 1.

Now we mention two limiting cases:

a) In the simplest Poisson case, when b = 0, we have the following multifractal Poisso
distribution with the generating function in the form

a

GMP(z) = — (e —e*9). (4.21
Then, from (4.11) and (4.12), one has
a? ol s ’
PYP=R—=T1I> 4" (4.2
n s=0 [=0
nMP = Ly g. (4.2:
TOTLd

Here a is not an average multiplicity as would be in the case of a usual Poisson distributio
b) The limit a — 0 is also interesting since it leads to the multifractal logarithm
distribution

be? 1 b
GML(z) = (z - ——) + e?* . 4.2
(=) l-g l-g (1-9) (
From (4.11) and (4.12) one gets
ML bn—l n—2 s .
Pl =P " > d(s—1+1), (4.2!
o os=01=0
—1
mt = — 1 +9, (4.2

Sioga—1-2)
where ¢ > 2 and P is a normalization constant (for the logarithmic multiplicity distributic
P, = 0). We see that these multiplicity distributions have the same power-law behavi
of the high-order BPs for small §. In this sense, the distributions are equivalent for sme
phase-space intervals.
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It is important to emphasize here that an infinite sequence of probabilities P, can be
normalized if it converges, i.e if P, — 0 for n — co. This is possible if, for every ¢ greater
than some number (, we have the following condition

P4
: 1 4.27
< (4.27)

(ratio test). For the MNBD (4.9) this is possible if
b
0<g<l, O<ﬁ<1. (428)

For any other domain of g, we have to truncate the MNBD, putting PM =0 for 1 > (.

One can understand, from the definition (4.2}, that BPs are sensitive to the local multi-
plicity fluctuations (or to the behavior of the multiplicity distribution in small phase-space
intervals) near the multiplicity ¢ = n— 1. In order to study the total contribution from mul-
tiplicity fluctuations for large values of n, it is appropriate to introduce “bunching moments”
b, as follows

ad s P,

b = G(q) Z) |z=1= > bl
! (&) = s;(s—q)!Ps_l
following an analogy with factorial moments. So, the knowledge of the generating function
gives us a possibility to calculate both the BPs and the bunching moments. The higher the
rank of the b,, the more sensitive they are to the “tail” of the multiplicity distribution for

large n. As normalized bunching moments By we define

(4.29)

b G |,
B =2t=—+". 4.30
q9 bl G(l) i:=1 ( )
Then, for the Poisson distribution (4.16), we have
P _ —
B, =1, g=1...00. (4.31)
For the negative-binomial distribution (4.15), one obtains a very simple expression,
k+gq
N
= — =1...00. 4.32
« k1 1 *© (432)

This means that the negative-binomial distribution is broader than the Poisson distribution

(BY > Bf). For the geometric multiplicity distribution (k = 1), the normalized bunching

moments are larger than those of the negative-binomial distribution with £ > 1. In this

case, we can say that the geometric distribution is broader than the negative-binomial one.

For the positive-binomial multiplicity distribution, where & < 0 and integer, the normalized

bunching moments are smaller than unity, because this distribution is narrower than Poisson.
For MNBD (4.20) one obtains

g Blg—1)(g%e™™ 1) + g%’ —glg+1) +q

, 4.33
7 k(g —1)(ges ' — 1)+ ges~l —2g+1 ( )

g=1...00. For a small g (or for a large phase-space interval), the MNBD slightly differs
from the negative-binomial distribution. For g — 0 (Bé” — Bév ), the MNBD tends to the
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negative-binomial distribution. The situation drastically changes when a large g (or th
small 6) is considered. The B} becomes larger than BY, since the MNBD becomes broade
than the negative-binomial distribution for all k. Bear in mind of this property; It is no
surprising that for this region of phase space the MNBD reflects the increase of the loca
intermittent fluctuations and can lead to a multifractal behavior of the anomalous fracta
dimension.

The generaiing [lunction @ = Y72, 2"F, commonly considered in probability theor;
and its applications can also be used in the multifractal generalization [9]. To analyze thi
generating function, it is appropriate to use usual NFMs or normalized cumulant moments
In fact, these two "languages”, using the BPs and the NFMs for the study of multiplicit;
distributions in terms of the generating functions G and @, are equivalent. Nevertheless
the analysis of multiplicity distributions at small § with the help of BPs and the bunchin;
moments is simpler, because an analytical form of the NFMs is too complicated for a numbe
of multiplicity distributions. For example, to find a simple form of the generating functio:
for multifractal distributions (4.12), (4.22), (4.25) is rather difficult. The technical advantag
of the use of these quantities comes mainly from the fact that, as a rule, the structure of th
ratio P,/ P, is simpler than the form of the probabilities P, themselves.

It is appropriate to make some remarks here on the relationship between the form of th
recurrence relation (4.8) and the definition of the generating function (4.13). The particula
form of recurrence relation (4.8) is chosen because of its simplicity. For example, the facto
(n—1)/n in the last term of (4.8) is used only because it is possible to rewrite this relation i
the form of generating function (4.13). It is easy to check that other similar forms involvin,
P,_1 and P, in the recurrence relation can lead to qualitatively similar results, providin,
a singular form of BPs for all orders. However, in these cases, one needs to introduce othe
forms of generating function in order to obtain a differential equation for the MNBD wit]
simple solutions.

4.4 Non-linear Markov process and MNBD

Now we shall show that the form of MNBD can be obtained from a stochastic Markov proces
with non-linear birth rate. Let P,(¢) be the probability to have n particles at time t. O
course, such a choice of an evolution parameter is not unique. In principle, the evolutios
variable ¢ can be connected, for example, with the squared mass of the branching parton i
the parton shower. For simplicity, we shall assume that the process starts at time t = 0, wit
the initial condition Py(t = 0) =1, P,(t = 0) =0, n > 0. We shall consider a very genera
birth-death process with an infinitesimal birth rate w} and an infinitesimal death rate w; o
particles, treating these parameters as continuous functions of ¢. The corresponding Marko
equation is [10]

Pi(t) = wi_ | Pai(t) + wyp1 Poa (t) — (W + wy) Pa(2). (4.34

For a stationary process, when time goes to infinity, the P,(¢) are t-independent constants

Then, from (4.34) one has 7, = Mny1 =0, n=1,2,.., 7, = w; P, —w}_; P, ;. Since 7y = O

we have m, =0, n > 1 and, hence, a solution of (4.34) in the form of the recurrence relatio:
P, w

= =L (4.35

Pn—l w,
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The negative-binomial distribution can be considered as a stationary solution of (4.34) if we
assume linear forms for w} and w; as

w=y+6n,  w=pm, (4.36)

where a = y/p and b = B8/p (v, B, p are t-independent). If we admit that the parameter w;
is a non-linecar function of n, i.e.

+
n =

g+ B -1,  w, =pn, (4.37)

M=

w

I
)

then the MNBD can be found as a stationary solution of the evolution equation (4.34). Here,
the parameter g represents the strength of the influence of the non-linearity in the equation.
For 6§ — 0 the non-linearity of the birth rate increases.

The multifractal structure of MNBD, therefore, can be caused by the non-linearity of a
stationary Markov process. From the point of view of high-energy physics, the multiparticle
production in QCD and the subsequent transition to hadrons have a strongly non-linear
nature. In this sense, the form of (4.37) can reflect the non-linearity of the underlying
multiparticle dynamics leading to multifractality.

4.5 Application to experimental data

Up to now, we have considered g as a free parameter with the power-law behavior g o< §72.
The next question is, how does one choose g if one wants to obtain a multiplicity distribution
with a degree of multifractality = (see Sect. 4.2). The simplest way is to assume the following
form

9=t} (2) =wti~ (439)

where w(r) is some function which tends to zero for 7 — 0 (in a simplest case, w(r) =
r). The parameter r allows interpolation between the negative-binomial distribution with
monofractal behavior (r = 0) and the MNBD with multifractal behavior (r > 0). Let us
remind that the aggregation coefficient k™! is related to the mean multiplicity (n) = a/(1-5)
and the dispersion D of the negative-binomial distribution as D* = (n) + (n)2k~".

From the point of view of high-energy physics, our choice is justified by the following
reasons:

i) If we have the negative-binomial distribution, then for a large (pseudo)rapidity interval
k~! has a small value (k=* ~ 0.1-—0.01). Applying a fit by (4.12), we can expect that g in the
MNBD would be small also and this distribution would be similar to the negative-binomial
distribution.

ii) It is essential that the negative-binomial distribution is approximately valid, not only
for large phase-space intervals, but also for small ones. For the negative-binomial distribu-
tion, the behavior k=% oc 677 lies in the framework of the assumption that intermittency is
governed only by the aggregation coefficient. In [4], Van Hove has shown that, if £~ o< 679
for small §, then the negative-binomial distribution has monofractal behavior F, oc §~% (=1,
dg = . Then n, o 679, 1, = const., s > 2 [3]. In our case, the assumption w(r) # 0 can
yield intermittency with multifractal behavior of the anomalous fractal dimension. From
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the experimental point of view, a good approximation for the aggregation coefficient of th
negative-binomial distribution is [11]

k™l =c M, M= %, (4.39
where A and 6 are three-dimensional full and limited phase-space intervals, respectively, d.
is the anomalous fractal dimension of second order. For different reactions, the parameters
and d, are of the same order of magnitude. For example, dy has an almost universal value o
~ 0.4 [11]. Expression (4.39) has been obtained from the relation Fj' = 1+k~! between th
second-order NFM and the aggregation coefficient which is correct for the negative-binomia
distribution.

iii) Since the fits for different reactions show a logarithmic increase of k~! with increasing
energy /s, one may expect that we shall obtain a similar effect for the MNBD as well. Then
the distribution (4.12) in-full phase space may differ significantly from the standard negative
binomial distribution for large energies. This is very important because, as mentioned alread;
in the introduction, the usual negative-binomial distribution fails to describe multiplicit:
distributions at 900GeV in pp collisions and in Z° hadronic decay for full phase space.

Let us obtain the anomalous fractal dimension for the MNBD in the particular case, whe:
g = w(r)k™". The calculation of the NFMs can be simplified when the average multiplicit;
in 6 is small. Then, the NFMs are given by expression (4.3). Let us discuss two domains o
the parameter 7:

(i) 0 < 7 < 1. From (4.11) we have

m=1+k" +w(r)k™, (4.40

_ 1+k7s-1)
T S (4 k(s — 1 — 2))
We see that, if k£ oc 6%, the leading terms of the BPs have the following behavior: 1, o< 6%
7s < 6779, 5 > 2. Then

+w(r)k™, s> 2. (4.41

Fyoc 67460 d =dy(1—7)+ dgr%. (4.42

For r = 0, we have the monofractal behavior d; = dy and the MNBD reduces to the negative
binomial distribution.

(ii) 7 > 1. The leading terms of the BPs are given by the expression n, o< §77%, ¢ > ¢
The corresponding anomalous fractal dimension is

d, = dzrg-. (4.43

The values of r for different reactions have been discussed in [3].
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4.6 Conclusion

We proposed a new multiplicity distribution with multifractal properties for small phase-
space intervals basing on the simplicity of the analysis of multifractality in terms of BPs and
bunching moments. Guided by the fact that, for the multifractality of normalized factorial
moments the same power-law behavior for all orders of the BPs is necessary and sufficient,
we have focused our attention on the analysis of the MNBD with multifractal behavior. The
MNBD may be considered as a generalization of the negative-binomial distribution with a
new free parameter g (or 7 for the particular case, when g = w(r)k™"), which has a power-like
behavior for small phase-space interval.

Theoretically, the question arises what is the physical reason of such a multifractal distri-
bution. The problem of multifractality is very complicated and requires further examination
both in high-energy physics and quantum optics. Note, as an example, that some versions of
cascade models can lead to this distribution because they have the same anomalous fractal
dimension (see the a-model [12], where the anomalous fractal dimension has the form (4.43)
with 7 = 1).

On the experimental side of the question, we hope that the MNBD is interesting since it
yields a new possibility to describe experimental data.
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Abstract

Experimental aspects of the use of bunching parameters are discussed. Special attention
is paid to the behavior expected for the case of purely statistical fluctuations. We studied
bin-averaged bunching parameters and propose a generalization of bunching parameters,
making use of the interparticle distance-measure technique. The proposed method opens
up the possibility of carrying out a comprehensive and sensitive investigation of multiplicity
fluctuations inside jets.
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5.1 Introduction

In recent years, multiparticle density fluctuations have been studied in ever smaller phase
space intervals 6 in terms of normalized factorial moments (NFMs) Fy(6) [1]. The NFM
can be defined as

o Lldp (s
_ n=q 1 Tl(
0= S B )

n=1

nd=nn-1)...(n—qg+1), (5.1

where n is the (charged) particle multiplicity and P,(§) is the multiplicity distribution in ¢
The interval § can be any interval in phase space, such as in rapidity, azimuthal angle, tran:
verse momentum, or a (multi-dimensional) combination of these variables. This method ha
recently been improved by the use of density and correlation integrals [2] to avoid the prot
lems of bin splitting and the insufficient use of experimental statistics inherent to definitio
(5.1). ‘

From an experimental point of view, the most important properties of the NFMs are:

1) they filter out Poissonian statistical noise;

2) events can contribute to (5.1) only if n > ¢, so they resolve the high-multiplicity ta
of P,(6);

3) if local self-similar dynamical multiplicity fluctuations exist, then Fy(8) o< 67%, ¢y >
Such a power-law behavior is called intermittency and the ¢, are called intermittency indice
They are related to the anomalous dimensions of the corresponding fractal system by tk
simple relation d, = ¢,/(q — 1).

Additional advantages of density integrals are that they avoid the problem of bin splittin
inherent to the definition of NFMs above, and that they allow the use of general distanc
measures. Correlation integrals, furthermore, are based on genuine g-particle correlation
which avoid trivial contributions from lower-order densities. For reviews see [3] and referenc
therein.

Recently, another simple mathematical tool has been proposed to investigate multipa
ticle fluctuations. In order to reveal intermittent structure of multiparticle production,
is, in fact, sufficient to study the behavior of the probability distribution near multiplicit
n = q — 1 by means of the so-called bunching parameters (BPs) [4, 5]

4_Pu6)Pr-s(8)

: 5.
g—1 qu—l((s) (

g(6) =

These quantities are formally identical to those used in quantum optics [6]. The bunchin,
parameter method has also been extended to measure bin-bin correlations [7].
In the mathematical limit § — 0, the relation between NFMs and the BPs is

Fy(8) = [[nF*4(6). (5.

i=2

In this limit, therefore, the BPs share with the NFMs the important property of suppressic
of Poissonian statistical noise.

In fact, for an event sample following a Poissonian multiplicity distribution, one fin
ng(6) = 1 for all ¢ and 6. If all BPs are larger than 1, the corresponding multiplici
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distribution is broader than the Poisson distribution. On the other hand, a multiplicity
distribution is narrower than Poisson if all its BPs are smaller than 1.

For a sample of events with a fixed finite number of particles NV in full phase space,
independent emission of these particles leads to a (positive) binomial distribution in the
interval §. Consequently, the BPs have the values 7f2° = (¢ — 1~ N)/(¢ — 2 — N), i.e., are
again independent of .

As shown in [4], there exists, in fact, a large class of multiplicity distributions for which
the BPs are independent of § for the full range of § values. This result is the first important

point investigated in detail in this paper.

The relevance of the bunching parameters for multiparticle production in high-energy
collisions, however, lies in the following properties:

1) From (5.3) we can see that the second-order BP follows 7,(8) ~ 6% for intermittent
fluctuations in the limit § — 0 (bunching effect of the second order), while the higher-order
BPs may have any type of dependence on 6 [4].

2) In the case of monofractal behavior, the anomalous dimension d, is independent of
g. Variation of d, with increasing ¢ corresponds to a multifractal behavior. In contrast to
the NFMs, only 7,(6) increases with decreasing § for monofractal behavior, while the 74(6)
are constants for all ¢ > 2 [4]. Any § dependence of higher-order BPs, therefore, reveals a
deviation from monofractal behavior of the multiplicity fluctuation.

3) The lower-order BPs are more sensitive than the NFMs to spikes with a small number of
particles. Only spikes with n < g particles can contribute to the bunching parameter of order
g. Hence, the BPs act as a filter, but, in comparison to the NFMs, with a complementary
property (see property 2 of NFMs above).

This feature of BPs is important for the study of high-multiplicity events, where unusually
large dips in the density distribution of individual events can be treated as a dynamical effect
as well as that of the appearance of spikes. In this case, the lowest-order BPs will be sensitive
to such dips. On the other hand, for lower-multiplicity reactions, such as e*e™-annihilation,
the use of BPs can provide high-precision measurements of local fluctuations, since they
suffer less from the bias arising due to a finite number of experimental events than do the
NFMs (see property 6 below).

4) The BPs have a more direct link than the NFMs to the multiplicity distribution
itself [4]. Any multiplicity distribution can be expressed in terms of the BPs as

YO Mo, a0 =2

B =A@~ 11 = B0

. (5.4)

5) From the theoretical point of view, the BPs are useful when direct calculation of the
NFMs from a model or theory becomes too tedious. Factorial moments are easily calculated
from the generating function of the multiplicity distribution. A large class of distributions
exists, however, without any simple analytical form of the generating function.

6) Moreover, from the experimental point of view, we expect that the BPs are less severely
affected by the bias from finite statistics than are the NFMs: In practice, the multiplicity
distribution P,(8) is always truncated at large n due to finite statistics in a given experiment.
As a consequence, the values of high-order NFMs at small bin size are determined by the first
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few terms in expression (5.1) only, which leads in most cases to a significant underestimat
of the measured NFMs with respect to their true values [8-10]. Furthermore, the calculatio
of a given-order BP is simpler, since one is analyzing events for three given multiplicitie
only, without the requirement of normalization by an average multiplicity.

7) Another experimental advantage of the bunching-parameter measurements is that, fo
the calculation of the BP of order ¢, one needs to know only the g-particle resolution c
the detector. In contrast, the precise calculation of the NFMs of order ¢ always involve
the knowledge of the resolution of n > ¢ particles. So, for a given g-track resolution, th
behavior of the gth-order NFM may contain a systematic bias due to contributions from th
tail of the multiplicity distribution measured with insufficient resolution.

The study of multiparticle production processes with the help of BPs, therefore, is e
pected to provide important information on multiplicity fluctuations in ever smaller phase
space intervals, in addition to and complementary to that extracted with NFMs.

In Sect. 5.2, we discuss the problem of Poissonian noise and the behavior of BPs fc
a number of theoretical models. In Sect. 5.3, we give experimental definitions of the BP
and suggest an extension of the bunching-parameter method to avoid the problem of bi
splitting and to allow a more general choice of distance measure, in analogy to the extensio
of NFMs to the density integrals mentioned above. The crucial question of the behavior
BPs and their extensions in the case of purely statistical phase-space fluctuations is show
in Sect. 5.4. In Sect. 5.5, we give, as an example, a comparison of the factorial-moment an
bunching-parameter analysis of two different intermittent samples generated by the JETSE'
7.4 model.

5.2 Poissonian noise suppression and other propertie:

5.2.1 The problem of Poissonian noise

As we noted in the introduction, the NFMs have an important feature for the theoretic:
study of local fluctuations: they are not contaminated by Poissonian statistical noise. Firs
let us show that the BPs reduce the statistical noise in the limit é — 0, as well, meanin
that BPs are not only a convenient experimental tool that can reduce the bias from finit
statistics (Ve # 00), but also can suppress statistical noise arising due to the finite numbe
of particles per event (N # oo). The last point is of vital importance for the study «
theoretical models with an infinite number of particles in an event.
Let us first define a particle density p in bin m for an individual event as

p= 3, (Sx

where n is the number of particles in bin m of size §. For a local-fluctuation analysis, v
need to consider very small bin sizes, i.e., § — 0. p, therefore, is an asymptotic density, sinc
it can be defined in the limit of infinite multiplicity N (or n) for a given event.

Using another (theoretical) limit, N, — oo, we can define w(p) as a continuous prob:
bility density to observe a given value of p. This density fulfills the normalization conditic

/Ooow(p)dp =1. (5.6
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Of course, the density p for bin size 6 fluctuates around the average value

=h= ~ puw(p)dp. (5.7)

Because we are interested in the deviation of p from the average value fi, the next step is
to define the higher-order moments of w(p) as follows

(0 =ty = [ pwlpde. (5.8)

In experimental studies, the multiplicity N is finite. In this case, the number of particles
n in bin m fuctuates around the average value due to “statistical noise”. If we accept this
assumption, and the additional assumption that such a statistical noise does not introduce
new fluctuations, the observed (discrete) multiplicity distribution P,(6) to observe n particles
in § can be described by.the following Poisson transformation {1]

P = [ulp) B, (59)
0 n!

Expression (5.9) represents a convolution of the statistical Poissonian noise of mean p6 with

a true, dynamical distribution w(p).

The next problem, therefore, is how to compare model fluctuations described by w(p)
with the experimental fluctuations defined by P,(6). Substituting (5.9) in the definition of
factorial moments gives

oo

(nlly =3 nldpP,(6) =6f,, ¢=1,23..., (5.10)

n=q
where f, are ordinary moments defined by (5.7) and (5.8). Hence, for NFMs (5.1) one obtains

_fa
i
The right side of this expression represents the normalized moments given by a model distri-
bution w(p). Studying this distribution in experiments with finite /V, therefore, is equivalent
to measuring the NFMs Fy(6).
Let us note that in the limit of small phase-space size, we can only keep the leading term
in expression (5.9), i.e., P,(6) can be rewritten as

F,(8) (5.11)

n

P(5) = 2 [T wlp)edn, (5.12)

if luctuations in a model are investigated in the limit § — 0. Substituting this expression
in (5.2) gives
quq—2

for
where fo = 1 according to (5.6) and (2.13). Therefore, 7,(6) calculated from experiment
gives information on the fluctuations described by the theoretical probability density w(p),
since Poissonian contributions cancel at small §. From (5.13) and (5.11) one can obtain
relation (5.3) given in the introduction.

1g(8) = (5.13)
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‘I'he idea to express intermittency directly in terms of the probabilities has also bee
proposed by Van Hove [11]. Indeed, in the limit § — 0, one can use the ratio Py(8)/Pf (¢
instead of Fy(6), since

ONA
Pl Al

= F,(6), (5.14

according to (5.12).

5.2.2 Multifractal and monofractal behavior

For a model with intermittent behavior, we can expect

fo -

Lo 5%, 5.18
ft (
Using this relation and (5.13), one obtains

ng(8) oc §3ba=17%e=Pa-2 §—0, (5.1¢

where ¢Q = (]51 =0.
As a reminder, one should expect ¢, = d2(g¢ — 1) for monofractality. For these types
fluctuations, the BPs have the following behavior

ma(6) ox 6%, TNg>2(6) = const. (5.1

For monofractal behavior, therefore, what one obtains is that all high-order BPs 1,52(8) a
§-independent constants. This result is one of the important advantages of the bunchin
parameter method over factorial moments: to reveal multifractal behavior in an experiment
sample, it is not necessary to interpolate an experimental slope by the power-law F,(6)
§~%(=1) in order to derive a g-dependence of d,.

5.2.3 Examples

For illustrative purposes, we now consider examples of the behavior of BPs for vario
dynamical models:

5.2.3.1 Random-cascade model

This is the first model [1] used in high-energy fluctuation phenomenology. For this mods

the intermittency indices have the following form
1
g = 5a(q — 1)da. (5.1

From (5.16), one can see that all BPs follow the same power law
nq(6) o< 67%, for all ¢ > 2. (5.1

This feature in the behavior of the cascade model can be revealed by calculating the B.
and by comparing their power-law behavior, without the necessity of any fit of NFMs by
power-law.
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5.2.3.2 Second-order phase transition

One expects [12] that for a system undergoing a second-order phase transition the corre-
sponding intermittency indices would depend linearly on the rank of the moment,

¢g = da(q— 1) (5.20)
Such a behavior has been derived from a toy Ising model [13]. In this case, according to
(5.17), all higher-order BPs are é-independent constants.

5.2.3.3 Perturbative QCD cascade

In a QCD cascade with fixed coupling constant a, the intermittency indices have the fol-
lowing multifractal behavior [14]

ba=Dlg—1)—wors  To=(a—- 1@+ (5.21)

where D is the topological dimension of the phase space under consideration and vy =
(6, /m)/? is the QCD anomalous dimension. From (5.16), one can conclude that the be-
havior of all high-order BPs is D-independent for a fixed-coupling regime of QCD and is
governed only by v

Ng(6) 510k he=rq+14-2 — 2741, qg>3, (5.22)

where r; = 0. As a first rough test of the QCD prediction, therefore, a measurement
of the third-order BP for different dimensions D can provide a qualitative answer to the
applicability of this type of QCD calculations to real data. Note that this can be done very
precisely, since statistical (and systematical) errors are small for a third-order BP.

5.3 Experimental definitions of BPs

5.3.1 Bin-averaged BPs

In order to increase the statistics and to reduce the statistical error of observed BPs when
analyzing experimental data, we can use bin-averaged BPs as defined in analogy to the
bin-averaged factorial moments:

1) Flat phase-space distribution: The following definition of horizontally normalized bin-
averaged BPs can be used [4]:

¢ Ny(6)Ny—2(6)

nt}llor(é) = q _ 1 N‘?_l(é) ? (523)
where
_ 1 M
N,(8) = i Z_ N,(m, 6). (5.24)

Here, N,(m,6) is the number of events having ¢ particles in bin m, M = A/6 is the total
number of bins, and A represents the full phase-space volume.
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2) Non-flat phase-space distribution: In this case we need to use vertically normalize
BPs defined as

Ny(m, §)Ng—z2(m, 6)

NZ_1(m, ) (5.2

M

77;'”(5) = M! q Z

q - 1 m=1

It should be pointed out that, in this case, the sum runs over non-zero bins only. This tyy

of BPs, therefore, demands more statistics and may he unstable for small phase-space bins. .

contrast, events with no particles in a bin can contribute to the horizontally normalized BP

For this reason, it may be more convenient to use the BPs (5.23) for non-flat distributions -

well. To be able to do this, one must carry out a transformation from the original phase-spa
variable to one in which the underlying distribution is approximately uniform [15].

5.3.2 GGeneralized distance measure
5.3.2.1 Definitions of spike size

The main deficiency of definitions (5.23) and (5.25) (and the bin-averaged NFMs) lies |
the artificial splitting of particle spikes. Spikes do not contribute to the N,(m,§) if tl
boundaries of bins happen to split such spikes. This deficiency can be avoided by tl
choice of a proper distance X;; between two particles, which as demonstrated in [16], wou
have the additional advantage of largely increasing the statistics effectively used in a give
experiment, at a given resolution.

For a given event, let us define a g-particle spike of size € as a group of g particles havir
mutual phase-space distance X;; smaller than e¢. According to this definition, the conditic
for particles to belong to a spike is

g g
MII0-X) =1, i#j (5.2

i=1 j=1

where 0 is the Heaviside unit step function. To determine the spike size ¢ for a given event v
have used here the so-called Grassberger-Hentschel-Procaccia (GHP) counting topology [17
for which a g-particle hyper-tube is assigned a size ¢ that corresponds to the maximum
all pairwise distances.

Alternative topologies are the so-called “snake” topology [2]

g
IJ0(— Xi1s) =1, (5.2
=2

which corresponds to the longest distance between two particles connected by one joinir
line, and the “star” topology [16] defined as

g
H 9(6 - Xl,i) =1. (525
=2

The star topology involves all particles that are paired with a preselected center partic
(index 1). It shares all the advantages of the GHP and snake forms, and is computational
more efficient.
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5.3.2.2 Bunching parameters

After establishing the definitions of spike size ¢, we can investigate the behavior of multiplicity
fluctuations in ever smaller ¢ by means of the bunching-parameter method.

Differential BPs:

In any multiparticle process, the number of g-particle spikes fluctuates around an average
value according to a certain probability distribution. Let P,(e, g) be the probability distri-
bution of observing in an event a number n of g-particle spikes of size ¢, irrespective of the
presence of other spikes. This distribution can be characterized by the generating function
G(e, g) defined as

o

G(z,6,9) = Z P.(e,g)z". (5.29)
n=0
For a purely independent production of spikes, the multiplicity distribution Py(¢, g) follows
a Poissonian law, i
P(e,g) = (n!) R (e, g)e K, (5.30)

with a generating function of the form
GP(z,¢, g) = eXle==D), (5.31)

where K (¢, g) represents the average number of g-particle spikes of size € in an event in the
sample under study.

To measure the distribution P,(e, g) without the contribution from events with a large
number of such spikes (or “tail” of the real distribution), one can calculate the following
“differential” type of BPs

g (e, g)g_a(e, g)
Xq(€,9) = . q=2,3,..., 5.32
q( g) q— 1 Hg—1(€7 g) 1 ( )

where T, (e, g) represents the number of events with a number g of g-particle spikes of size e.
For purely independent emission of spikes, Py (e, g) follows the Poissonian distribution (5.30)
and all BPs (5.32) are equal to unity for all ¢ and e.

Integral BPs:

Of course, when analyzing experimental data, it is difficult to obtain all values of x, (e, 9)
as a function of e. This is due to the large number (= ¢ g) of possible configurations involved
and the finite number of events available. We can, however, use a less informative and less
differential definition suitable for an experiment with rather small statistics.

To understand these kinds of measurements, let us first define the probability distribution
P,(¢) to observe in an event a number n of multiparticle spikes, irrespective of how many
particles are inside each spike. From a theoretical point of view, if all g-particle spikes are
produced independently of each other, the generating function G(z, ¢) for P,(e) has the form
of a convolution of spike distributions with different particle content, i.e.,

G(z,¢) = ﬁ G(z,€,9)- (5.33)

g9=2
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For purely independent spike production, one has from (5.31) and (5.33), again a Poi
sonian distribution, with the generating function

G(z,€) = G¥(z,¢€) = KD (5.3

and with the average number of multiparticle spikes
ZK’ 6 9). (5.3

As mentioned before, to measure a deviation from the Poissonian distribution, one c:
calculate the “integral” type of BPs

g Ty(e)Tlg—s(c)

xq(€) = , §=2.3,..., 5.3
ol g—1 Hg—l(f) (

where I1,(¢) represents the number of events with ¢ spikes of size ¢, irrespective of how ma
particles are inside each spike. If x,(¢) # 1, then the conclusion of non-Poissonian spi
production follows and a more sophisticated analysis can be performed with the help of t
differential kind of BPs.

According to the definition above, all spikes with g > 2 particles contribute to x(
However, one can propose a more selective study of the spike fluctuations. Indeed, in t
case of purely random (Poisson) fluctuations, the probability distributions to observe n spik
with g > s or with g < s particles (s is some integer number) also follow the Poissoni
law due to the “reproductive” property of the Poisson distribution. In terms of generati
functions, these two distributions can be expressed as

G(z,6,9 > s) H G(z,¢,9) = exp [Z -1) (5.¢

g=s = ]

and -
G(z,6,9 <) =[] G(z,¢,9) = exp [Z K(e,g)(=—1)| . (5.2

g=2 g=2 B

To measure a deviation from these distributions, instead of II;(¢), one must use in (5.:
the number of events IL;(¢,g > s) and II;(¢,¢g < s) having ¢ spikes with ¢ > s and g <
particles, respectively. The definition with II;(e, g < s) is more preferable for high-precisi
measurements, because this quantity does not contain the contributions from spikes wi
high-multiplicity content.

Discussion:

The main reason for introducing the integral BPs (5.36) is that the x,(¢) are more use
when the statistics of an experiment are small. In this case, the lower-order BPs (5.
have large statistical errors ! whereas higher-order BPs even vanish. In contrast, the B
(5.36) have smaller statistical errors and high-order BPs can be still calculable. Moreov
the simplicity of this definition makes the latter very economical to calculate.

! According to the Gauss law, the statistical error on the number of events II is VI for large II.
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The actual choice of the definition of the BPs and of the value of ¢ strongly depends on
the aims of the specific investigation. For example, at large e the BPs are sensitive to the
large scale of an event structure, where any jet behaves as a cluster (a spike of dynamical
origin). The calculation of the BPs according to (5.36), therefore, corresponds to a study
of a fluctuation in the number of jets, where each jet is considered, regardless of its inner
structure. For an intermittent fluctuation, we expect that all second-order BPs are a power-
like function of € for € — 0, whereas high-order ones can have any dependence ou €.

All these kinds of definitions have an important advantage over the conventional definition
(5.23) or (5.25): we now can study the structure of spike fluctuations. In addition, we can
investigate a given sample in a variety of new variables. For example, the squared four-
momentum difference between any two particles Q2, = —(p; — p2)? is theoretically preferred
for investigations of Bose-Einstein or effective mass correlations.

The question remains why we use the definitions of the generalized BPs in terms of
the spike multiplicity distributions P,(e, g) and Pn(e). Indeed, at first sight, it may seem
more straightforward to use a conventional probability }Sn(e) of having n particles inside a
hyper-tube of size . This probability can be found as

Ble) = ———fﬁ{’()

n=

(5.39)

where K,(e) is the number of n-particle spikes (hyper-tubes) of size € found in Ny — 0
experimental events. Clearly, Py(¢) does not exist. Hence, the BPs

g Ko()K,(e)

ne{€) = — 5.40
o(€) g-1 K2 (e (5.40)
exist only for ¢ = 3,4, ..., but not for ¢ = 2. It is important to note, however, that ]5n(e) is

not Poissonian even if particles are distributed independently (see Fig. 5.4 and the comments
in Sect. 5.4.2) 2. In addition, we will show that n(¢) suffers from insufficient statistics. Of
course, if we keep both these problems in mind, the 7(¢) can be used for experimental study
as well.

Note that for the generalized BPs (5.32) and (5.36) we use the letter x, in order to
emphasize that these definitions are intended for measuring the bunching of spikes, rather
than that of particles. From this point of view, no simple connection exists between 1q(6)
(or 74(€)) and X4(€). The same is true for the conventional and the generalized NFMs [16].
Furthermore, the relation between the NFMs and the BPs x,(¢) ceases to have a simple
form. As a result, it is no longer possible to draw a conclusion on the e-dependence of the
Xq(€) from the study of the generalized NFMs. The question of the relation between the
generalized BPs and the generalized NFMs will be the subject of a future paper. Below, we
will, however, demonstrate that, as is the case for the NFMs, a rise of the value of x4(e) with
decreasing ¢ is inherent in realistic systems exhibiting intermittency.

Unfortunately, the problem of purely random (or statistical) fluctuations cannot always
be reduced to the study of Poissonian distributions. Below, we will consider a general case
of statistical phase-space fluctuations for which the property x,(e,g) =1, Xq(€) =1 is only
a particular case, corresponding to a full-phase-space Poissonian multiplicity distribution.

2Such a non-Poissonian form of P,(e) has also been realized in [16], where a complex event-mixing
technique has been introduced to normalize generalized factorial moments.



46 Generalized Bunching Parameters and Local Fluctuation:

5.3.2.3 Propagation of the statistical error for generalized BPs

As is the case for the extension of the usual NFMs to the density integrals, the estimatior
of the statistical error is simplified for generalized, as compared to, bin-averaged BPs. The
calculation of the statistical error (i.c. the standard deviation) for the BPs (5.23) and (5.25
includes bin-bin correlation coefficients (all M bins are dynamically correlated) not presen
in the ather definitions.

In the following, we derive an exact expression for the standard deviation of the general
ized BPs using a distance measure €. For simplicity, we shall use the symbolic expression

q Hqu—Z

5.41
q—]. Hg_l ’ (

Xq ™

where II, stands for any definition of the number of events having a given spike configuratio
q as used in (5.32) and (5.36).

Let W,(t) be an indicator for the presence of a given spike configuration (index ¢) in a
experimental event (integer argument t), i.e., for a given measurement ¢ we set

W, (t) = 1, if spike‘ configuration ¢ is occuring, (5.42
0, otherwise.
After N,, measurements, we get the sample mean of W,(t)
N,
— W, (e) I
Wy=2E= 00 = 1 5.43
¢ NeV Nev (

It can be seen that the definition of generalized BPs (5.41) already represents an averag
value® of BPs after N., measurements with the sample mean Wq, since N2, cancels i
definition (5.41). Let us note that all our BPs exist only as an average quantity, since we d
not use any definition for BPs with W,(t) for a single experimental event.

The elements of the covariance matrix for an unbiased estimator are given by the standar

expression
Nev
Z W,(t - Ne W Wy (5.44

t=1

V | = —
9 Nev(Nev -

For g = ¢/, the covariance matrix reduces to the unbiased sample variance sg
Vig =52 (5.45

Given the covariance matrix, we can obtain the sample variance Sg for the generalize
BPs using a general rule for combining correlated errors [18],

2 572 =52
q W, s, 4W ) 0 W,
52:< ) {_j 52+ 6" L+ =82, + 0 (5.4€
¢ ¢-1) \w,_,° W,_, Woy

3Here we applied the fundamental statistical assumption that, to a first approximation, V = V(z), wher
V(z) is a function of the directly measured quantity x.
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where g, is a function of non-diagonal elements of the covariance matrix describing the
correlations between the W,

wWW,_ wWw.__ W W, o
0g = 2Vyga—g = — 4 Vpq1reg T — AV g0 (5.47)
q—1 Wq—l Wq—l

The standard deviation is the square root of the variance (5.46). Let us note that for
the calculation of the standard deviation we did not use any assumption on a Gaussian
distribution of W,. In fact, a Gaussian distribution is, in general, not applicable for the
calculation of statistical errors for small e. The errors plotted in the forthcoming figures are
the errors calculated according to (5.46).

5.4 Statistical fluctuations and BPs

As was shown in Sect. 5.2, BPs are not affected by Poissonian noise in the limit 6 — 0.
However, in order to use the BPs to extract information on dynamical fluctuations, one has
to know their behavior in the case of purely random phase-space fluctuations for realistic
values of §.

The random fluctuations cannot always be described in terms of a Poissonian distri-
bution, since in multiparticle experiments, the full-phase-space multiplicity distribution is
often far from Poissonian. In addition, there is always a constraint on the maximum value
of multiplicity because of energy conservation. This constraint can lead to non-Poissonian
fluctuations in small phase-space intervals, even if the particles are produced in phase space
randomly, without any dynamical correlations.

To study statistical fluctuations, therefore, we consider a general case of independent
particle emission, when spikes appearing in phase space are caused by random properties of
an experimental sample.

5.4.1 The bin-averaged BPs
5.4.1.1 Flat phase-space distribution

In order to understand the behavior of BPs (5.23) and (5.25) in the case of purely statistical
fluctuations, we start with a phase-space distribution which is flat and equally wide for all
multiplicities N. In this case, the number Ny(m,6) of events having ¢ particles in bin m
does not depend on the position of the bin, i.e., Ny(m,8) = Ny(6). Expressions (5.23) and
(5.25), therefore, are reduced to (5.2).

An event sample with purely statistical fluctuations in restricted phase space can be
described by the following expression [19-21] :

o0 6
Pztat(é‘) — Z PNC;\l]pn(]. _ p)N"ﬂ-’ p=—= (548)
N=n

A 3
where Py is the multiplicity distribution for full phase space, the C} are the binomial
coefficients and p is the probability that a particle falls within a given interval 6. Expression
(5.48) states that for each data subsample of events with fixed finite multiplicity /N, particles
fall into § independently, i.e., according to a (positive) binomial distribution [22].
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When we speak of purely statistical phase-space fluctuations in the case of a finite numbe
of particles in a single event, we imply independent emission of the particles into a smal
phase-space interval, i.e., without any interaction between particles yielding dynamical spike
or clusters. Of course, for a single event, even independent emission can produce spikes, bu
only of statistical nature. In such a case, a multiplicity distribution obtained after N, —
experimental measurements can be expressed in the form of (5.48).

Let us note that the statistical fluctuations described by (5.48) have nothing to do wit!
statistical noise described by Poisson transformation (5.9). The notion of statistical nois
is necessary to take into account the finiteness of the number of particles in the countin
bin (and, hence, in full phase space). We can get an “observed” discrete multiplicity dis
tribution from a “true” continuous dynamical probability density using the so-called linea
transformation (5.9) of the density with a Poisson kernel.

Let

G(z,6) = i Po(8)2" (5.49
n=0

be the generating function for the multiplicity distribution P,(§) of having n particles in
small phase-space interval § < A. Then, if we multiply (5.48) by 2z and sum the result ove
n, we can find the generating function for P,(6) as follows:

oo
G*(2,6) = > Pn(pz —p+ 1)V, (5.5C
N=0
Using the relation between factorial moments and generating function

<n[q]) - G(‘”(z) la=1, (5.51

one finds that the NFMs for distribution (5.50) are é-independent constants [23] of th
form [20]

Nl
Fe(8) = < ( N>;VN , (5.5

where {...) denotes the average over all events following the probability distribution Py:
Wy — S~ p, N _ ,_
(N >N_N2=:0PNN . g=1,2... (5.5:

Using definition (5.2) of the BPs, together with (5.48), we obtain the BPs for the case «
purely statistical fluctuations

B %, PyNl(1 = p)¥
stat gy _ 4 B, = _=N=0 . 5.5
- (6) B,o 47 S0 Py NE-U(1 - p)V (
If the phase-space interval is small enough, then (1 —p) — 1 and (5.54) is reduced to
Nl Nla-2
17;?“(6) — < >N< >N, 6—0, (5.5

(VT

i.e., the BPs become independent of 6.
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Figure 5.1: The BPs as a function of M in the case of statistical phase-space fluctuations.
Here we use an analytical description of the phase-space distribution in the form of a pos-
itiwe-binomial distribution and simulate the multiplicity distribution for full phase space by
JETSET 7.4.

If the multiplicity N for full phase space follows a Poissonian distribution with the average
multiplicity N, then the corresponding generating function has the form

GP(z) = N1, (5.56)

and (5.50) again leads to the generating function for a Poissonian distribution in a small bin

6
5

p= A
In this case, the values of all-order BPs are unity for all §. However, in many experiments
Py is far from the Poissonian distribution, and an additional study of the behavior of BPs
for purely statistical phase-space fluctuations is necessary.

As an example, we present in Fig. 5.1 the behavior of the BPs as a function of M = A/§
for the case of statistical fluctuations according to (5.48) with a truncated full-phase-space
multiplicity distribution Py obtained from the Monte-Carlo event generator JETSET 7.4
PS [24] simulating the decay of a Z°. The generator was tuned according to the parameter
set of the L3 Collaboration [25]. The number of events generated is 750k. In this sample,
Py =0for N < 4 and N > 70 due to limited statistics. Let us stress that we are using
the analytical expression (5.54), together with the Py simulated for full phase space from

G2 (z) = P NG-1), (5.57)
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JETSET 7.4 PS, where Py is not equal, but similar, to a negative-binomial distribution with
the average charged-particle multiplicity N ~ 21.

As can be seen from Fig. 5.1, the values of the BPs are larger than unity, but the
approximation 75'*(8) =~ const for M > 10 — 20 will be a good estimate of the statistical
fluctuations in an experimental situation where Py for full phase space is close to a truncated
negative-binomial distribution. For intermittent fluctuations, as a rule, we need to study the
behavior of the NFMs for much larger M. For such a situation, any observed dependence of
the BPs (5.23) on the interval size must be caused by dynamical fluctuations.

5.4.1.2 Non-flat phase-space distribution

In the case of a non-flat phase-space distribution, the parameter p becomes a function of N,
4, and the position of the bin m in phase space. Mathematically, this can be written as [19]

Jor, S5dé
Pm(N,§) = =m=l2o (5.58)
N
where the phase-space density d/N/dé is defined for a large set of events with a fixed total
multiplicity N. For small § and non-singular phase-space density, each term in the sum
(5.25) is 6-independent according to (5.55) and, again, one has 7, () =~ const.

5.4.1.3 Theoretical aspect of the problem

From the theoretical point of view, there is a class of distributions, Py, for which the BPs
are §-independent constants, also for large §. Let G™!(z) be the generating function for Py
in full phase space. After the composition with the positive-binomial distribution according
to (5.50), the G™!!(z) becomes G***(z,6) = G (pz — p + 1,6). Then, the BPs will be
6-independent if the generating function G™(pz — p + 1, 6) can be expressed as

G™"pz —p +1,6) = GM(1 — p, 6)Q(2A(5)), (5.59)

where Q(zA(6)) is some function containing only the combinations zA(6) (see (5.4), where
A(6) is a function of §). Here, G™M!(1~p, §) is equal to G™(pz—p+1, §) for z = 0. Expression
(5.59) can be obtained from (5.4) by setting 7,(6) = const [4].
If the multiplicity distribution for full phase space is Poisson, binomial, geometric, loga-
rithmie, or negative binomial, then the BPs do not depend on §, even if § is not small [4].
As an example, we shall consider a negative-binomial distribution. The generating func-
tion for this distribution in full phase space is

N —k
GNBD(z) = (1 + —k—(l - z)) , (5.60)
where N represents the average number of particles in full phase space and k is a free
parameter. Since they describe full phase space, both constants of course are é-independent.

After the composition (5.50), we obtain the generating function for the negative-binomial
distribution in interval § for the case of statistical phase-space fluctuations

GNBP(z) = (1 + %(1 - z)) _k. (5.61)
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Here, k is the same 6-independent constant as in (5.60). For this distribution, the BPs (5.2)
have the following form
k+qg-1
stat __  NBD
= =" 5.62
7, 2 P (5.62)
i.e., are 6-independent.
Furthermore. even more complicated distributions exist which lead to é-independent BPs
for purely statistical fluctuations. For example, for a convolution of a number of different

negative-binomial multiplicity distributions

G () = ﬁ GNBD (1), (5.63)

s=1

the BPs can be shown not to depend on the interval size 6.

Let us note that dynamical fluctuations may be introduced into & model phenomenolog-
ically in the form of a projection (in analogy to (5.48)), if we require that for a subsample of
fixed multiplicity N, the phase-space distribution differs from a positive binomial (so-called
bunching projection method [20]). Another way to introduce dynamical fluctuations is by
a two-projection method in which a two-step cluster mechanism with a generating function
for full phase space is postulated in the form of a composition of two different generating
functions. We, therefore, can apply a projection with two positive-binomial distributions,
one for each stage (for the NBD (5.60) see [26], a general case is described in [27]). However,
for this method only a monofractal behavior of intermittent fluctuations is characteristic.
Therefore, as shown in [20], for multifractality it is necessary to use the bunching projection
for both stages, cluster production and decay.

5.4.2 GHP counting topology

Now let us illustrate the behavior of the BPs (5.32) and (5.36) in the case of purely inde-
pendent phase-space distribution, using the GHP counting topology. As we have noted in
Sect. 5.3, if the full-phase-space multiplicity distribution is not Poissonian, then the values
of the generalized BPs are not equal to unity.

An event sample is obtained with a random event generator * in the following way: For
a given event of multiplicity NV in full phase space, we generate N independent pseudo-
random points in the “phase space” 0 < z < 1. After that, we simulate the distribution for
multiplicity V.

In Figs. 5.2 and 5.3 we present the M = 1/¢ -behavior of differential BPs for two-
particle spikes x5**(1/M, 2) and integral BPs x5!(1/M) for purely independent production
of particles in the phase space z. The total number of events is 10%. Since the behavior
of statistical fluctuations depends on the full-phase-space multiplicity distribution, we have
considered the generalized BPs for the following cases:

1) N is fixed for all events (N = 21). This case is shown by open squares in the figures.
Here, x5 (1/M,2) < 1 and x3**(1/M) < 1. Such an anti-bunching effect is a consequence
of tr1v1a1 negative correlations that are present, when the probability of finding a spike is
less if another spike has already been found.

4To generate N independent points for each event, we use the generator NRAN for uniformly distributed
pseudo-random numbers (CERN Program Library).
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Figure 5.4: The values of BPs n{**(1/M) (5.40) as a function of M = 1/¢ in the case of
statistical fluctuations.

2) N is distributed according to a Poissonian distribution with average N = 21 (full
squares). As expected, the values of the bunching parameters are equal to umity.

3) In order to study a more realistic case, we generated the distribution for charged-
hadron multiplicity NV in full phase space according to JETSET 7.4 PS. To investigate the
sensitivity of the BPs to various forms of single-particle distribution, we consider two different
cases. In the first case, the phase-space density is uniform, i.e. p(z) = dn/dz = const (open
circles in the figures). For the second case, the phase-space density has the strongly non-
uniform shape p(z) = const (1 + )~ (full circles)®. As we see from Figs. 5.2 and 5.3, the
generalized distance-measure BPs have values larger than unity. Hence, the corresponding
spike-multiplicity distributions are broader than a Poissonian distribution.

The most important feature of the generalized distance-measure BPs considered here is
that, in the case of independent production of particles, they are approximately independent
of the spike size ¢. Only for the full-phase-space multiplicity distribution generated by JET-
SET 7.4 PS is a small rise of the generalized BPs visible for not very large M. In contrast to
the bin-splitting definitions of BPs, the generalized BPs probably rise with decreasing ¢ even
for very small values of ¢ due to the deviation in full-phase-space multiplicity distribution
from a Poissonian distribution. However, to derive an exact conclusion on the full-phase-
space dependence of generalized BPs, more investigation is needed, since statistical errors in
the figures are comparable with the size of the symbols.

Figs. 5.2 and 5.3 show that the result obtained for JETSET 7.4 seems to be independent of
the form of the single-particle density. It is important to note that a non-uniform phase-space
density (full circles) leads to a more stable result for the M-dependence and significantly
reduces the statistical error.

Fig. 5.4 shows the behavior of 7,(1/M) (5.40) for ¢ = 3,4 as a function of € = 1/M for
the case of a Poissonian full-phase-space multiplicity distribution with average N = 21. The
total number of events is the same as that for Figs. 5.2 and 5.3. The independent particle
distribution over phase space is simulated as for Figs. 5.2 and 5.3. Fig. 5.4 demonstrates that
the corresponding multiplicity distribution P,(e) is narrower than Poisson (n,(1/M) < 1),
even if the particles are produced independently of each other. However, the main deficiency
of definition (5.40) lies in the insufficient use of statistics available. This leads to large

5Such a single-particle inclusive density can easily be obtained as the product of two generators for
uniformly distributed pseudo-random numbers.
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statistical errors for large M. The calculation of ¢ = 5 and ¢ = 6 for M > 100 — 20(
therefore, was found impossible due to limited statistics (not shown).

The subject of the behavior of generalized BPs is complex and, probably, must be solve
separately for each particular type of BPs with a given definition of spike size, for a give
multiplicity distribution of particles in full phase space. However, any e-dependence of th
BPs for purely statistical fluctuation due to full-phase-space fluctuations can be completel
suppressed by using 1/x;** or 1/75"*" as a correction factor. After the correction procedure
any deviation in the behavior of the corrected generalized BPs from unity can be interprete
as being due to the presence of genuine local multiplicity fluctuations.

5.5 Local fluctuations in the JETSET 7.4 model

A widely used means to study general features of hadronic final-state fluctuations is t
simulate hadronic events according to Monte-Carlo models. Below we will consider th
behavior of BPs for hadrons produced in e*te~-annihilation at 91.2 GeV using the JETSE
7.4 PS model.

To study local fluctuations in this model, we use the bin-averaged BPs (5.23) with ho
izontal normalization. The azimuthal angle ¢, calculated with respect to the beam axis, |
used as a phase-space variable. Since there is no preferred direction for hadrons, the ever
averaged distribution in ¢ is uniform.

Fig. 5.5a shows for four different ranks ¢ the value of 7, as a function of M, wher
M = 2n/6yp is the number of partitions of the full azimuthal angle 2r. The number
events generated is 750k. From this figure it follows that there is a power-like behavior ¢
the second-order BP, but all higher-order BPs tend to decrease with increasing M. Suc
an anti-bunching trend for higher-order BPs is the result of jet formation combined wit
energy-momentum conservation: particles belonging to different jets are separated by pha:
space.

In Fig. 5.5b we present the M-dependence of the BPs in azimuthal angle, but now ca
culated with respect to the thrust axis. Since the distribution for this kind of measureme:
is far from flat, the transformation [15] of the azimuthal-angle variable to a new cumul:
tive variable with flat single-particle density was performed before the calculation of BP
Fig. 5.5b shows a power-law trend in the behavior of all BPs studied, without any visib
saturation for large M, as is usually seen for NFMs in one-dimensional variables. We cz
conclude that the multifractal structure of intermittency is an inherent feature of fluctuatior
in the azimuthal angle defined with respect to the thrust axis. This means that multifra
tality is mainly a feature of fluctuations inside jets, rather than a property of fluctuations |
the ¢ variable defined with respect to the beam.

Note that for small M, the behavior of the BPs is not meaningful: as we have seen in t
previous section, in the domain M < 10—20 the value of the BPs can be affected by statistic
fluctuations. In this case, an M-dependence of BPs can occur even without any dynamic
reason. In addition, for small M, as is the case for NFMs, BPs are affected by the large-sca
structure of fluctuations for which energy-momentum constraints are characteristic.

To compare the result obtained with NFMs, we present in Fig. 5.6a,b the behavior
NFMs as a function M, where we use the azimuthal angle ¢ calculated with respect to tl
beam axis (Fig. 5.6a) and the thrust axis (Fig. 5.6b). Both calculations show qualitative
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Figure 5.7: Integral (full symbols) and differential (open symbols) BPs as a function
the squared four-momentum difference Q2, between two charged particles, calculated in t}
JETSET 7.4 PS model.

the same trend and it is very difficult to derive a conclusion on a different behavior of thes
two intermittent samples.

The same conclusion has been derived in [28], where a theoretical local-fluctuation mods
was studied with the help of both NFMs and BPs. It has been shown that two very differer
model samples can lead to rather similar power-law behavior of NFMs, while the BPs sho
a different trend. This means, in fact, that the NFMs are not sensitive to the details in tk
structure of intermittent fluctuations. The good agreement between experimental behavior ¢
NFMs and Monte-Carlo predictions, as claimed recently [29], therefore, cannot provide a fin:
proof of the similarity between experimental intermittent samples and samples generated b
Monte-Carlo models in ever smaller phase-space intervals.

To demonstrate the behavior of generalized BPs, we use the squared four-momentu:
difference between two charged particles @2, = —(p; — p;)? as a distance measure. Fig. 5.
shows the behavior of integral x,(Q%,) (full circles) and differential x,(Q?,,2) (open circles
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bunching parameters. The dashed line represents the behavior of these BPs in the case of
a Poissonian distribution. Both kinds of BPs rise with decreasing @3,. This corresponds
to a strong bunching effect. The saturation and downward bending of the second-order
BPs at small Q?, is caused by the influence of Dalitz pairs. We have verified that the
power-like increase is stronger for like-charged particle combinations (not shown). The latter
observation is very important, since the rise of BPs for identical pions with decreasing Q3
can be attributed to Bose-Einstein correlations.

It is quite remarkable that the value of x,(Q3,) is always larger than x,(Q3,,2), especially
for not very small @2,. For small Q?,, both definitions of BPs show the same trend and
have similar values. The reason for such a similarity becomes clear when one realizes that
the integral BPs include the contribution from two-particle spikes. For small interparticle
distances, the integral BPs are then dominated by two-particle spikes.

For large Q%,, the contribution of many-particle spikes to x,(Q3%,) is more sizable. In
such a case, the integral BPs are more sensitive, than are the differential ones, to jet events.
This is due to the fact that jets can contribute to x,(Q%,2) only if they contain exactly
two charged particles in each jet. In contrast, the integral BPs are affected by jets with
a different number of particles. For example, for large @Q?,, the second-order integral BP
is strongly influenced by two-jet events, the third-order BP is sensitive to both two- and
three-jet events and so on.

5.6 Conclusions

Intermittency, as originally considered for particle physics by Bialas and Peschanski [1], is
a term borrowed from turbulence theory, as are most of the mathematical techniques used
in this field. This is why intermittency was formulated in terms of continuous particle
densities. In that approach, a convolution was assumed of an underlying dynamical density
distribution with multi-Poissonian statistical noise. For such a situation, the method of
removing statistical noise by the normalized factorial moments follows immediately.
However, the problem of intermittent dynamical fluctuations may, in principle, also be
described in terms of bunching parameters. As is the case for bin-averaged normalized
factorial moments, the bin-averaged BPs remove the influence of Poissonian statistical noise
for small § and become 6-independent constants if fluctuations have only statistical origin.
Furthermore, definitions of the BPs are given which can be used for the study of fluctuations
in various phase-space variables, without any artificial binning of phase space. This property
is very important for the investigation of Bose-Einstein correlations and resonance decays.
As mentioned in the introduction, one of the most important properties of the BPs is that
these quantities are not affected by the experimental statistical bias which arises in NFMs
when the bin size becomes very small. Of course, the limitation in number of experimental
events leads to an increase of the statistical errors with decreasing 6 (or €) for lower-order
BPs and to the failure to calculate higher-order BPs. In contrast, the NFMs tend to be
depressed at very small § as compared to their values expected for an infinite sample [8].
Moreover, in studying intermittent fluctuations, there is a trivial tendency in the behavior
of the NFMs: the higher the order of the NFM, the larger is its value for a given & (or ¢).
On the contrary, the high-order BPs, in principle, can have any dependence on § (or ¢),
i.e., the possible behavior of the BPs has a larger number of “degrees of freedom”. This
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observation provides tools for a better understanding of the differences between sampl
with approximately the same power-law behavior of the NFMs and a selective study
fluctuations in terms of different types of spikes.

The last point has a primary importance for the investigation of local multiparticle fluct:
ations inside jets. The behavior of NFMs is qualitatively the same [29] for variables define
with respect to the beam axis and with respect to the sphericity axis. The informatic
content of these mweasurements, however, is rather different. The spikes dominating the di
tributions in variables defined with respect to the beam axis are due to the jets produce
in a given event. Such spikes are separated in phase space because of energy-momentu
conservation. This trivial effect always dramatically affects the observed behavior of loc
quantities measured in variables with respect to the beam axis. On the other hand, any loc
measurements of phase-space distributions in variables defined with respect to the spherici
or thrust axes mainly reflect the physical content of fluctuations that arise due to underlyir
stages (perturbative and fragmentation stages, resonance decays, Bose-Einstein interferenc
of multihadron production inside jets. Since the behavior of NFMs is not sensitive to t]
definition of a preferred axis, it is quite difficult to determine the physical nature of tl
intermittent signal observed for the two cases mentioned.

As we have seen, the different definitions of generalized BPs merely reflect the freedo
of choice of event configurations. From the experimental point of view, this is very hand
since we can choose a form of BPs optimized according to a given statistics of an experime
and according to the aims of the investigation.

We hope that the use of BPs will be useful for the investigation of details in the multifra
tal behavior of particle spectra, where it is important to find and to study the contributio:
from different multiparticle clusters and to compare theoretical or model multiplicity dist:
butions with the experimental data.
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Abstract

A new method for the experimental study of bin-bin correlations is proposed. It is shown
that this method is able to reveal important additional information on bin-bin correlations,
beyond that of factorial-correlator measurements.
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6.1 Introduction

In order to obtain a comprehensive knowledge of the dynamics of particle production i
high-energy reactions, two aspects of multiplicity fluctuations need to be studied:

1) the dependence of the multiplicity distribution (or its characteristics) on the size o
the phase-space interval;

2) the dynamical correlations between two or more bins where this dependence is inves
tigated.

The first point corresponds to the measurement of the local fluctuations, the second on
to a simultaneous measurement of the local characteristics in two (or more) different bins i
order to reveal correlations between these local fluctuations. If no correlations exist betwees
filuctuations in different bins, then the complete information on an experimental sample ca;
be obtained from local fluctuation measurements.

Dynamical information on fluctuations in a system with an infinite number of particles pe
event can be obtained from the multivariate density probability distribution P(py, pa, ..0m)
where o, is the particle density in bin m (m = 1,..., M). This distribution can be studie
by constructing the multivariate moments (pi p#* ... pi¥). Due to the very complex structur
of this quantity, however, one usually resorts to the study of only two moments: (p? ) an
(p;’npfrll,), which contain a small fraction of the information on dynamical fluctuations in

system. The bivariate moment (pir pgll,) contains the information on bin-bin correlations.

In practice, bin-bin correlations always exist, i.e., (oL %) # (p2.){pZ,), since final-stat
particles are not produced independently of each other. The production of a particle a
high energy usually enhances the probability of producing other particles. The number o
particles observed in a given phase-space bin, therefore, is always affected by the numbe
of particles found in other bins. Moreover, there are more trivial (statistical) reasons fo
the observation of correlations in a system of finite fixed final-state multiplicity: for suc]
a gystem, finding a particle in a single bin is less probable if another particle has alread:
been counted in another bin. The latter case has no dynamical reason, but can influence th
correlations observed in such a system.

In [1], Biatas and Peschanski have adapted the method of normalized factorial moment
to the measurement of dynamical bin-bin correlations by means of factorial correlators. Th
use of these quantities, as well as of the normalized factorial moments, has mainly been mo
tivated by the Poissonian-noise suppression [2], thereby opening the possibility of modelin
intermittency phenomena and bin-bin correlations by means of continuous densities.

In this paper we propose another experimental tool to measure bin-bin correlations b;
means of the bunching-parameter approach [3-6]. In the following, we shall discuss th
experimental advantages of using such a method (Sect. 6.2). As an illustration, the bin-bi
correlation measurement by the lowest-order bunching correlator is given in Sect. 6.3.

6.2 Bunching correlators

One of the characteristic features of any local multiplicity fluctuations in high-energy physic

is the existence of bin-bin correlations. If we have two non—overlapping bins, m and m’ ¢
size 6, then the discrete two-dimensional multiplicity distribution P;%" (6) having n and
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particles in bins m and m/, respectively, cannot be factorized, having
Py (6) # PT(6)PT (6), (6.1)

due to the existence of a bin-bin correlation between the bins m and m’ !

A procedure for investigating such bin-bin correlations is to measure so-called factorial
correlators [1,7], (for a review see [8]). In terms of Py (6), Pr, and Pp7, the factorial
correlators for two bins of equal size § can be written as
m,m’( ) ;z.on’ nn’ (6)71’ I[q

. g4he> 1 6.2
(o, Br(e)al) (se, P o) 107 (62)

where 714 = n(n—1)...(n—g+1). The quantity in the numerator is called the bivariate facto-
rial moment. In contrast.to the usual (univariate) factorial moment (nl¥) = 2%, P™(6)nld),
which characterizes only the local fluctuations in a single phase-space bin m, the bivariate
factorial moment contains information on correlation between the local fluctuations in the
two bins, m and m’.

If no correlation exists between bins m and m/, we get Fy" "(8) =1 due to factorization
of the multiplicity distribution in the numerator of (6.2).

To increase the statistics, one can assume translational invariance and average (6.2) over
all bin combinations with the same bin-bin distance, D. After symmetrization, one has

1 gy k k
Fpg(D) = ———— 3" (Fyam™*(6) + Fm™(s)) (6:3)

where M = A/§, A is a full phase-space interval, and k = D/§.

Correlators similar to (6.2) have also been proposed in [9]. In this approach, the bin of
size 6 is divided into two parts. If ny, and ng are the number of particles in the left part and
the right part of the bin, respectively, then one can define [9]

Fy(M) = '1\1‘4',”:1 % (6.4)

As is the case for the usual univariate factorial moment, the multivariate factorial mo-
ments presented above are sensitive to the “tail” of the multivariate multiplicity distribution
obtained in an experiment. The limited statistics of an experiment reduce fluctuations
measured by means of the high-order factorial moments because of the truncation of the
multiplicity distribution [10]. This can exert a negative influence on the behavior of the
factorial correlators.

We note another shortcoming of the factorial correlators. As the usual factorial mo-
ments, the multivariate definition selects only “spikes”. Dynamical information from “dips”,
therefore, is completely lost. This means that we lose important information on bin-bin
correlations. As an example, correlations should exist between different bins that contain no
particles, i.e., ,

Py™ (6) # P (8)F5™ (6)- (6.5)

1Strictly speaking, any statistical dependence between these bins can lead to property (6.1).
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According to the definition, the factorial correlator is not able to measure such correlations

The complete information on bin-bin correlations can be obtained, without the bia
arising from restricted statistics of an experiment, if one formulates the problem in terms ¢
the bunching parameters [3-6]. The univariate bunching parameters for bin m are define
in terms of the probabilities P*(§) as

! g—1 (PZ(6))?

Accordingly, it is possible to construct bivariate bunching parameters in the same wa

as that used for bivariate factorial moments,

, ’ Pm,lm’ (6)Pm;m' . (6)
m,m qq s 2), 2
nq‘q’ (5) _ 9.9 (9=2).(q )

, g,¢ > 1. (6.7
-1 1 m,m! 2
(¢ e ) (P(q—l),(q’—l)(é))

The relation of BPs with usual moments have been found in [3,5]. For bivariate BP:
such a kind of relation can be written as

9.9 9-2,4'—2
nm,m (5) ~ (pm,m’><pm,m’ >

™m,m

., §—-0 (6.8

due to the suppression of Poissonian noise in the limit of small §.
As is the case for multi-dimensional probabilities, these quantities can be expressed as

Mo (8) = T (6)n4(8) = 1 (6)ny (6), (6.¢

where 7;*(6) is the usual univariate bunching parameter and 77}17/' ,(6) represents a condition:
bunching parameter for bin m’ constructed from conditional probabilities, i.e., the probabilit
to observe ¢' particles in bin m’ under the condition that g particles have been found i
another bin m. Then, the conditional BPs have the form

¢ P8 PG a2 (6)
-1 m! 2
@ =1 (Pr_yye-n®)

If the two bins are statistically independent, then the bivariate bunching parameter
factorize:

7q(6) = . 6. > 1. (6.1C

Toar” (8) = 0 (6)nF (). (6.11
By analogy with the factorial correlators, the bunching correlators can, therefore, be define
as
’ m,m’
vm,m’ 7, ol (6) -
g (8) = 75 (6.13

o (8)ng(8)
As is the case for (6.2), this definition grants unity if the cells m and m’ are statisticall

independent.
The bunching correlators, in general, are not symmetric in ¢ and ¢'. As is performed i
(6.3), we can symmetrize this definition:

!

wm,m' 1 um,m' um,m E
[ (0)]s = 5("‘1"3’ (8) +igra” (6))- (6.12
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Defining the distance D between two bins, the bunching correlators can further be averaged
over many pairs of equidistant bins. In analogy to (6.3), the problem of bin-bin correlations
can be formulated in terms of the bunching correlators

- 1 ME wm,m-+k
Ngq (D) = [y (6)]s (6.14)
and their behavior in the limit D — 0.

According to the above definition of bunching correlators, the second-order bunching
correlator contains important extra information on empty bin-bin correlation that cannot be
extracted by means of factorial correlators. Indeed, if such correlations exist, then, due to
(6.5), one obtains

A (6) # 1 (6.15)
for any combination such as {2,2}; {2,3}, {3,2} etc. For the symmetrized and averaged
bunching correlators, this leads to

ne(D)#1, ¢=2, ¢=23... (6.16)

On the other hand, if only such (hypothetical) correlations exist, the factorial correlators
are equal to one for any higher rank.

6.3 The lowest-order bunching correlator and its be-
havior

The value of 7, 9:/(D) is affected by events having no particles in both bins and, hence, it
incorporates the empty bin-bin correlations that cannot be measured by means of factorial
correlators. In this section we shall illustrate the dependence of this quantity on the distance
D between the two bins.

For our numerical calculations, we can rewrite the definition of 72 o (D) as follows:

1 M-k

(D)= 77— Z s T (6), (6.17)
(0
i (6) = _——”z 2)772(, 2 5 (6.18)

To define bivariate and univariate BPs, we introduce the following expression as an indicator
for the presence of a given spike configuration for a given experimental event ¢:

W, (m, ! t) = 1, if both.bins m and m' contain ¢ particles, (6.19)
0, otherwise .
Then, we have
i (6) = 2 2lms mIWo(m, m) (6.20)

Wa(m,m)
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_ T, )W, m)

m,m’
Toar () — , (6.21)
W)
where W, (m, m') is the average of W,(m,m/,t) over N,, experimental events
N, i
— = W, t
Wo(m,m') = 2t Wa(m, m, ) (6.22)

Ney

An exact calculation of the statistical error (standard deviation) is always a complex
task and requires special attention to any local measurement. Below, we give a sketch of
propagation of the standard deviation for (6.17).

The square of the standard deviation for W,(m, m’) is given by

) 1 Nev 0
2 —
Sq(m,m') = m ;Wf(m, m',t) - Nequ(m, m') . (623)

The square of the standard deviation for second-order BPs is given by
=2 T2 =52
W AW, W w
Vi(m,m') = —3s3 + —22s? + —252. (6.24)
1 1 1

This expression gives us the square of the standard deviation for univariate BPs if
W, =Wy (m,m), s2 =48} (m, m). (6.25)

The square of the standard deviation for bivariate BPs can be found from (6.24) if
Wo=W,(m,m'), s2=1652(m,m’). (6.26)

The total statistical error for (6.17) can be found by combining the standard deviations for
the univariate and bivariate BPs and averaging the results over all bin pairs.

In Fig. 6.1a, the behavior of 7, o (D) is shown for the case of purely statistical phase-space
fluctuations. For our numerical calculations, we simulate the phase-space distribution by a
pseudo-random number generator in the “phase space” 0 < x < 1. The total number of
events is 30,000. In this figure we consider the cases in which a total number of particles N
in full phase space fluctuates according to full-phase-space fluctuations. We considered the
following cases:

1) N is fixed for all events (N=20);

'2) N is distributed according to a Poissonian law with mean N = 20;

3) N is distributed according to the JETSET 7.4 PS model {11] simulating e*e~-annihilati
at a c.m. energy of 91.2 GeV. Such a distribution is similar to a negative binomial. For this
case, we also consider different values of bin size §.

As expected, the value of the bunching correlator is equal to 1 for the Poisson distribution.
We have verified that this result is independent of the mean of the Poisson distribution and
of the bin size 6.

For the sample with fixed multiplicity (N = 20), there is a negative correlation, since
7,2 (D) < 1. This kind of correlation is due to the trivial effect that the probability of finding
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Figure 6.1: Value of n2.2(D) as a function of distance D between bins. (a} The behavior in
the case of purely statistical fluctuations for different distributions of particles in full phase
space. (b) The behavior for the case of dynamical fluctuations (phase-space distribution in
azimuthal variable) simulated by the JETSET 7.4 PS model.

a particle in a bin is always less if another particle has already been found in another bin.
In the case of no dynamical phase-space correlations, such a negative (pseudo) correlation
leads to a D-independent bunching correlator of value smaller than unity.

If particles are distributed according to a distribution broader than Poisson, one should
expect a positive correlation. For the case of no phase-space correlations, this again leads to
a D-independent bunching correlator, but with a value of 7, (D) > 1.

In Fig. 6.1b we present 7, 2 (D) for a more realistic situation. Here, N again fluctuates
according to JETSET 7.4 PS, but the phase-space distribution is defined in the azimuthal
angle with respect to the e*e™ collision axis. To compare the results with the previous cases,
this variable (with full phase-space range 27) has been transformed to a new variable with
unit range. Due to the jet structure of single events, the phase-space distribution in this
variable contains dynamical fluctuations. As can be seen from Fig. 6.1b, such fluctuations
lead to a bin-bin correlation. The correlation increases for decreasing distance D, from
ne2(D) < 1 for large D to 7a.2(D) > 1 for small D. Moreover, in contrast to Fig. 6.1a, the
value of 72 (D) is affected by the value of the bin size 6.

6.4 Conclusions

In this paper, the bunching-parameter method has been extended to measure bin-bin correla-
tions. This application of the bunching-parameter method has been achieved by considering
bunching correlators in analogy to factorial correlators. The method not only allows one to
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study fluctuations inside a phase-space bin without experimental bias from finite statistics
but also to study correlations between bins separated in phase-space.

One of the remarkable features of the bin-bin correlation study is that the main propertie:
of local fluctuations inside bins, and correlations between the bins can be formulated in
unified manner. Based on our analysis of second-order bunching correlations and on [5], w
conclude:

1) For purely statistical phase-space fluciuations, the values of the univariate bunchin
parameters and those of the bunching correlators are independent of bin size and bin-bir
distance. These values are affected by event-to-event multiplicity fluctuations, but are equa
to unity for Poisson-distributed particle multiplicity in full phase space;

2) For dynamical phase-space fluctuations, the values of univariate bunching parameters
and bunching correlators increase for decreasing bin size § or distance D between two bins

Such a similarity in the behavior of these quantities is the result of an intrinsic relatios
between fluctuation and correlation properties of the local fluctuations.

Finally, from our study, let us note that no universal scaling relation between the loca
fluctuations and correlations is observed for the azimuthal-angle distribution in JETSET
7.4 PS model, as it follows from the random-cascade model [1,2], for which the factoria
correlators are -independent. The analysis of bin-bin correlations based on the bunchin
correlators clearly shows that the behavior of the second-order correlator is affected b
the bin size . In fact, this means that realistic intermittent fluctuations cannot be full
described by the scaling indices of the univariate normalized moments as is the case for th
random-cascade model. For this reason, the experimental measurement of the correlators i
an important complementary part of the fluctuation analysis, which, therefore, cannot b
reduced to the investigation of the scaling indices of the local quantities only.
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7

Hadron production in eTe™ collisions

The main aim of this chapter is to give a short overview of the theoretical and phenomenolog-
ical approaches to an understanding and interpretation of the final-state hadrons produced
in ete™ collisions.

7.1 Theoretical description of ete™ collisions

Electron-positron scattering is one of the basic experiments to study the fundamental prop-
erties of matter. The clean and exactly known initial state of this point-like reaction allows
a straightforward test of the Standard Model, the theory describing the interactions between
all presently known fundamental particles.

In an ete™ collider, the ete™ collision takes place in the center of mass system (cms).
The main advantage of the cms is that there is no energy loss for center of mass motion: If
p and p’ are the 4-momenta of the positron and the electron, then the total energy in the
cmsis E=+/s=(p+7).

For a low center of mass energy /s, the process efe” — qJ is dominated by a single
virtual photon exchange. When the cms energy of the Z° resonance is reached (y/s ~
91.2 GeV), Z° exchange becomes the dominating process.

The most probable result of an ete™ collision near the Z° resonance is multihadron
production due to the large branching ratio of Z° — qg. Other channels, such as ete™ —
ete” (Bhabha scattering), ete™ — p*u~, ete™ — 77, occur less frequently [1].

The structure of a typical multihadron event in e*e™ annihilation is shown in Fig. 7.1.
In the following, we shall trace the major theoretical ideas on the description of the ete~
reaction necessary to understand the next sections.

In a first stage, the e*e™ pair annihilates into a virtual v*/Z° resonance according to elec-
troweak theory. The virtual 4*/Z°, in turn, decays into a qg pair, also following electroweak
theory. Frequently, before the annihilation, bremsstrahlung of a photon (initial-state pho-
ton radiation) may occur. This electroweak correction reduces the cms energy of the ete~
collision and, therefore, the total effective mass of the hadronic final state.

In a second stage, the initial q@ may radiate gluons according to the theory of quantum
chromodynamics (QCD) [2]. The gluons may radiate other gluons or qg pairs, giving rise to a
cascade process. This stage is responsible for the formation of hadronic jets. The probability
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Figure 7.1: A schematic representation of the eTe™ reaction.

ratio for observing events with a certain number of jets can be written in terms of increasir
powers of the strong coupling constant ¢ as [3]

2 jets : 3 jets : 4 jets = O(a?) : O(a?) : O(a?). (7.

This means that the majority of the eTe™ events have a two-jet structure (s < 1). Becau
of the small value of o, at the corresponding virtuality, this stage can be described by pe
turbative QCD. In this approach, Feynman diagrams are calculated order by order accordir
to the so-called matrix element (ME) method. In principle, these calculations can take in
account all interference terms and accurate kinematics. However, such calculations becon
increasingly difficult in high orders. The calculations have only been carried out up to O(a
(i.e., up to four partons in the final state). Since the next-to-leading-order corrections a
not known, this means that predictions of perturbative QCD in the framework of the matr
element approach can only be semi-quantitative.

The second possible approach is that of a parton shower (PS). It is based on the leadi
logarithmic approximation (LLA), where only the leading collinear and soft logarithm terr
are taken into account. This approach is formulated in terms of a probabilistic picture. T
algorithm is based on an iterative use of the basic branchings, such as q — qg, g — ¢
q — q4. The probabilities for one of these branchings are given by the Dokshitzer-Gribo
Lipatov-Altarelli-Parisi (DGLAP) evolution equation [4].

In a third stage, the partons fragment into colorless hadrons. Usually, this stage is call
hadronization. This process cannot be described as a power expansion in the strong couplis
constant, since o, > 1 at the corresponding virtualities. At present, a detailed descriptic
of this stage is provided only by models. There are three main types of phenomenolog
cal models for hadronization: independent fragmentation, string fragmentation and clust
fragmentation models. All these models are probabilistic and iterative.

The last stage in Fig. 7.1 represents the decay of unstable hadrons into experimental
observable particles (mostly pions). This stage includes final Coulomb interaction and Bos
Einstein (BE) interference between identical secondary particles (bosons). The latter effe
is a quantum-mechanical phenomenon. However, since there is no complete theory for its d
scription, the BE effect is often modelled as a classical force acting on the like-sign final-sta
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particles. For the interpretation of physical results presented in the next chapters, the BE
effect is a very probable candidate to account for the large local fluctuations at very small
phase-space distance. Indeed, it was shown in [5] using two independent phenomenological
approaches that the leading contribution to the local intermittent fluctuations may be con-
nected just with the last stage. Unfortunately, there is still a vagueness in the definition of
the last stage: In the framework of the cluster models used in [5], it is rather difficult to say
Lo whai stage of e'e” reactions the last stage of the cluster models niay correspond.

7.2 Lund Monte-Carlo generator (JETSET 7.4)

The JETSET Monte-Carlo program is a very successful program to model the process
ete™ — +*/Z° — qq — hadrons, at least up to /s = mz ~ 91.2 GeV [6]. This program has
its roots in the efforts of the LUND group to understand the hadronization problem. Nowa-
days, the JETSET program is supplemented with the PYTHIA program. The latter gives
access to a variety of hard processes. JETSET and PYTHIA are fully integrated and can
together generate not only hadronic final states, but also non-hadronic reactions. Further
we shall consider only the JETSET 7.4 program which is formally independent of PYTHIA.
A detailed description of both programs can be found in [7].

Quantum mechanics states that all processes in nature have a random character. In order
to generate events independently from each other with a random outcome, any Monte-Carlo
program uses a pseudo-random generator with uniform distribution. Using (deterministic)
functions known from experiment or theory which describe physical processes (such as dif-
ferential cross sections, fragmentation functions, relevant branching ratios and decay rates),
the program, at each step, produces a random outcome from a set of possible outcomes 8]
To model the characteristics of outgoing particles in the process ete™ — hadrons, such as
a list of particle 4-momenta for each event, JETSET factorizes all stages described above
into a number of independent components. Each of them can be characterized by a set of
functions governing the random outcome.

Let us note that JETSET, like other Monte-Carlo programs, contains a lot of free pa-
rameters describing each stage of an ete™ reaction. Variation of some of them does not
significantly affect the final predictions of this model.

We shall now give a short physical outline of each stage of the process ete™ — hadrons:

Hard processes in JETSET

The hard process of main interest is ete™ — v*/Z — qg. The full interference between
+* and Z° propagators is included. The flavor of the quark in the final state of each event is
picked at random, according to the relative couplings. Since initial-state photon radiation
may give large corrections to the overall topology of an event, such a process is included in
the program.

While the hard electroweak interaction provides a description of the production of a
primary qg pair, perturbative QCD is responsible for the final-state radiation of quarks and
gluons. These high-order QCD corrections can be described in JETSET 7.4 either with
the parton shower approach (JETSET 7.4 PS) or with the second-order matrix element
(JETSET 7.4 ME). The default of JETSET 7.4 is the parton shower. This option gives
a good description of the substructure of jets [6]. However, since this approach is only an
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approximation derived by simplifying real dynamics, without a complete form of interferenc
terms, it has limited predictive power for the rate of jets (2 : 3 : 4 -jet composition).

Recently, the JETSET model has been improved by including gluon interference (cohe:
ence) in the parton shower. Gluon interference becomes apparent when one goes beyond th
LLA. One of the consequences of gluon interference is angular ordering, whereby subsequer
partons are emitted at ever decreasing angles with respect to their parent parton {2]. Th
parton shower in JETSET 7.4 incorporates the coherence effect by requiring a strict orderin
in decreasing emission angles (for a parton shower based only on LLA, the emission angle
are decreasing in an average sense). This constraint in JETSET 7.4 can be turned off. How
ever, it has been shown that models containing gluon interference agree much better wit
data than do those without this interference [6].

Besides the parton shower, also the matrix-element option can be used in JETSET 7.4 fc
the description of corrections in the perturbative process. This program contains options fc
first-order QCD corrections (describing 3-jet events) and second-order QCD corrections. Tt
latter can describe both the 3-jet events and 4-jet events and predicts final states with up t
four hard partons. Since the matrix-element approach takes into account exact kinematic
and full interference according Feynman diagrams, JETSET 7.4 ME is more relevant for th
prediction of the rates of well-separated jets. However, in contrast to parton showering, th
matrix-element description has a restricted predictive power for the description of the fu
structure of events at high energies (such as average multiplicity, different global distributior
of hadrons, etc.), because the high-order QCD corrections become sizable at high energies

Hadronization process in the JETSET model

The basis of the JETSET model is the string hadronization scheme [10]. The physic:
picture is that, at the end of the perturbative stage, the produced quarks and antiquarl
move out in opposite directions, losing energy. The color field between them is supposed t
collapse into a string-like configuration (color flux tube) with uniform energy density. Tt
transverse size of the tube is of typical hadronic size (roughly 1 fm). Since the energy per un
length is uniform, this automatically leads to a confinement picture. As the q and g mov
apart, the string may break into two less energetic strings by the production of two colorles
systems qf’ and q'g. The probability of the production of a pair is taken proportion:
to a Gaussian fragmentation function exp(—m?2) (m, =(/m? + p? is the transverse mas:
describing a quantum-mechanical tunnel effect. This parameterization thus explains th
limited p; distribution of particles in the jet as well as the suppression of strange quark
as they are heavier than u and d. The resulting string can break in its turn, until th
original string is separated into many short pieces which do not have sufficient energy t
break further. The breaking is assumed to stop when the masses of the string pieces reac
the hadronic mass scale. Each final q@ segment of this process is associated with a meso
Baryon production can be introduced by allowing the production of diguark-antidiquar
pairs. The process described above is fully probabilistic and iterative.

Another hadronization scheme, the independent fragmentation model [11], is also avai
able in the JETSET program. Initially, the latter model was designed to reproduce th
limited transverse momenta and has a great merit of simplicity. In this model, one suppose
that each parton fragments into hadrons independently. However, this model cannot be cor
sidered as an alternative to the LUND model, since it has been shown that the independer
fragmentation model fails to describe a number of experimental data [12].
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Production of observable hadrons in the JETSET model

A large number of the particles produced in the hadronization process are unstable and
subsequently decay into observable stable hadrons. The decay of short-lived hadrons on
this stage is completely described by empirical results, such as branching ratios and masses
taken from other experiments. JETSET 7.4 includes several different kinds of decay: strong,
electromagnetic and weak decays. Their treatment depends on the nature of the decay.

The Bose-Einstein effect has received some attention in the JETSET 7.4 program. Since
the detailed physics is not yet understood, the effect was included in the program as a
classical force between final-state identical particles. There are two options in the JETSET:
the shape of the correlation function for two pions my be chosen either exponential or
Gaussian. Usually, the values of the free parameters in these functions are taken from the
experimental study of the BE effect.

7.3 Description of final-state hadrons

7.3.1 Single-particle variables

In this sub-section we shall consider variables defined in an orthonormal system with respect
to the beam axis. A detailed description of this system is given at the beginning of Chapter 8.
A produced particle can be characterized by the following variables:

1) Rapidity y:
The rapidity of a charged particle is calculated by the following formula
1 E+p,
=_1 7.2
o= (525). 2

where E is the particle energy assuming the pion mass, p, the momentum component along
the z axis. The rapidity has the important property of being additive with respect to a
Lorentz transformation along the z-axis; thus the shape of the distribution remains invariant.

2) Azimuthal Angle ¢:

xT

@ = arctan (%’—) . (7.3)

Since incoming electron and positron are not polarized, there is no preferred transverse
direction for outgoing hadrons and the event averaged distribution in ¢ is uniform. The
variable ¢ is invariant under Lorentz transformations along the reference axis (z axis). These
properties are useful for the study of intermittency.

3) Transverse Momentum pr:

pr = 4/P2 + P2, (7.4)

is the component of the momentum in the plane transverse to the z axis.
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Z beam axis

Figure 7.2: Coordinate systems of the ete™ collision.

7.3.2 Event-shape variables

To characterize the hadronic event as a whole, we define the so-called event-shape var
ables. To be calculable in perturbative theory, these variables should be infrared and colline:
safe. This means that, if we have a particle ¢ with 3-momentum 7, splitting into two new pa
ticles b and ¢ with 3-momentum pj and g, respectively, then the corresponding event-shaj
variable must be invariant under the following branching

lﬁa - ﬁb + ﬁm (7"

whenever Py, and p. are parallel or one of them goes to zero.

The thrust variable, which we shall consider now, meets this requirement.

1) Thrust

The thrust axis, 71, is defined as the axis along which the projected energy flow
maximized. The value of thrust Tipres and 77 are given by [13]

Szt | BT |
2i:1|25‘i| ’

where p; is the momentum vector of particle . The sum ", runs over all final-state particle
The allowed values of Tiprust are 1/2 < Tiprust < 1, with Tipeuss = 1/2 for a fully isotrop
final state. The value of Tiprust approaches unity as the event configuration in the hadron
cms becomes more two-jet-like. As the direction on this axis is not defined by (7.6), we u
as positive direction of 7y the direction of the most energetic jet.

T|thrust = maXx (7‘

2) Major

In order to investigate the energy flow in the plane perpendicular to the event thru
axis, a second direction 7, is defined perpendicular to 7;. The major axis is defined in t!
same way as thrust, but is maximized in the plane perpendicular to the thrust axis [14]
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Diz1 | i 7 |

- 7y L7y 7.7)
iz | Fi | (

Tmajor = Max

3) Minor

The minor axis iy is defined as orthogonal to both the thrust and the major axes. This
gives an orthonormal system for an event (see Fig. 7.2).

Since the event-shape variables are formulated in terms of the three-momentum vectors,
none of the variables described above is Lorentz invariant.

4) Sphericity

The disadvantage of thrust is that the maximization process cannot be performed ana-
lytically, but has to be done numerically. It takes a lot of computation time. A widely used
alternative to thrust is sphericity which can be found analytically. The generalized form of
a sphericity tensor is

Siey | 5 72 pEpl

Zi:l ‘ﬁt |r '
where a, 8 = 1,2, 3 correspond to the z, y, and z components of momentum.

For r = 2, we get the standard sphericity tensor [15]. By diagonalization of 5 one
finds three eigenvalues A; < Ay < A3, A + Ay + A3 = 1. The value S = %()\2 + A3) is a
measure of jetyness of an event: a 2-jet event corresponds to S = 0 and an isotropic event
to S ~ 1. Eigenvectors ¥;, ¢ = 1,2,3 can be found corresponding to the three eigenvalues
Ai. This gives an orthonormal coordinate system (Fig. 7.2). The direction of 7y is called
the sphericity axis. Let us note that the thrust axis does not necessarily coincide with the
sphericity axis.

The coordinate system connected with sphericity has been used for intermittency analysis
in [16]. Unfortunately, this choice of coordinate system is rather inconvenient: the sphericity
tensor for r = 2 is not collinear safe. This means that, in the framework of perturbative
QCD, we cannot obtain predictions in terms of the sphericity tensor [17].

For r = 1 in (7.8), we can get an infrared and collinear safe spherocity tensor calculable
in perturbative theory [18]. Eigenvalues and eigenvectors of it may be defined as before.

For our analysis, we will use the coordinate system connected with the thrust axis. An
intermittency analysis has been performed for such a system in [19]. All the three variables
Y, @, pr, where not explicitly stated, are defined in the thrust system. In this system, the
z-axis is defined to be along the 7i;(#) direction, the z-axis is along 7i5(%>) and y-axis is
along the 7i3(73).

5P = (7.8)
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8

L3 Detector and data acquisition

The Large Electron Positron (LEP) Collider of the European Laboratory for Particle
Physics (CERN) was designed to produce Z° bosons and to study their properties in detail [1].
The LEP Collider is able to accelerate electrons and positrons to a center-of-mass energy of
up to 100 GeV in the first phase of operation, and up to nearly 200 GV in the second phase.

The accelerator is housed in a 26.7 km long tunnel roughly 50 to 150 meters under the
surface at the French-Swiss border near Geneva (Fig. 8.1).

After pre-acceleration, the electrons and positrons are concentrated in equidistant bunches
running in opposite directions. They collide in the middle of each of the four straight sec-
tions to produce Z° bosons, which subsequently decay into fermion-antifermion pairs. The
decays are observed in the sections that have been equipped with the following detectors:
L3, ALEPH, OPAL and DELPHI.

8.1 The L3 Detector

The data used in this analysis were obtained with the L3 detector [2]. The detector was
designed to measure the four-momentum of all secondary particles produced in the decay
of the Z° boson with emphasis on high-resolution measurement of electrons, photons and
muons. The detector is installed in a 12m diameter magnet, which provides a uniform field
of 0.5T along the beam direction. A perspective view of the L3 detector is shown in Fig. 8.2.

To describe the L3 detector in detalil, it is first necessary to define the coordinate system
used. The z-direction is defined to be along the beam pipe, in the direction of the electron
beam; the z direction is towards the center of the LEP ring, the y axis in the vertical
direction pointing upwards (see Fig. 7.2 of Chapter 7). In polar coordinates, # is the angle
from the positive z axis, ¢ the angle in the x — y plane measured anticlockwise from the
positive z-axis and r the absolute distance from the z-axis.

From the interaction point outwards, the following detectors are installed:
1) Silicon Microvertex Detector (SMD)

This detector has been installed inside the central track detector prior to 1994 LEP data
taking. It is closest to the beam pipe and provides a good r — p and 7 — z resolution over
the polar-angle range | cos# |< 0.93 and over the full azimuth.

R1
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Figure 8.2: View of the L8 Detector.
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Figure 8.3: View of the SMD ladders.

The SMD is built from two cylindrical layers of double sided silicon microstrip detectors,
covering 90% of the solid angle. Each layer consists of 12 modules, called ladders (see
Fig. 8.3). There are 24 ladders, each of which is built from two separate half-ladders. Each
half-ladder is built from two joined double-sided silicon sensors. The junction side of the
sensors has implantation strips, which measure an r — ¢ coordinate. There are other strips
on the sensor’s ohmic side, perpendicular to the junction side strips. They measure the r — 2
coordinate.

2) Central Tracking Detector

The design purposes of the central tracking detector are:

1) to detect charged particles, measure the location and direction of their tracks;

2) to reconstruct the interaction point;

3) to determine the transverse momentum and the sign of the charge of the particles;

4) to reconstruct the decay vertices of particles with lifetimes longer than 1073 sec.

The main part of the central track detector is the time expansion chamber (TEC) (see
Fig. 8.4). It is divided radially into an inner and outer chamber. In the TEC chambers, all
wires run parallel to the beam pipe. The inner chamber is divided into 12 sectors in ¢, the
outer chamber into 24 sectors. Each sector contains 8 anode wires (inner chamber) or 54
wires (outer chamber). The chamber is filled with a mixture of 80% CO; and 20% iso-C4Hy,
at a temperature of 291K and a pressure of 1.2 bar. A charged particle passing through
the wire chamber causes ionization in the gas of the chamber. The electrons, drifting in a
homogeneous electric field of 0.9 kV/cm towards the nearest anode wire, produce a signal
(so-called “hit”) on this wire (see Fig. 8.5).

The outer TEC chambers are surrounded by the Z-detector needed to improve the z-
determination of charged tracks. It consists of two cylindrical multiwire-proportional cham-
bers with cathode-strip readout. The cathode strips are inclined with respect to the z-
direction by 69° and 90° for the inner chamber, and by —69° and 90° for the outer chambers.
The Z-detector covers a polar-angle range of 45° < § < 135°.

3) Electromagnetic calorimeter (ECAL)

This detector measures photon and electron energies and their directions. To accurately
estimate the energy, ECAL has a high stopping power for these particles. It is made of
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Bismuth Germanate (BGO) crystals, which are used both as absorber and scintillator. The
calorimeter is sectioned into three main parts, barrel and two endcaps. The barrel surrounds
the TEC and covers the polar angle range 42° < § < 138°. The endcaps close the barrel in
both sides.

4) Scintillation counter system

The system is located on Uhe ouier side of the BCAL barrel. The design purposc of
the scintillation counter system is to distinguish genuine dimuon events from the cosmic
background. This system consists of 30 single plastic counters and covers the polar angular
range 34° < < 146°. An azimuthal coverage of 93% is achieved.

5) Hadron calorimeter (HCAL)

The energy of hadrons produced in the e*e™ collisions is measured by the total-absorption
technique in the electromagnetic and hadron calorimeters. The hadron calorimeter (HCAL)
is placed just outside the scintillation counter system. It is made of depleted uranium
absorber plates interspersed with planar proportional wire chambers and also acts as a filter
allowing only non-showering particles to reach the precision muon detector.

The HCAL consists of a barrel and endcaps (Fig. 8.6). The barrel covers the central
region (35° < @ < 145°) and has a modular structure consisting of 9 rings of 16 modules
each. The wires in alternating chambers are perpendicular to each other. This gives the
possibility of a measurement in both the z and ¢ direction.

The endcaps cover the polar-angle regions 5.5° < # < 35° and 145° < 6 < 174.5° over
the full azimuthal range. They extend the coverage of the hadronic calorimeter to 99.5% of
4.

6) Muon filter

The purpose of an additional muon filter is to add absorption capacity to the hadron
calorimeter, to ensure that only non-showering particles can reach the muon detector. The
muon filter is divided into eight azimuthal sections, each containing 6 brass absorber plates.

7) Muon detector

Ounly muons with more than around 3 GeV momentum and neutrinos can reach the muon
detector. The detector is built in the form of two ferris wheels, each containing 8 independent
units or octants covering the full azimuthal angle and providing measurements in the z —y
plane. Each octant contains three layers covering a polar-angular range 45° < g < 135°.
The z-coordinate measurement of the muon track is performed by four layers of Z chambers.

8) Luminosity monitor

The luminosity monitor is designed to measure the LEP beam-beam luminosity inside
the detector. The monitor consists of two electromagnetic calorimeters and two sets of
proportional wire chambers. These chambers are situated symmetrically on either side of
the interaction point. The luminosity is calculated by measuring the rate of small angle
Bhabha events.
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Figure 8.6: Perspective view of the L3 hadron calorimeter.

9) Trigger system and data acquisition

In order to maintain a reasonable tape writing rate, a complex trigger and data acquisitio
system is needed. Each of these systems consists of various logical levels. In the next sul
section we shall consider the trigger system in detail.

8.2 Data acquisition and reconstruction

8.2.1 Trigger system

The main goal of the L3 trigger system is to record the detector signals from each bea
crossing in which particles have come from the ete™ vertex. After each bunch crossing, tt
system decides whether or not an e*e™ interaction has taken place. There are three leve
of triggers in this system:

Level 1: The purpose of this level is a very fast decision on whether or not the event
interesting for further processing. This level takes the decision within 20 ps. In the case of
positive decision, all the characteristics of an event are stored. A positive decision results :
a dead time of 500us. Level-1 has components based on the electromagnetic and hadron
calorimeters, the luminosity monitors, the scintillation counters, the muon chambers, t]
SMD and TEC chambers.

Level 2: While the main aim of level-1 is to select interesting events, the level-2 trigge
reject background events selected by level-1. In this stage, an event can be analyzed mo
thoroughly. On a positive level-2 result, the event is processed to level-3.
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Level 3: The level-3 trigger system has more time available than the lower level triggers.
It performs more detail and complex calculations. The result of the calculations is a complete
set of data from all the detector components.

In the case an event passes all three trigger levels, it is stored onto tape. The event
typically demands 40 kB of tape storage.

8.2.2 Event reconstruction

The experimental data are stored in the form of raw information on tapes. To identify the
physical content of an event, it is necessary to reconstruct the particles originating from
ete™ collisions. .

The RELS3 program is the package used for the reconstruction of the L3 data. It reads
and decodes data written by the L3 on-line data acquisition and, then, reconstructs data
from each subdetector independently. After that, a special program AXL3 under the control
of REL3 performs the global reconstruction. AXL3 creates the following objects representing
the final hadrons:

1) Smallest resolvable clusters (SRCs): These objects are obtained by combining the
energy deposits in the electromagnetic and the hadronic calorimeters. Usually, the number
of SRCs does not coincide with the number of real particles (neutral and charged), since, for
example, one SRC may be the result of more than one particle.

2) Tracks: These objects are results of combining signals from SMD and hits found in
TEC. The tracks can belong only to charged particles. The information on the charge sign
of particles and ¢ — z coordinates of track momentum are available.

Besides, AXL3 performs a jet reconstruction from SRCs, vertex finding and muon can-
didate reconstruction using information from the muon chambers.

At the end, REL3 writes the reconstructed events on tapes. There are three main types
of event format, all of which are in the form of ZEBRA structures [4,5]:

1) The DRE (Data REconstructed) format. The DRE format contains both the
completely reconstructed information (charged tracks, SRCs, jets, etc.) and the raw detector
information (as TEC hits, channel-by-channel calorimeter data, etc.). These data occupy a.
large tape space (200Kb/event).

2) The DSU (Data SUmmary) format. It is similar to the DRE, except that a
lot of the raw detector information is dropped. Besides, the DSU is packed. Once the
event is read in, the packed information is automatically expanded in memory. A restricted
re-reconstruction of data is still possible from the DSU format.

2) The DVN (Data from the AVNT bank) format corresponds to a small data
set (~ 2 kb/event). This format contains only the main information on physical objects.
No detector specific information is available any more and no refit of the events is possible.
In contrast to the DSU format, the DVN format has the advantage that it may be ana-
lyzed extremely quickly. At the same time, this format, in principle, contains all physical
information on the events.

In our further analysis, we shall use the data set written in the DVN format. The main
reason for this is that all programs for the calculation of local characteristics of a data sample
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are rather complicated and demand a lot of computation time when processing a large even
sample.

8.2.3 Event simulation

High-precision measurements of LEP experiments require an understanding of the detecto
response to various signals. This cannot be performed analytically. Computer sinulation is
therefore, an important part of data analysis which allows us to understand:

1) the response of the detector to particle final states;

2) various systematic errors;

For this, one resorts to the Monte-Carlo (MC) techniques. The MC program generate
the eTe™ events in the following two steps:

Event generation

The goal of the event generators is to create the characteristics and a list of 4-vector
of outgoing particles according to a physical model of ete™ interactions (without detecto
characteristics). Since quantum mechanics gives us only probabilities for various outcome:
independent events are created with the help of weighted pseudo-random numbers. In thi
thesis we shall use the JETSET event generator. We have given a short description of thi
generator in Chapter 7 of the thesis.

Event simulation

Ideal detector simulation:

The events created by the event generator are processed through the detector simulatio
in the same way as the real experimental data. The purpose is to simulate the response ¢
sub-detectors to the generated final particles.

The L3 detector simulation program is called SIL3. It is based on the GEANT3 [:
package. The detector simulation program package GEANT3 contains the details of eac
subdetector geometry and performs a detailed simulation of all possible interactions of th
final-state particles with the materials of the detectors. This simulation program has th
element of randomness, because it includes random multiple scattering in random direction
interactions, decays, random noise of the detector, etc.

Real detector simulation:

Since the detector imperfections, such as dead cells and BGO crystals, disconnecte
sectors and inefficient wires vary with time during data taking, one needs to simulate tt
time-dependent detector to be able to do precise physics measurements. These imperfe
tions are simulated during the reconstruction of the simulated events, by simply ignorix
the signals from dead sectors and cells. The real detector simulation gives a better agre
ment between the data and the predictions from Monte Carlo than does the ideal detectc
simulation.

The Monte-Carlo events are written in DSU formats. Then, the MC events are usual
rewritten in the DVN format. However, considerable amount of the MC information
dropped in the DVN format. Since the re-reconstruction of the MC data is impossible nos
usually there are two DVN MC sets, one for ideal detector MC and one for the real detect:
MC simulations.
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Charged-hadron selection

The investigations presented here are based on a sample of hadronic events at a center of mass
energy of /s ~ 91.2 GéV, taken during the 1994 LEP running period. The reconstructed
hadronic events are stored in PDVN format (data in DVN format), a data set in which a
vast amount of raw detector information has been dropped (see previous chapter). However,
to obtain a relatively pure sample of hadronic events, an additional hadronic event selection
is needed.

The investigation of multiplicity fluctuations in ever smaller phase-space windows de-
mands a high degree of accuracy on the determination of the particle momentum and a good
two-particle resolution. We shall restrict our analysis to charged particles. While neutral
particles can only be detected in the calorimeters with lower resolution, charged particles
give an additional information both in TEC and SMD.

Hadronic events produced in an ete™ reaction are selected by the following two methods:

1) Energy deposition in the electromagnetic and hadronic calorimeters.

2) Momentum measurement in TEC and SMD.

In the following, we describe, successively, two sets of cuts based on this information.

9.1 Calorimeter-based selection of hadronic events

For the selection of hadronic events on the calorimeter information, we use only SRCs with
an energy larger than 100 MeV. After that, we set the following conditions

0.6 < EC/y/s < 14, (9.1)
13 < Ny < 75, (9.2)
Er/EC <04, (9.3)
Ey/E€ <04, (9.4)

where E€ is the total energy observed in the calorimeters, Ny is the number of calorimeter
clusters, Bt is the energy imbalance in the plane perpendicular to the beam direction, Ej| is
that along the beam direction.

The cuts defined above are approximately the same as those used in [1] for the 1993 data.
The signature of Z° — qg events is characterized by the total visible energy of hadronic events

o1
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which is always around the center-of-mass energy of the ete™ collision. Cut (9.1) is applie
to reject background events connected with loss of energy in non-sensitive regions of tt
detector, missing energy due to invisible neutrinos, the two-photon process, and smearin
due to the finite resolution of the calorimeters. Fig. 9.1a shows the distribution® for visib!
energy (after application of cuts (9.2) - (9.4) ). Cut (9.1) is indicated by arrows. Dat
are shown by dots and Monte Carlo (MC) by the histogram. The peak on the left of t!
low-energy cul is caused by 2 ' () events not simwlated by MC [2].

The distribution in the number of SRCs and cut (9.2) are shown in Fig. 9.1b. As ]
Fig. 9.1a, a small peak to the left of the low-multiplicity cut is caused by 7+77 () events |2
Since the number of SRCs is proportional to the number of produced particles, the cut ¢
the minimum number of clusters allowed in an event also rejects non-hadronic events havir
a low multiplicity. The physical reason of disagreement with MC programs for large Ny
caused by an incorrect description of hadronic showers in BGO crystals of the calorimeter. T
obtain better agreement with MC predictions, we apply an additional cut on the maximu.
number of clusters allowed, not applied in [1]. This cut rejects approximately only 1% of ti
events.

Since at LEP the laboratory frame coincides with the center of mass frame, hadron
events must be well balanced in energy flow. Hence, cuts (9.3) and (9.4) reject backgrour
(uranium noise, beam-gas, beam-wall interaction events) which, have no balanced energ
(see Figs. 9.2a,b).

In addition to the selection criteria (9.1) - (9.4), events are required to be contained
the barrel region of the calorimeters, i.e. 35° < § < 145°. This is achieved by the followir
requirement on the polar angle 65, of the event thrust axis determined from calorimet
clusters

| cos by, |< 0.74. (9.

After the calorimeter selection described above, a hadron sample consists of appros
mately 25% of the raw unselected events stored in the PDVN file.

9.2 Charged-particle selection

Further selection is carried out by means of the information on charged particles from TE
and SMD. For this, we require that the direction of the event thrust axis be within the fi
acceptance of the central tracking chamber (45° < § < 135°). This cut automatically tak
into account the acceptance of SMD, since it covers the polar angle range 21° < § < 15¢
Hence, we set the following condition on a hadronic event candidate

| cos 0, |< 0.7, (9.

where 67 _ is the polar angle of the thrust axis determined from charged tracks only.
As in the previous section, each cut presented below is performed on a sample of da
after application of all other cuts.

! After the application of all other cuts to be discussed below, the total number of events Niot is not ide
tical for the various distributions presented here. To avoid Ni.-dependence, all distributions are normaliz
to one. ’
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Figure 9.1: (a): Visible-energy distribution (closed symbols) compared with the corresponding
MC predictions. (b): Cluster-multiplicity distribution with corresponding MC predictions.
Data are represented by dots and MC by the histogram. All other cuts have been applied.
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Figure 9.2: Transverse (a) and longitudinal (b) energy-imbalance distributions (closed sym-
bols) compared with MC predictions (histogram). All other cuts have been applied.

9.2.1 Cuts on full events

The primary goal of the charged-particle cuts on full events is to further reduce background
arising from beam-gas, beam-wall interaction events and from e*e™ — [*{7(y) processes,
where [ denotes a charged lepton (e, i, 7).

1) Total-momentum cut
Fig. 9.3 shows the distribution of the total momentum sum of the charged-particle tracks,
normalized to /5. Here, we set the following condition

Py, ;| B
o _ Tl Bl g (9.7)

Vs s

where the sum runs over all tracks of an event, 7; represents the momentum of particle <.
Cut (9.7) is indicated in Fig. 9.3.
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Figure 9.3: Total-momentum distribution for charged-particle tracks compared with MC. A
other cuts have been applied.

2) Transverse and longitudinal-momentum cuts

As mentioned before, a hadronic event has to have a well balanced energy flow, and, hence
a well balanced sum of momentum components of tracks, perpendicular to and along th
beam axis. We can reject different contaminations that do not have a balanced momentur
sum if we set the following conditions (see Fig. 9.4)

il il Py | Pr | 22 D7 |
— = = < 0.75, ==
Prot > Ipi | Piot 2 |Pi |

To avoid total-momentum dependence, the quantities Fjj, Pr are normalized to Pi:.

< 0.75. (9.6

Ney /0.0TN o

SR SR R B S
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1 0.8
tot PP
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Figure 9.4: Longitudinal (@) and transverse (b) momentum imbalance distributions.

3) Cut on multiplicity of charged tracks

The charged-particle multiplicity N, distribution is presented in Fig. 9.5. Leptonic an
two-photon events have a low multiplicity. To remove these, the requirement Ng, > 5
applied. Good agreement between data and MC is observed.
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Figure 9.5: Charged-track multiplicity distribution and the corresponding MC prediction.
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9.2.2 Selection of charged tracks

In this sub-section we consider selection procedures for tracks within an event already selected
by the cuts described in the previous sections. The aim is to reject badly reconstructed tracks.

1) Selection on the number of hits

A charged particle passing through a wire chamber causes ionization in the gas of the
chamber. The electrons, drifting to the nearest anode wire, produce a signal (“hit”) on this
wire. Since TEC contains 62 wires (8 in the inner sector and 54 in the outer), the charged
particle can produce a maximum of 62 hits. A charged track candidate is regarded to have at
least 40 hits (Fig. 9.6a). As for previous years, a discrepancy between MC and data remains
due to an underestimation of missing hits in the inner sector of TEC.

2) Selection on span

A particle track is reconstructed by combining hits. It can happen that the reconstruction
program combines a track from hits belonging to different particles. In general, the mis-
reconstructed track has a smaller length than that from a true particle. The length of a



96 Charged-hadron selectior

DCA

Figure 9.7: Distribution of DCA.

track in terms of hits is the so-called span. It is defined as
Span = Wy, — Wi, + 1, (9.9

where W, is the wire number of the outermost hit and W, that of the innermost hit. Th
requirement for a track to have a span of at least 50 helps to reject mis-reconstructed track
(see Fig. 9.6Db).

3) Cut on distance of closest approach

Hadrons directly produced by Z° decay have to originate from the interaction vertex
A track can be extrapolated back to the vertex. The distance of closest approach (DCA
for the track is defined as the distance of the track to the interaction point in the plan
perpendicular to the beam direction. The requirement of the DCA to be less than 5mn
helps to correctly identify hadrons produced in the given reaction (Fig. 9.7). There are smal
discrepancies between data and MC which are not yet understood.

3) Cut on transverse momentum

A cut on the transverse momentum of a track with respect to the beam direction i
applied because tracks with low transverse momentum cannot be measured accurately i
TEC and cannot enter the calorimeter. To avoid any reconstruction error, each track i
required to have a measured transverse momentum larger than 100 MéV /ec.

4) Cut on the azimuthal angle py between two neighboring tracks

According to MC simulation [3, 4], hadrons resulting from 7 decays in ete™ — 757
reactions have a large value of angle ¢, between two neighboring tracks in the R — ¢ plane
By accepting events with ¢, less than 170°, the background from 7 decays is suppressed (se
Fig. 9.8a).

5) Cut on the polar production angle 0

One of the features of the 1994 data stored in PDVN is the presence of small symmetrice
peaks at small forward and backward production angle § (see Fig. 9.8b). These peaks ar
present also on the detector level of the MC program. Such a behavior of the distributio
is expected from a shortcoming in the reconstruction programs for SMD where two hit
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belonging to different particles are considered as one track almost parallel to the beam axis
[5]. Since we use the PDVN data set for hadronic events, in which the detector information
is very limited, the following cut is applied to eliminate these mis-reconstructed tracks

| cosd |< 0.88. (9.10)

It should be noted that we, of course, also reject real tracks. However, the number of such
tracks is very small (less than one per cent) and the cut is applied for the data and MC.

6) Cut on azimuthal angle ¢

During the 1994 run, the fourth outer sector of TEC had a limited efficiency (see the dip
near o = lrad in Fig. 9.9). To obtain a good agreement with the MC results, we included
this dip in the simulation. Since we used the PDVN event format, we have done this a
posteriori, randomly rejecting a corresponding fraction of tracks in the sector 0.7 < ¢ < 1.0
rad. Analogously, we have simulated a small dip in the sector —2.0 < ¢ < —1.6 rad, which
is also a result of bad efficiency in the corresponding TEC sector.
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Figure 9.10: Inclusive distributions for different variables measured with respect to the thrus
azis.

9.3 Inclusive distributions

Before the study of local properties of distributions, let us consider single-particle inclu
sive distributions. A comparison between the inclusive distributions for uncorrected dat:
and detector-level MC provides the first test of the validity of the selection procedure de
scribed above. The event-thrust axis calculated for final-state hadrons is used as the even
axis for the calculation of g, pr, @, 6.

The inclusive phase-space distributions for the given variables are presented in Fig. 9.10
The data are represented by full symbols. All distributions agree well with the MC or
detector level. Only a slight systematic shift is seen for the rapidity distribution. It cause:
no systematic error for the calculation of local characteristics of the sample, since bot]
MC and data distributions will be transformed to flat distributions. The asymmetry i
Figs. 9.10a,d is due to the definition of the positive axis direction.
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Resolution

A measurement of local multiplicity fluctuations involves counting particles in small phase-
space bins according to a given algorithm. To avoid systematic bias arising from limited
detector resolution, one should find, first of all, the resolution of the L3 detector. The
knowledge of this quantity will help to choose a minimum bin size for our study of local
fluctuations.

For the determination of the resolution in the various variables used in our analysis, we
use the Monte-Carlo technique [1]. Let X be the true value of a variable calculated from
an event generated by Monte Carlo (MC). After generation according to present theoretical
knowledge (generator level of MC), all tracks resulting from this event are processed through
a simulation of detector properties (detector level of MC). In this stage, the program SIL3,
based on the GEANT3 package, corrects the event for particle interactions with the detector
material, limited resolution and acceptance of the detector and various detector imperfec-
tions. After the detector simulation, the MC event is reconstructed in the same way as a real
LEP event. Thus, we obtain reconstructed MC events, which can be used for the calculation
of the same variable after distortion by detector effects. Let X' be the value of this variable
obtained from the event on the detector level of MC. Then, for a given event, one can find
the difference

X=X -X. (10.1)

All 6 X are histogramed for a sufficiently large sample of MC events to grant a distribution
for the resolution.

The resolution, obtained as described above, was investigated for the 1993 data in [1],
when the SMD was not yet installed inside the TEC. Providing r — ¢ and r — z coordinate
measurements over the polar-angle range | cosd |< 0.93 and over the full azimuth, the SMD
is expected to improve the resolution for the 1994 data. As we shall see below, this leads to
a better resolution for all variables used in our analysis. In the following, we will describe
the resolution in various variables, compared to those obtained for 1993 in the earlier study.

N1
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10.1 Resolution of variables with respect to the bean
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Figure 10.1: The resolution of various distance measures calculated with respect to the beg
azis. The dashed lines show the 1998 MC, the solid lines represent the 1994 MC.
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The solid lines show the histograms for a track pair with 1.46rad < 6 < 1.66rad (appro
mately perpendicular to the beam direction). The dashed lines show the histograms for tra
pairs with 8 in the ranges 0.5rad < § < 0.97ad and 2.17ad < 6§ < 2.5rad.

For our analysis, we will use the following two-particle distance-measure variables:
1) rapidity difference y12 = |y1 — ¥2| between two tracks;

2) azimuthal angle 15 = |1 — @3] between two tracks;

3) transverse momentum difference pr12 = |pr1 — pr2| between two tracks.

Each of these variables is calculated, first using the generator-level MC sample (this gi
the value of X in (10.1)), and then using the detector-level MC (the value X' in (10.1)). T
differences 6 X are histogramed after a run through 50.000 hadronic events of the JETSI
7.4 PS model. Fig. 10.1 shows the histograms obtained for the three variables. Since
histograms are normalized to unity, they represent, in fact, the probability density P(6
of a deviation 6X from X after the L3 detector simulation. The dashed lines represent t
histograms for the 1993 data, the solid lines those for the 1994 data. All histograms have la:
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tails. Except for these tails, we assume that all these distributions, at least approximately,
have Gaussian form, i.e. they result from a large number of independent contributions (the
Central Limit Theorem). The value of half-width at half-maximum (HWHM) H,, which
approximately equals the variance ¢ of the Gaussian distribution (Hs = 1.18¢), can be used
as a characteristic of the resolution.

It can clearly be seen from Fig. 10.1 that the resolution is better for 1994 than for 1993,
in particular for 5, but also for 5!, 'I'he HWHM values obtained for these variables from
Fig. 10.1 are listed in Tab. 10.1. The statistical errors were estimated using three samples
with equal number of events.

It should be pointed out that the resolution obtained above is an average, since the
value of HWHM for each variable is-affected both by the values of the distance measure and
the position of the pair in the corresponding phase-space covered by TEC. As an example,
Fig. 10.2 shows the dependence of double-track resolutions on the angle # defining the posi-
tion of a track pair in TEC. The resolution for rapidity is slightly better for pairs emitted
at an angle # ~ 45° to the beam line, than perpendicular to the beam. For azimuthal-angle
resolution, the situation is opposite. The resolution for transverse momentum is found to be
almost #-independent.

10.2 Resolution of variables with respect to the thrust
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Figure 10.3: Resolution of distance measures calculated with respect to the thrust axis. The
dashed lines represent the 1993 MC, the solid lines show the 1994 MC.

Since our main goal is to study fluctuations inside jets, we will pay more attention to the
resolution of variables calculated with respect to the thrust axis.

Fig. 10.3 shows the histograms for the resolution of the variables used in Fig. 10.1, but now
defined with respect to the thrust axis. The last two lines of Table 10.1 give the HWHM

1To avoid a bias connected with different statistics and selection procedure for the 1993 and 1994 runs,
we have repeated the calculations for the two-track resolutions for 1993 using the same cuts as for 1994. Our
results are rather close to those obtained in [1]. The difference is mainly due to the smaller number of MC
events (2500) used in {1]. ‘
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values of these histograms. As we can see, the resolution is worse for the variables wit
respect to the thrust axis than for those defined with respect to the beam axis. Moreove
in contrast to the resolution calculated with respect to the beam, the HWHM values ai
rather similar for all distance measures. This is mainly due to the fact that this resolutic
involves the knowledge of the resolution in all three variables calculated with respect to tt
beam axis. Besides, the systematic uncertainties in the determination of the event thru:
may affect the resolution.
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Figure 10.4: Two-particle distance measures calculated with respect to the thrust azis c
generator level (solid lines) and detector level (dashed lines) of MC. The total number
events is the same for both cases (50.000 MC events). The histograms are presented witho
normalization to unity.
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Figure 10.5: Ratio of the distance measures on detector-level MC to generator-level MC
a function of distance between two tracks (50.000 MC events).

Fig. 10.4 represents the number of pairs as a function of the distance measures 312, ¢1
pr12 obtained on generator-level MC (solid lines) and on detector-level MC (dashed lines
The number of events for both distributions is 50.000. As we see, distortions of the tw
particle distances from JETSET 7.4 are visible and have a quite complicated character.

To study distortions from two-track separation after detector simulation for a small valr
of the distance measures, let us consider the ratio R of the number of pairs on detector-lev
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Figure 10.6: Resolution of rapidity difference defined with respect to the thrust axis for the
three domains of y (on -generator level of MC): a) —2.2 < y < —1.8, Hy = 0.060(5); b)
—02 <y < —0.2, Hy=0.025(7); ¢) 1.8 <y < 2.2; Hy = 0.045(5).

to generator-level MC. Fig. 10.5 shows the value of R as a function of the distance between
tracks 412, @12, Pr12- For all distance measures, with the exception of large pr12, R < 1, since
the number of tracks on the detector level of MC is smaller than that on the generator level.
For all distance measures, the value of R decreases with decreasing distance between tracks,
because the detector suffers from a limited two-track separation and this experimental bias
increases with decreasing distance between tracks.

From the last line of Table 10.1 we deduce that the resolution of the distance measure
is 0.05 for 41, and above 0.03 for the other two variables. Of course, the smallest bin size
in the analysis of fluctuations will have to be larger than this resolution. From Fig. 10.5 we
can see that track losses are still acceptable and can be correctable.
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Figure 10.7: Resolution of distance measures calculated with respect to the thrust azis.
The solid lines show the histograms for |cosfu,| < 0.1, the dashed lines correspond to

| cos Oyne| > 0.6.

The HWHM obtained in such an approach are averages, because the value of 6X depends
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y p,rad pr.GeV/c |

with respect to the becam axis
1993 data | 0.07 £ 0.01 (0.2540.05)- 1072 0.028 £ 0.002
1994 dala | 0.01 £0.01 {0.10£0.05)-10"* 0.025 £ 0.002
with respect to the thrust axis
1993 data | 0.10 4+ 0.02 0.12+0.01 0.045 + 0.005
1994 data | 0.05 £ 0.02 0.03 £0.01 0.031 + 0.005

Table 10.1: H, for different variables calculated both from 1998 and 1994 MC evenis.

on the variable value in the corresponding phase space covered by TEC. The dependence
the HWHM is not very strong, but still visible. As an illustration, we present in Fig. 10
the resolution of rapidity calculated with respect to the thrust axis for different rapidi
domains (1994 MC). Fig. 10.6(b) shows the distribution with the smallest value of HWH]!
This figure corresponds to the central region of the rapidity distribution, i.e to the bro:
valley in the single-particle density (—0.2 < y < 0.2).

Furthermore, the HWHMSs weakly depend on the value of the distance measures y;
@12 and pria. Table 10.2 shows the HWHM for various cuts on the distance measure
These results were obtained in one measurement, so the values of HWHM are given witho
statistical errors, but these are expected not to be very large.

Moreover, the HWHM obtained are affected by the direction of the thrust axis in i
dividual events. In Fig. 10.7, we present two possible situations, when the thrust axis
almost perpendicular (| cosfu,| < 0.1) and at an angle (| cos | > 0.6) to the beam lir
The resolution of ¢, and prio is better for the second case. This is due to construction
TEC, in which wires are stretched parallel to the beam direction.

We recall that, initially, the L3 collaboration has optimized its detector for the be
precision on electrons, muons and photons. As we see now, the resolution of rapidity defin
with respect to the thrust axis is quite similar to that for the DELPHI detector, where ts
tracks could be resolved if their rapidities differed by more than 0.04 units {2]. This mea
that, using the SMD for the 1994 run, the L3 detector has become a good tool to measu
accurately charged hadronic tracks.

10.3 Resolution of the squared four-momentum diffe:
ence
For the study of local fluctuations to be presented below, it is also necessary to find t

resolution for the squared four-momentum difference Q2%, between two tracks. This Lorent
invariant variable is defined as

Q= —(m — )%, (10.
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|

(412 <0.1[0.1< 95, <05] 05 < gy < 1.5

Y12 0.04 0.035 0.045
P12 0.035 0.025 0.035
priz | 0.031 0.030 0.030

| |pra<0.1]01<priy <05[05<pry <15

vz | 0.04 0.05 0.06
P12 0.035 0.03 0.03
P12 0.03 0.035 0.07
| , P12<01]101<p13<05][0.5<pa<15
Y12 0.035 0.025 0.04
P12 0.04 0.03 0.04
PT12 0.03 0.03 0.03

Table 10.2: H; for variables with respect to the thrust axis for various cuts on distance
measures calculated on generator-level MC.

with p; and p; being the four-momentum of particles 1 and 2, respectively. The histogram
for 6Q%, in Fig. 10.8 shows that the resolution for the 1994 MC run is better than that for
1993. The HWHM is equal to 0.011 & 0.003 GeV?/c? for 1994 (0.020 + 0.003 GeV?/c? for
1993).

P(3Q%)
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- 1 1 1 1 1 L L i
0-0.1 -0.075 -0.05 -0.025 0 0.025 0.05 0.075 0.1

5Qb

Figure 10.8: Resolution of the squared four-momentum difference Q2,.

The obtained HWHM are an average characteristic of the resolution of the squared four-
momentum difference. In contrast to the distance measures defined with respect to the
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Figure 10.9: Two-track resolution for the squared four-momentum difference for differes
cuts on Q%, calculated on generator-level MC: a) Q%, < 3-1073; b) 3-107% < @2, < 0.0:
c) 0.03 < Q%, < 0.3; d) Q% > 0.3 (in units of GeV?/c?).

thrust axis, this value strongly depends on the value of Q%,, itself. In Fig. 10.9, we preser
the dependence of the resolution for @%, on the value of @%,. The best resolution is obtaine
for small values of Q%,. The corresponding HWHM are given in Table 10.3. Note, that
asymmetry of the distributions increases with decreasing of Q%,.

| | Hy |

0<@%<3-1073 (0.5+0.3)-1073
3-107% < Q?%, < 0.03| (0.25+0.6)-1072

0.03< Q3% <03 (0.70 4 0.04) - 1072
0.3 < Q% (0.40 + 0.04) - 107}
all @3, (0.11 £ 0.03) - 107!

Table 10.3: Hy as a function of Q2, calculated on generator-level Monte Carlo, in units
GeV?/c2.

As we have seen, the distance between the two tracks on the detector level is not tl
same as that on the generator level; for Gaussian smearing of track parameters, the prob.
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bility for distance measures to be distorted by less than one HWHM is approximately 0.8.
In practice, this probability is less than 0.8 due to non-Gaussian tails in the resolution.
However, if the distance between two tracks is smaller than some value (which is much less
than the corresponding HWHM), then the two tracks are interpreted as one track and we
completely lose the information on fluctuations. Hence, it is important to know the smallest
distance between two-tracks, i.e., two-track separation at which the two particles can still
be distinguished by the detector.
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Figure 10.10: Number of pairs as a function of the squared four-momentum difference for the
generator level of MC (solid line) and for the detector level of MC (1994). Both histograms
are presented without normalization to unity.
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Figure 10.11: Ratio of pairs on detector-level to generator-level MC as a function of Q3,.

To find the smallest distance for Q2,, we present in Fig. 10.10 the number of pairs as a
function of — In @%, for the generator level of MC (solid line) and the same distribution on the
detector level of MC (dashed line) for 1994. The number of events is the same (1.5 - 10%) for
both cases. For —In @?%, > 8, the number of particle pairs becomes smaller on the detector
level than on the generator level. Then, the distribution on detector-level MC goes to zero
as the value of —In Q?, increases. The value of two-track separation, therefore, is equal to
—InQ?% =9or @3, =12-10"*GeV?/c%

The peaks presented on the histogram of the generator level of JETSET 7.4 PS model
are found to be a consequence of resonance decay. Due to the detector smearing, such peaks
are too small to be visible on the detector level.
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Fig. 10.11 shows the ratio R of the number of two-particle tracks on detector-level t
generator-level Monte Carlo as a function of Q%,. In contrast to y12 and @iz in Fig. 10.f
the distribution has a tendency to increase with decreasing Q?, for not very small @3, an
then drops very rapidly when Q?, becomes too small. Note that the pris distance measur
has the same feature (see Fig. 10.5).

— hadrons

<

number of pairs

PR

0.005 0.01 0.015 0.02

2
Q12

Figure 10.12: The number of pairs for different charged-particle combinations as a functic
of Q%,. The lines represent the number of hadronic pairs, the hatched areas indicate 1l
contributions of electrons and positrons. The total number of events is 800k (generator lev
of JETSET 7.4 PS).

To define the minimum value of Q%, to be used for the study of local fluctuations, v
shall use the HWHM corresponding to the region 0.03 < @2, < 0.3. This value is therefo
chosen to be 0.007. The reason for this is that the smallest value of @%, has to be lar
enough to ensure that the contribution to the local fluctuations from the Dalitz ete™ pai
is small. To illustrate this point, Fig. 10.12 shows the JETSET 7.4 PS predictions for t!
number of hadronic pairs (solid lines) and e*e™ pairs (hatched areas). The figure indicat
that ete™ Dalitz decay products are the major source of the observed signal in the regic

2, < 0.005 — 0.007 GeV?/c®. Hence, our measurements will not be affected by this effect
we require @2, > 0.007 GeV?%/c?. In addition, this cut reduces possible contaminations fro
photon conversion not correctly reproduced in the simulation.
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10.4 Determination of the smallest bin size

| | H Hs H, Hs
Y12 0.05 £+ 0.02 0.07 £ 0.03 0.09 + 0.03 0.10 £ 0.04
P12, rad 0.03 £0.01 0.04 £0.01 0.05 + 0.02 0.06 + 0.02
By, rad 0.0134+0.001 0.018+0.01 0.022+0.002 0.026 £ 0.002
pr12, GeV/e | 0.031 £ 0.005 0.043 £ 0.007 0.054 £0.008 0.062 £ 0.01

Table 10.4: H; of the variables defined with respect to the thrust axis (1994 MC).

To reduce possible systematic bias arising from limited detector resolution, one needs to
estimate the minimum bin size for the study of local fluctuations. Since the calculations
of the NFMs and BPs involve the knowledge that many particles are in the same bin, we
need to know the many-particle resolution. We restrict ourselves to not more than a 5-track
resolution. In fact, this is enough for the determination of the smallest bin size for the fifth-
order bunching parameters. We will also use such a 5-track resolution for the calculation
of normalized factorial moments. However, strictly speaking, one should remember that an
exact calculation of even the lowest order of NFMs involves the knowledge of the resolution
for more than five particles.

The easiest way to estimate the resolution of many tracks is again to assume a Gaussian
form of the resolution functions for two tracks. If we have i independent random variables
distributed with an equal variance oy according to the Gaussian law, then the distribution
for the sum of these variables has the following variance

o= fiol. (10.3)

According to this property of Gaussian distributions, the HWHM H; for i-particle resolution

has the following form
H; ~ /(1 —1)HZ. (10.4)

The values of H; are given in Table 10.4.

The value of Hs obtained for a given variable gives us the smallest bin size to be used for
further calculations. In addition to the variables studied before, in Table 10.4 we also give
the resolution of 6, defined with respect to the thrust axis.
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Transformation of variables

11.1 Motivation

In the ideal limit, when the results of the analysis are independent of the total number of
experimental events and the phase-space interval ¢ tends to zero, the choice of a particular
variable to study local fluctuations is irrelevant. In practice, however, it is necessary to con-
sider a restricted number of events and a non-zero interval 6. In this case, the experimental
results strongly depend on the shape of the single-particle spectrum [1]. In this section, we
begin with an explanation of the reason for this to occur.

s Iy
Q.
T(5.)
5, 8. 5. 81y

Figure 11.1: Bin-splitting measurement of local fluctuations for a non-flat single-particle
density

Let us consider some characteristic T'(6,,) of local fluctuations in the small phase-space
interval 6,, of a particular variable Y. The index m = 1,..., M defines a given bin, with M
representing the total number of such bins (see Fig. 11.1). In general, the phase space of the
variable Y can be non-uniformly populated by particles. This means that the single-particle
distribution (or inclusive density)

1 dn
Ney dY .

p(Y) = (11.1)

113
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(Ney is the total number of events in the sample, n is the number of particles) in ¥ can be
any function of Y.

Let us consider the simplest choice, T(6;) = T'(63) = ... = T(6pr), i-e., T(6,,) is indepen-
dent of the position of the bin considered. This case corresponds, for example, to factorial
moments with bin-dependent local (“vertical”) normalization F, = (nl4)/(n,,)?, because
these quantities are approximately independent of the average multiplicity in the bin m.
In practice, of course, the values of T(6,,) do not agree exactly for different bins m due to
experimental errors. Traditionally, to obtain the most probable value, one averages over al
bins m of equal size 6, = 6

1 M
T(6) = i }_:1 T (6rn)- (11.2)

If we assume that the measurements for different bins T'(6,,) are independent®, then the
statistical error (variance) for T(6) can be estimated as follows

M
AT(6) = % > AT (113

where AT (6,,) is the statistical error of T'(6,,).

Obviously, we can perform an experimental calculation of T'(6,,) only for events which
contain at least two particles in the bin 4,,. Because of the limited statistics, the number o
events to be used for our calculation of the T'(6,,) varies with the position of the bin. For
example, for the calculation of T'(6,,~), we can use only a small fraction of the total events,
while the calculation of T'(6,,) involves a much large number of events. Hence, the statistica
error for T'(6m~) is larger than that for T(6,). Clearly, this affects the final calculation of
the statistical error of T'(6), and the total statistical error AT(6) may be rather large.

The problem becomes even more acute when one studies the behavior of quantities which
are affected by the shape of the phase-space density. For example, the usual factorial mo-
ments (nlfl) without local normalization depend on the average local multiplicity (n) ir
the given bin, and, hence, on the shape of the inclusive density. Then, the expression
T(61) = T(6) = ... =T(bn) is not correct, even on the theoretical level. In this case, the
method (11.2) of increasing statistics by bin averaging cannot be meaningful: both T(6) and
AT(6) strongly influenced by the form of the single-particle inclusive density.

Our conclusion is that the best choice of a variable for the experimental calculation of local
properties of the sample is one having a flat phase-space distribution. Since most variables
of interest to us have non-flat single-particle densities, we have to resort to a transformation
of these variables to new “cumulative” variables with a flat single-particle spectrum.

11.2 Omne-dimensional cumulative variable
A method of transformation of any one-dimensional variable ¥ into a cumulative variable

X (Y') with the desired flat one-particle phase-space distribution has been proposed indepen-
dently by Ochs [2] and by Bialas and Gazdzicki [3].

1This is a rather strong assumption, since, as a rule, there are correlations between different bins.
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Let us assume that the single-particle density in a variable Y is measured and given by
the inclusive distribution p(Y’). Then, the cumulative variable is defined as

-1 Y / / ¥inax v ’
Xy)=cC /Y p(Y')aY", c:/y’ p(Y')dY", (11.4)

where Y, and Yiax are the lower and upper phase-space limits of the variable Y.
The variable X (V') has a flat density for any Y by construction, since
-1

90X\ " ix = cax, (11.5)

ay

AV )a¥ = (v () |52 ax = o (0|

i.e. p(X) = C = const. From the definition (11.4) it follows that

0< X(Y)< 1. (11.6)
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Figure 11.2: One-dimensional Biatas-Gazdzicki-Ochs transform for the inclusive py dis-
tribution calculated with respect to the thrust azis. The distribution in the corresponding
cumulative variable is shown only for MC.

In Fig. 11.2 we illustrate this method for the inclusive py distribution obtained from
MC events. As we can see, transformation (11.4) stretches the highly populated phase-
space intervals of the original variable and squeezes scarcely populated intervals. For our
calculation of p(pr), we use 10* bins in the original variable Y.
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Fig. 11.2 illustrates that the method is not perfect. Though the distribution in variabl
X (pr) is relatively flat, it contains fluctuations. The fluctuations are larger for high par
ticle density in the original variable, since a relatively small number of bins in ¥ variabl
contributes and the effect of non-matching bin boundaries is strong there.

11.3 Multi-dimensional transformation

% “‘\
P [N
N

o 5

y—pr inclusive distribution y—0r cumulative distribution

Figure 11.3: Two-dimensional Ochs transform.

When increasing the number of dimensions, the problem of non-uniformity of the phase
space distribution becomes of primary importance. The method described above can b
naturally extended to multi-dimensional phase space. To find cumulative variables X (y)
Xa(pr), X3() for which p(X;, Xs, X3) is constant, Bialas and Gazdzicki proposed to perforn
the transformation according to the following algorithm [3]

(y,p%@) - (thT:QD) - (X11X27 99) - (X15X27X3)7 (117

each time using the density of particles in the corresponding set of variables.

From an experimental point of view, such a method is rather difficult to carry out du
to computer memory limitations. This is because, first of all, we should find the thre
dimensional inclusive distribution p(y, pr, ¢) calculated in a very fine grid. This can be don
by means of a three-dimensional array. To obtain stable results on the normalized factoria
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moments and bunching parameters, each dimension of this array must be considerably larger
than the total number of bins used for the calculations of the local fluctuations.
However, if the three-dimensional inclusive density factorizes, i.e,

p(y, pr, 0) = p(y) p(pT) (%), (11.8)

then the oue-dimensional definition (11.4) can be applied separately to the independent
variables y, pr, ¢ (Ochs method [2]). This (rather strong) assumption leads to the following
three independent transformations

p(y) — o(X1), p(p) — p(X2), plp) — p(X3). (11.9)

The methods of Ochs and Biatas - Gazdzicki have been compared in [4]. It has been
found that both lead to approximately the same results for the behavior of the NFM. So, in
view of its simplicity, we will only use the Ochs method here.

As an example of the Ochs transformation, we consider the two-dimensional transforma-
tions for the variables y, pr, @ with respect to the thrust axis. Fig. 11.3 shows the corre-
sponding two-particle distributions before (left figures) and after the Ochs transformation
(right figures). In the latter, the two-dimensional distributions are almost flat. Nevertheless,
some residual structure due to correlations between the variables is visible in the transformed
distributions. This effect can exert a substantial negative influence in a higher-dimensional
case. Further, for the three-dimensional study, we shall therefore only use quantities which
do not require bin splitting and the Ochs transformation.

As a final remark, note that after the Bialas-Gazdzicki-Ochs transformation, the defini-
tion of the smallest bin size according to two-track resolution becomes a non-trivial task. If
one splits the transformed distribution into bins with equal size, the actual bin size of the
original variable will be smaller for large single-particle density and larger for small density.
To reduce possible systematic bias arising due to insufficient detector resolution for a large
single-particle density of the original variable, we will use the five-particle resolution instead
of the two-particle one.
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Experimental Analysis of Local
Fluctuations

In this chapter, we present an experimental investigation of local fluctuations in the final-
state hadron system produced in Z° decays at /s ~ 91.2 GeV. The final-state hadrons
were recorded with the L3 detector during the 1994 LEP running period. The calculations
are based on approximately 810k hadronic events selected by the procedure described in
Chapter 9.

For comparison with the experimental data, two Monte-Carlo (MC) samples of mul-
tihadronic events are generated with JETSET 7.4 PS with initial-state photon radiation.
The first sample contains all charged final-state particles with a lifetime larger than 10 %
(generator-level sample). The second, detector-level sample, includes distortions due to de-
tector effects, limited acceptance, finite resolution, long-lived resonances decaying within the
detector and the event selection. The events are processed with the same reconstruction pro-
gram as used for the experimental data. Both generator-level and detector-level MC samples
have the same statistics (810k hadronic events).

In the experimental analysis, we shall use both normalized factorial moments (NFMs)
and bunching parameters (BPs). A corrected NFM or BP is found by means of the following

correction procedure
cor raw M(;gen
Dy = Cy D&, C,= ik (12.1)
q

Here, M and M,fe‘ symbolize an NFM or BP of order ¢ calculated from the generator-
level and detector-level MC samples, respectively. D;*" represents an NFM or BP calculated
directly from the raw data, D*" those corrected by Cy. The same correction procedure has
been used in [1-3].

12.1 Motivation

Experimentally, local fluctuations in e*e™ processes have already been studied by the TASSO
[4], HRS [5], CELLO [6], OPAL [3], ALEPH [7], DELPHI {1,2] and L3 [8] Collaborations.
The data do exhibit a power-like rise of NFMs with decreasing 6, especially in two and
three dimensional variables. The conclusion has been reached that such a phenomenon

110



120 Experimental Analysis of Local Fluctuatior

is a consequence of the multi-jet structure of events, i.e., groups of particles with simil
angles resulting in spikes of particles as seen in selected phase-space projections. It he
been found that for the statistics used at that time (ALEPH - 80k, DELPHI - 78k, OPA
- 140k, L3 - 248k) current MC models can adequately describe the data, even withot
additional tuning. Important exceptions have, however, been found by OPAL (3] (in rapidit
defined with respect to the sphericity axis) and DELPHI [2] (for restricted charge-multiplicit
and pr regions). A direct measurement of the multiplicity distribution £,(¢) in restricte
rapidity intervals é has been undertaken by ALEPH [9] using a sample of 300k hadron
events. The JETSET 7.3 PS model is found to describe the data, though the model produc
slightly broader multiplicity distribution for small . The predictions of HERWIG 5.6 mod
significantly disagree with the data.

Recently, it has been realized, however, that the factorial-moment method poorly reflec
the information context of the local fluctuations, since the NF'M of order ¢ contains a trivi
contamination from lower-order correlation functions [10]. As a result, rather different ever
samples can exhibit a very similar power-law behavior of the NFMs. The fact that subt
details in the behavior of P,(6) are missing, together with the small statistics used at th:
time, may partly explain why MC models can reasonably describe the local fluctuations.

Cumulants are a more sensitive statistical tool (see [10] and references therein). Howeve
their measurement is rather difficult and was rarely attempted. Besides, the cumulants a
expected to be influenced by the statistical and systematical biases to even larger degre
than the NFMs, since they are constructed from the factorial moments of different orders

To study the local multiplicity fluctuations in more detail, in addition to the NFMs, v
shall use the BPs which are more sensitive to variations in the shape of the local multiplici
distribution P,(6) with decreasing §. The higher sensitivity of the BPs is due to the abili
of BPs to resolve P,(6) without the redundant information from the overall shape of th
distribution. Moreover, they are not affected by the statistical bias from finite event samp
and the systematical bias due to insufficient resolution. As we have noted in Chapter 11, tl
latter bias becomes even more acute for the Biatas-Gazdzicki-Ochs transformation adopte
throughout this thesis.

12.2 Experimental definitions
In order to increase the statistics and to reduce the statistical error on the observed loc
quantities when analyzing the experimental data, we use the bin-averaged NFMs and BP

1) Horizontal NFMs:
The NFM of order ¢ is given by the standard definition widely used in high-energy physi

_ 1 & (nld) d_
F,(6) = Mmzﬂ ) =0, —1) ... (N — g+ 1), (12.

where n,, is the number of particles in bin m, (#) = N/M, N is the average multiplicity f
full phase space, M = A/§ is the total number of bins, and A represents the full phase-spa
volume.



12.2. Experimental definitions 121

Figure 12.1: Ezample of the Grassberger-Hentschel-Procaccia counting topology for squared
four-momentum variable Q%,.

2) Horizonial BPs:
We shall use the following definition of the horizontal BPs [11,12]:

A7 Vi M
m(6) = LMD me) = 57 3 Nm.5) (123

m=1

where N,(m,6) is the number of events having ¢ particles in bin m and M has the same
meaning as it has for the NFMs.

Both quantities (12.2) and (12.3) are equal to unity for purely independent particle
production following a Poissonian multiplicity distribution in restricted bins.

Note that the definitions presented above can be used in practice for a flat single-particle
density distribution. To be able to study non-flat distributions, we have to carry out a trans-
formation from the original phase-space variable to one in which the underlying distribution
is approximately uniform (see Chapter 11).

3) Generalized integral BPs:
The bin-splitting method of local-fluctuation measurement considered above suffers from
the following shortcomings:

a) Using this method, we lose information on spikes that happen to be divided by bin
boundaries.

b) Not all variables can be used for such calculations. For example, the squared four-
momentum difference Q%, = —(p; — p2)? cannot be used in the bin-splitting method.

c) For high-dimensional calculations, the statistics actually used is very limited.

Recently, a new type of bunching parameter has been proposed that makes use of the
interparticle distance-measure technique [12]. To study fluctuations of spikes, we shall con-
sider the generalized integral BPs using the pairwise squared four-momentum difference
Q%, = —(p1 — p2)*. In this variable, the definition of the BPs is given by

q Hq(Q%2)Hq—2(Q%2)

Xq( %2) = q—l Hg—l( %2) (12‘4)

where T1,(Q?%,) represents the number of events having g spikes of size Q3,, irrespective of
how many particles are inside each spike. To define the spike size, we shall use the so-called
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Figure 12.2: NFMs of order 2 to 5 as a function of —Inbw. The dots represent the dat
and the lines are the predictions of MC models [8].

Grassberger-Hentschel-Procaccia (GHP) counting topology [13], for which a g-particle hype
tube is assigned a size ¢ = Q?, corresponding to the maximum of all pairwise distances (s
Fig. 12.1). For purely independent production, with the multiplicity distribution characte
ized by a Poissonian law, the BPs (12.4) are equal to unity for all g.

4) Generalized differential BPs:

The main advantage of using (12.4) is that, in contrast to the bin-splitting definitic
(12.3), local fluctuations can be studied in the squared four-momentum difference Q%
—(p1 — p2)* between two particles. However, for large Q%,, the generalized integral BPs ha;
the following shortcoming: they are strongly influenced by the global structure of multi-j
events [12]. Since we are interested in the spike fluctuations inside jets, this effect distor
the information content to be revealed with the help of the integral BPs.

For sufficiently large experimental statistics, such a drawback can be largely avoided t
making use of the generalized differential BPs. The generalized differential BPs have be
introduced for a selective study of multiplicity fluctuations of spikes with a well-defined fixe
particle content. For two-particle spikes, the generalized differential BPs can be written

follows I1,(Q? t
(@%,2)I1,_5(Q%,2)
2 9} = q g\ %12, q 12 12.
Xq( 12> ) g—1 Hg"l( %272) ’ (

where I'I,,(Q%z, 2) represents the number of events having q two-particle spikes of size Q%,.
It is important to realize, however, that for Q2, — 0, the definitions (12.4) and (12.
lead to the same result, i.e.,

xg(Q%2) = Xo(Q13,2). | (12.
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Figure 12.3: NFMs as a function of the Figure 12.4: BPs as a function of the

number M of bins in azimuthal angle ¢ number M of bins in azimuthal angle ¢
defined with respect to the beam azis. defined with respect to the beam axis.

Moreover, note that all counting topologies (GHP, “star” and “snake”) discussed in [12]
become equivalent for x,(Q%,2).

12.3 In the detector frame

12.3.1 Factorial-moment method

The current analysis extends the previous L3 studies [8, 14] based on the 1991 L3 data. In
that study, the azimuthal angle ¢ defined with respect to the beam axis was chosen as the
phase-space variable. The reason was that for the 1991 - 1993 data the resolution of the
L3 detector in azimuthal angle was much better than that for other variables defined with
respect to the beam axis (see Chapter 10). Since the event-averaged distribution in ¢ is
uniform, the Biatas-Gazdzicki-Ochs transformation described in Chapter 11 is not necessary
for this case.

The behavior of the horizontal NFMs (12.2) as a function of bin-size ¢ = 27 /M for the
1991 data [8,14] is reproduced in Fig. 12.2. For the given statistics of that time (248k), MC
predictions show good agreement with the data.

We repeated this analysis using the higher statistics available from 1994 (five times higher
than that used in [8,14]). Moreover, we use the information on charged tracks from SMD
which largely improves the resolution. Fig. 12.3 shows the horizontal NFMs (12.2) as a
function of the number M = 27 /8¢ of partitions of the full angular interval 2w, where d¢
denotes the bin size in azimuthal angle defined with respect to the beam axis. In Fig. 12.3, the
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Figure 12.5: The correction factors ap- Figure 12.6: The correction factors ap-
plied to the NFMs in azimuthal angle plied to the BPs in azimuthal angle de-
defined with respect to the beam azis. fined with respect to the beam axis.

corrected data are shown by full symbols, the generator-level of JETSET 7.4 PS as tuned t
the L3 Collaboration on single-particle and event-shape distributions [15] by open symbol
Here and below, the smallest bin size is estimated from the MC study of the charged-trac
resolution of the L3 detector with SMD in the particular variable (see Chapter 10).

The statistical errors on the data are derived from the covariance matrix of the horizontal
averaged factorial moments. They include the statistical error on the correction factor (
defined in (12.1). To combine the statistical error on the correction factor, we assume th
the statistical errors for the generator-level and detector-level Monte Carlo’s are independen
This conservative assumption leads to an upper limit of the error derived for Ci.

A small systematic uncertainty for the correction factor C, exists due to the generato
level dependence of MC. This uncertainty was estimated by computing the correction facto
from HERWIG 5.8 [16] model. The systematic error on the C, is given as half of the differen:
between the JETSET and HERWIG correction factors. It was found that in most cases th
uncertainty is negligible and largest for different charged particle combinations (see below
The error bars on the corrected data are given as the quadratic sum of the statistical ar
the systematical errors.

The error bars on the MC predictions include both statistical and systematical error
The systematical errors were estimated by varying, by one standard deviation, the paramet
b (PARJ(42)) of the LUND fragmentation function, the width of the Gaussian p, and ;
hadronic transverse momentum distribution, o (PARJ(21)), and the A value used for «
in parton showers (PARJ(81)).! For the statistics used, the errors on the MC results a
dominated by the systematical errors, so that the open symbols represent the values of NF)
with the L3 default and the error bars indicate the maximum and minimum values obtain
after the parameter variations.

Fig. 12.3 shows that the MC predictions slightly oscillate around the corrected data, b
reasonably reproduce the experimental data (see also [17]).

1The value of these parameters have been tuned by the L3 Collaboration to reproduce the single-parti
spectra and the global shape distributions.
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The correction factors Cy shown in Fig. 12.5 tend to reduce the measured NFMs. The
corrections applied have a non-linear behavior and become larger for high-order moments.
A similar behavior of the correction factors (applied to the NFMs) has been found by the
OPAL collaboration (3].

The same variable is used to calculate the horizontal type of BPs (12.3). The behavior of
In7,(M) as a function of In M is presented in Fig. 12.4. Being more sensitive to the structure
of fluctuations, the BPs show that JETSET 7.4 PS slightly overestimates the increase of the
second-order BP and oscillates around the third-order BP calculated from the data. The MC
predictions reproduce the higher-order BPs reasonably well. Fig. 12.6 shows the correction
factors applied to the BPs.

In contrast to the behavior of the NFMs, a striking difference is found between the
second-order BP and all higher-order ones (¢ = 3,4,5). While the second-oder BP increases
(bunching effect), all higher-order ones decrease with increasing M. The observed decrease
of the high-order BPs with increasing M reflects a particle anti-bunching of the order g > 2
due to jet structure, i.e., particles are bunched together inside each jet, but there are empty
phase-space intervals between the bunches due to energy-momentum conservation [17].

The dependence of BPs on M indicates not only that the width of the multiplicity
distribution grows, but also that its shape changes significantly for ever larger M. The
rise of 7o(M) for increasing M and m(M) > 1 can be understood as follows: For small
§ (large M), Py(6) — 1, so that the decrease of P,(§) has to be smaller than that of
P2(6) (see (2.25) in Chapter 2). The condition P,(8) > P2(6) is an obvious consequence of
positive correlations between particles. However, the behavior of higher-order BPs depends
strongly on the interplay between the values of the ratios of probabilities P,(6)/P,—1(6) and
Pa—1(8)/ Pn—2(8).

If we adopt the assumption that all high-order BPs at large M can be expressed via the
the second-order BP as follows {11]

Ngs2(M) o3 (M),  m(M) o< M?, (12.7)

where r is the so-called degree of multifractality, then, for large M, the corresponding anoma-
lous fractal dimensions (AFDs) have the form [11]

dy=dy(1—7)+ rdz—g—. (12.8)

Qualitatively, the only way to use expression (12.7) for the description of the experimental
curves shown in Fig. 12.4 is to assume that

r <0. (12.9)

Hence, the AFDs decrease with increasing moment order ¢ and even can become negative
for large ¢. This observation means that the corresponding high-order NFMs decrease as the
phase-space interval is reduced. Clearly, in this case, the hadronic system under consideration
cannot be considered a fractal one any more, since the inverse power-law behavior of NFMs
ceases to be valid. Note that for decreasing high-order BPs, the violation of the inverse-power
laws for high-order NFMs can be seen from a more general relation between the NFMs and
BPs for § — 0 (see [11,12]).
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Figure 12.7: NFMs as a function of the
number M of bins in rapidity y defined
with respect to the thrust axis.

Figure 12.8: BPs as a function of the
number M of bins in rapidity y defined
with respect to the thrust azis.

12.4 In the event frame

12.4.1 All charge combinations

With the above observation in mind, it is obvious that the NFMs and BPs calculated s
far are strongly influenced by the jet structure of events. Hence, in order to study genuin
fluctuations inside jets, one needs to use a variable defined with respect to the jet axis, rathe
than the beam axis. In most investigations, the NFMs have been measured in rapidity
defined with respect to the thrust axis [5,7] or the sphericity axis {2, 3].

The improved two-track resolution of the 1994 run allows us to use the rapidity define
with respect to the thrust axis for the present analysis. The analysis for this variable i
performed in the full rapidity range | y |< 5. Since the distribution in rapidity is non
uniform (see Section 9.3), we carry out the Bialas-Gadzinski-Ochs transformation describe
in Chapter 11. The NFMs as a function of the number of bins in (transformed) rapidity
are shown in Fig. 12.7. The predictions of JETSET 7.4 PS tuned by the L3 Collaboratio:
are presented by open circles. The correction factors applied to the NFMs are shown i
Fig. 12.9.

The behavior of the NFMs shows the same trend as that of the azimuthal angle ¢ define
with respect to the beam axis. The signal observed, however, is much smaller for the presen
calculations. As we see, JETSET 7.4 PS overestimates the intermittency effect for large M
This discrepancy increases with rising moment order g.

Fig. 12.8 shows the results for the horizontally normalized BPs (12.3) in rapidity y define
with respect to the thrust axis, after the Bialas-Gazdzicki-Ochs transformation. Fig. 12.1
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Figure 12.9: The correction factors ap- Figure 12.10: The correction factors
plied to the NFMs in y defined with re- applied to the BPs in y defined with re-
spect to the thrust azis. spect to the thrust azis.

presents the correction factors. A disagreement with the MC predictions is observed for
g = 2,3, while higher-order BPs are described well by the model. In contrast to the case of
 defined with respect to the beam axis (see Fig. 12.4), all high-order BPs show a power-
law increase with increasing M, indicating that the fluctuations in this variable are of a
multifractal type. Indeed, in this case, the high-order BPs can be approximated by the
relation (12.7), but now with a positive non-zero constant r. Hence, the AFDs in the form
(12.8) always have positive values and the inverse power law of the NFMs is valid for all
moment orders g investigated. Note that the conclusion on the multifractal type of the
fluctuations becomes possible without the necessity to calculate intermittency indices. In
contrast, to reveal multifractality with the help of the NFM-method, one first needs to carry
out fits of the NFMs by a power law.

From a physical point of view, the multifractality observed is a consequence of the cascade
nature of parton branching, hadronization, resonance decays and Bose-Einstein correlations.
Recently, several authors considered the possibility that Bose-Einstein (BE) correlations
could be responsible for the intermittency effect at small Q%,. The influence of BE correla-
tions on a quantity depends strongly on the type of quantity (such as NFMs, BPs, etc.) and
the variable (y, ¢, pr, etc.) used . Obviously, BE correlations are a typical candidate for
the origin of local fluctuations in 3-momentum phase space, that also can lead to a rise of
fluctuations in one-dimensional rapidity phase space. The influence of the BE correlations
using JETSET has been studied by DELPHI [2]. However, no visible influence of the BE
correlations on the behavior of NFMs has been found there.

To demonstrate the BE effect, Figs. 12.7 and 12.8 also show a comparison of the JETSET
7.4 PS model without BE interference (open triangles) to the data. Indeed, the model
expectations without the BE effect shown in Fig. 12.7 have a smaller rise of the NFMs than
those with the BE effect.

It is quite remarkable how clearly the influence of BE correlations on the local fluctuations
in JETSET can be seen in the second-order BP (see Fig. 12.8). This is due to the fact that
the BE effect is implemented in JETSET -on the level of two-particle correlations, which
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are strictly related to the second-order BP (NFM). (In fact, the form of the second-orde
BP 1y(8) ~ Py(6)/P2(6) is similar to that of the correlation function used in Bose-Einsteix
analysis).

The predictions of the JETSET 7.4 PS model deviate from the data for second-order BP
in the region éy < 1.0 (In M > 2.3). However, good agreement is observed for large rapidit;
intervals 6y > 1.0. In this region, the predictions of the model without BE correlation
included deviate significantly from the data, but they lead to a better agreement for smal
6y. This indicates that JETSET without BE correlations would in fact require a re-tunin,
to reduce discrepancies for large phase-space intervals.

The BE correlations of charged pions have been studied in ete™-annihilation at the Z
mass by the DELPHI, OPAL and ALEPH Collaborations. Using a mixed-track referenc
sample, it has been found that the Gaussian parameterization can describe the data wit]
A =0.35+0.04 and r = 0.42+0.04 [18,19]. 2 These results were obtained from all pion pair
including pions from long-lived particles (K% D,B). Consequently, these values are mea
values for all identical pions. Similar values were obtained by ALEPH [20]. A study of 707
correlations by the L3 Collaboration has shown that a fit with the Gaussian parameterizatio:
yields A = 0.37+£0.12 and r = 0.40£0.16 {21] (errors include both systematical and statistica
errors). Based on those findings, it is reasonable to assume that A and r have smaller value
than those used by the L3 collaboration in the JETSET 7.4 model. Here we do not pursu
the aim to obtain a good agreement between the data and the MC predictions by variatio:
of the BE parameters, since the parameters should be obtained from a direct measuremen
of the correlations between like-charged particles. This has not yet been done by the L
Collaboration so far.

12.4.2 Like-charged and unlike-charged particle combination

To study the disagreement between the data and JETSET in more detail, we split 75(6y
into two BPs for the two charge combinations (&%) and (+-):

m5(6y) = 15 (6y) + n§+ 7 (6y). (12.10

Here ngii)(éy) is defined by (12.3) with No(m,é) = Néii)(m, 6y), where Néii)(m, by) i
the number of events having only like-charged two-particle combinations inside bin m of siz
6y. Analogously, ni™)(6y) is constructed from the number of events N2(+_)(m, 6y) havin
only unlike-charged two-particle combinations. Note that due to a combinatorial reasor
néii)(éy) < 77§+_)(6y), however they stay independent of éy in the case of independen

production.

From a comparison of the behavior for (£+) in the left part of Fig. 12.11 and tha
for (+—) in the right, we can deduce that the initial decrease of lnm(6y) in Fig. 12.
with increasing ln M is solely due to the decrease of 17§+")(6y). On the other hand, th
increase of In7y(6y) for In M > 3.5 is due to a similar tendency in the behavior of ngii)(éy
at intermediate values of §y and the rise of 17§+_)(6y) at small rapidity interval. The M
overestimates the fluctuations both for like-charged and unlike-charged particle combination

at small y.

2These values were obtained using corrections for Coulomb interaction,
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Figure 12.11: The second-order BP for Figure 12.12: The correction factors
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binations.
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The BE modeling strongly affects the absolute value of 75 (6y), but the §y-dependence
of 7$**)(6y) seems to be due to parton showers and hadronization. The large (systematic)
€rrors on ngii)(éy) calculated from MC mainly come from the uncertainty on the JET-
SET parameter PARJ(21) responsible for the width of the Gaussian hadronic transverse
momentum distribution in the LUND model. This observation stresses the importance of
fragmentation for the local quantity measured. The variation of fragmentation parameters
does not affect the unlike-charged particle fluctuations, while the BE interference has a
significant influence on the unlike-charged particles for In M < 2.3 (éy > 1.0).

The strong anti-bunching tendency is seen for ngii)(éy) for ln M < 3.5 (by > 0.3 — 0.5)
can be attributed to resonance decays and to chain-like charge-ordered particle production
along the thrust axis, as expected from the QCD-string model [22]. The latter effect leads to
local charge conservation with an alternating charge structure along the rapidity defined with
respect to the thrust axis. Evidence for this effect was recently observed by DELPHI [23].
As a result, there is a smaller rapidity separation between unlike-charged particles than
between like-charged. Having correlation lengths 6y ~ 0.5 — 1.0 in rapidity, the resonance
and the charge-ordering effects, however, become smaller with decreasing éy and this leads
to the fast decrease of n§+_)(6y) with decreasing 6y. For very small §y (In M > 5), the BP
is affected by the 7° Dalitz decay (7% — eTe™7) and v conversion.

Note that to distinguish the NFMs calculated for different charge combinations in the
bin-splitting method is difficult due to insufficient sensitivity of this tool and a purely com-
binatorial reason. For example, Fi™)(§) may follow the same behavior as F£4)(6) since
the high-multiplicity tail of F§+_)(5) is affected by like-charged particles. The comparison
of one-dimensional NFMs for like-sign particles with all charged combinations did not show
differences [1]. A study of the charge dependence of two- and three-dimensional NFMs
in ete -processes at 91.5 GeV generated with JETSET 7.4 was undertaken in [24]. The
F{T7)(6) shows a similar trend as Fz(ii)(é), but, for very small two- and three-dimensional
bins, F2(+_)(6) rose more rapidly than Fz(ii)(é) which had a clear plateau. The inclusion of
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the BE option had only a small influence on the §-dependence of the NFMs.

As a final remark of this section, we remind that also the OPAL Collaboration in fact
observed a difference between the MC and the data in rapidity calculated with respect
to the sphericity axis [3]. The explanation given there was that the exact details of the
determination of the sphericity axis may affect the final result. However, such an explanation
cannot clarify why this effect yields different results for data and MC.

12.5 In the four-momentum difference

A suitable variable to measure fluctuations by means of the generalized distance-measure
technique is the squared four-momentum difference @?, = —(p; — p)? between two charged
particles. This is because of the fact that such a variable incorporates the 3-dimensional
- analysis. Indeed, @2, is related to the frequently used variables y, ¢ and pr as follows [25]

atox?

arar| (12.11

2, = m? (0?60 + (1 + a?)dy? +
where o = pp/m and éz = ln(pri/pre). Hence, a small 3-dimensional bin defined in v, ¢
and pr corresponds to a small distance in @2, (the opposite is not true). In addition, the
squared four-momentum difference Q?, is a Lorentz invariant variable.

12.5.1 Generalized integral BPs

Fig. 12.13 shows the behavior of the generalized BPs x, (12.4) as a function of Q%,. The
statistical errors for data and MC are derived according to the expression for the standarc
deviation obtained in [12]. The error bars shown in Fig. 12.13 are evaluated using the
procedure discussed in subsection 12.3.1. The corresponding correction factors are shown in
Fig. 12.15.

The solid lines (x, = 1) represent the behavior of the integral BPs in the Poissonian
case. In contrast, all BPs obtained from data and MC rise with decreasing @?, (increasing
—In @%,). The anti-bunching effect (x4(Q@?) < 1) for small —In Q?%, is caused by the energy-
momentum conservation constraint.

As observed in the one-dimensional study above, JETSET overestimates the local fluc-
tuations. A similar discrepancy has been found in [14] using density-strip integrals in Q?%,.

To learn more about the mechanism of multiparticle fluctuations in @%,, we present ir
Fig. 12.14 the behavior of the second-order BP as a function of Q?, for multiparticle hyper-
tubes (spikes) made of like-charged and that of unlike-charged particles, separately. A large
difference is observed between these two samples. For like-charged particle combinations
(i.e., for spikes with a maximum charge), a linear increase is seen for all values of —In Q%,
However, the bunching is much smaller and even disappears at large —In Q%, for unlike:
charged particle combinations. This effect can be explained by resonance decays, wher
decay products of short-lived resonances tend to be separated in phase space.

The resonance effect is much weaker for like-charged combinations. In addition, the BE
correlations affect the like-charged particle combinations. JETSET 7.4 PS leads to a strong

rise of Xgii)(Qﬂ) for like-charged particle combinations, even without BE interference.
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Figure 12.13:  Generalized integral Figure 12.14: Generalized second-order
BPs as a function of the squared BP as a function of the squared
four-momentum difference Q%, between four-momentum difference Q?, between
two charged particles. two charged particles.

It is interesting to observe in Fig. 12.14 that the BE correlations do not strongly affect
the behavior of the generalized BPs, while the BPs presented in Fig. 12.8 are very sensitive
to the BE effect. Let us give an interpretation of this observation: The behavior of any
conventional local quantity (such as NFM or BP) calculated in a selected phase-space bin
reflects a bunching of particles in spikes. The stronger the bunching effect is, the larger is the
local quantity. Mathematically, this means that this quantity is influenced by the average
number of spikes per event. In terms of the multiplicity distribution Py(e) of observing N
spikes of size ¢ (see [12]), this means that the conventional local quantity is a function of the
average number of spikes per event,

S N Pyle). (12.12)

N=1

In JETSET the BE effect is implemented on the level of the two-particle correlation function.
The model moves like-charged particles closer to each other in the e = Q?, variable. Actually
this leads to an enhancement of the number of multiparticle spikes. Hence, the value of
(12.12) increases. As a result, the NFMs and BPs evaluated in the bin-splitting technique
are larger than those calculated in JETSET without BE interference.

Now let us come back to the generalized BPs shown in Fig. 12.14. According to definition
(12.4), the BPs x,(Q?,) measure the deviation of Py{e) from a Poissonian distribution.
Clearly, such a kind of measurement has little to do with the measurement of the average
spike multiplicity (12.12). Even if BE interference as implemented in JETSET increases
the bunching of particles, the shape of Py(¢) (and, hence, the bunching of spikes) may be
the same or only change slightly. Fig. 12.14 shows that the treatment of BE correlations in
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Figure 12.15: The correction factors Figure 12.16: The correction factors
applied to the generalized integral BPs. applied to the generalized second-order
BP.

JETSET mainly increases the probability Pi(¢) of observing a single spike. This leads t
a small decrease of x2(Q?,) for like-charged particles. The unlike-charged particles are no
affected by BE correlations. Generally, a realistic BE effect may change both the bunchin,
of particles and the bunching of spikes. The latter effect should be visible from the study o
Xq(Q%z)'

JETSET 7.4 PS overestimates the data for like-charged and unlike-charged combinations
As an additional verification, the default tuning of JETSET 7.4 PS has been compared t
the data. The same kind of the disagreement is found (not shown).

The disagreement for the unlike-charged particle combinations in Q?%, and in rapidit;
probably has a common reason. Probable shortcomings of JETSET 7.4 PS leading to th
discrepancies found are the simulation of hadronization® and the BE effect. As an example
the residual distortion of the decays of short-lived resonances by BE correlations not ye
implemented in the JETSET 7.4 PS model may be a good candidate for an explanatio:
of such a discrepancy. The importance of the latter effect was realized recently, when .
significant mass shift of p® was observed by OPAL and DELPHI [27,28].

The production rate of fo(975) and f»(1270) measured by DELPHI [28] is another chal
lenge for the JETSET model. In this respect, it is not improbable that a much larger fractio:
of the observed final-state hadrons results from resonance decays than is usually assumed
In this case, the negative correlations should be larger, and a better agreement with the dat
for the intermediate values of @%, would be achieved for unlike-charged particles. Indeed
we have found that a realistic small variation of the production of resonances (p, w, 7, 7
responsible for the unlike-charged particle fluctuations in the JETSET 7.4 PS can lead t
a better agreement. This is not likely to improve the discrepancy fully, however, since th

3For 2.5 < —InQ%, < 5.0, our calculations show a large sensitivity of the results obtained to the parame
terization of LUND fragmentation, since the large systematic errors for this domain of Q?, come mainly fror
the variation of the LUND fragmentation parameters PARJ(42) and PARJ(21) by one standard deviation
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Figure 12.17: Generalized differential Figure 12.18: Generalized second-order
BPs for two-particle spikes. BP for two-particle spikes.

JETSET 7.4 PS tuned by the L3 Collaboration shows a reasonable agreement with the pro-
duction rates of the main resonances [15], so that the variation of the parameters should not
be large.

Of course, the disagreement for the unlike-charged particle combinations in @2, {and,
hence, for the all-charged combinations shown in Fig. 12.13) can also lead to the disagreement
between the JETSET 7.4 PS and the data in the case of the one-dimensional variables ¢
and y presented in Section 12.4.

12.5.2 Generalized differential BPs

To be complete, we present in Figs. 12.17, 12.18 the behavior of the differential BPs (12.5)
as a function of @Q?, between two charged particles. The corresponding correction factors
applied to x,(Q%,2) are shown in Figs. 12.19 and 12.20. As we see, the only difference
between Figs. 12.13, 12.14 and Figs. 12.17, 12.18 is faster rise of the second-order differential
BP (for not too large — In @%,) than of the integral one. As we have already indicated in [12],
the reason for this behavior is that only the two-jet events with the same number of particles
can contribute to x,4(Q?%,, 2).

12.6 Discussion

For the first time, local multiplicity fluctuations of experimental data have been studied by
means of bunching parameters. Using this method, fluctuations in rapidity defined with
respect to the thrust axis and in the four-momentum difference Q?, are found to exhibit a
multifractal behavior. The multiplicity distributions in these variables, therefore, cannot be
described by conventional distributions (Poisson, geometric, logarithmic, positive-binomial,
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Figure 12.19: The correction factors
applied to the generalized differential
BPs.

negative-binomial), which have é-independent high-order BPs. More general multiplicit
distributions with power-like high-order BPs have been considered in Chapter 4. Such type
of distributions, therefore, appear to be more relevant to the situation observed. Howeve
a phenomenological description of these distributions can, only to a slight extent, provide
physical explanation of the nature of multifractal behavior.

For ete™ interaction, one can be confident that, at least on the parton level of th
reaction, perturbative QCD can give a hint for the understanding of the problem. Analytic:
calculations based on the double-log approximation of perturbative QCD show that tl
multiplicity distribution of partons in ever smaller opening angles is inherently multifract
[29]. Qualitatively, this is consistent with our results. Of course, the choice of variable cz
affect the observed signal. Hence, the final conclusion on an agreement between QCD ar
the data can only be derived after the calculation of local quantities in angular variabl
that are defined with respect to the thrust (or sphericity) axis.

We have shown that the increase of the second-order BP is mainly due to like-charge
particles. JETSET 7.4 PS shows the same power-law trend even without BE effect. Th
means that the intermittency observed for like-charged particle combinations appears to t
a largely consequence of parton showers and hadronization. The latter phenomenon is four
to have a large influence on the local quantities, since the variation of JETSET fragmentatic
parameters can significantly change the simulated signal.

A noticeable disagreement is found between JETSET and the data. To some exten
this discrepancy may be due to the way the JETSET 7.4 PS model was tuned by tl
L3 Collaboration. The tuning of the model was performed to provide a good descriptic
of global shape distributions and inclusive particle spectra [15]. Our analysis indicates th
such commonly used tuning is not enough to give a good description of the local observable
Besides, a large systematic uncertainty in the definition of the fragmentation parameters f
JETSET makes it difficult to compare of the local fluctuations observed with the mod
predictions.
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The problem of the discrepancy observed, however, is more complicated, and an addi-
tional study of JETSET itself is necessary: It has been shown that JETSET 7.4 PS overes-
timates fluctuations of unlike-charged particles both in rapidity defined with respect to the
thrust axis and in the four-momentum-difference variable. The variation of JETSET param-
eters cannot fully reduce the discrepancy observed. Thus, it appears that some important
points in the simulation of hadronization, resonance production and BE effect are missing
in the present version of JETSET and further modifications of the model are needed.

Furthermore, from the discrepancies obscrved for like-charged combinations it becomes
clear that the treatment of BE correlations has to be improved. A similar conclusion has
been deduced in [25], where it has been shown that JETSET fails to reproduce the mul-
tiplicity dependence of the intermittency index ¢,. Recently, progress has been made to
incorporate the BE correlations directly into the Lund model [30]. In this new method, the
BE interference is taken into account on the level of string fragmentation. Hence, one can
expect that BE correlations can significantly affect unlike-charged combinations as well, and
there may be a chance that the disagreement obtained between JETSET and the data will
be reduced.
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13
Test of Analytical QCD Predictions

13.1 Introduction

Local multiplicity fluctuations have been studied for many years in terms of a variety of
phase-space variables, but only recently has substantial progress been made to derive ana-
lytical QCD predictions for these observables [1-3]. Attempts have already been undertaken
by the DELPHI Collaboration {4] to compare the analytical QCD predictions [1] with the
experimental data for angular intermittency measured in hadronic Z° decay. The authors
have mainly concentrated on the study of correlation functions, cumulants and multiplicity
moments of orders ¢ = 2,3 derived in the Double Leading Log Approximation (DLLA) of
QCD. The analytical predictions tend to underestimate the correlations between particles
in small angular windows if one uses a A ~ 0.1 — 0.2 GeV for the QCD dimensional scale.
However, a reasonable agreement is achieved for an effective A ~ 0.04 GeV, significantly
smaller than theoretical QCD estimates [5].

As shown in the previous chapter, the local fluctuations inside jets are of multifractal
type, which is qualitatively consistent with the QCD predictions. In this chapter we extend
this study and present a first quantitative comparison of the theoretical QCD predictions
[2,3] with the L3 data, emphasizing the behavior of normalized factorial moments of orders
g =2,...,5 in angular phase-space intervals.

13.2 Analytical predictions

QCD predictions have been obtained [2,3] for normalized factorial moments (NFMs)
F,(©), which have the following behavior

((n—1).. (n—g+1)) (@)w—nqxqm

F(©) = (nye %)

: (13.1)

where, for the one-dimensional case (D = 1), O is the opening angle of a cone around the
jet-axis, © is the angular half-width window of rings around the jet-axis centered at © (see
Fig. 13.1), n is the number of particles in these rings and (...} is the average over all events.
The analytical QCD expectations for the Rényi dimension D, are as follows [2, 3]:

139
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jet axis

Figure 13.1: A schematic representation of the measurements of the local fluctuations in ¢l
polar angle around jet azis (D =1).

1) In the fixed coupling regime, for moderately small angular bins,

g+1

- 13.
. (

Dq = ’YO(Q)

where v(Q) = /2Caas(Q)/7 is the anomalous QCD dimension calculated at @ ~ E'©
E = /s/2, and Cy = N. = 3 is the gluon color factor.

2) In the running-coupling regime for small bins, the Rényi dimension becomes a functic
of the size of the angular ring due to the running coupling effect (0,(Q) increases wi
decreasing ©). It is useful to introduce a new scaling variable (3],

5= In(©,/0)
" In(E©,/A)
In terms of this phase-space variable, the maximum possible phase-space region (© = ©
corresponds to z = 0.

There are two approximate expressions derived in DLLA which will be tested:
a) According to [2], the D, have the form

2
D, = (@12 <1 L 1z> . (13.

q 4q?

b) Another approximation has been suggested in [3]:

(13.

g+1/(1—
D,~2
q ’YO(Q) q ( P

In [2], an expression for D, has also been obtained in the Modified Leading Log A
proximation (MLLA). In this case, (13.3) remains valid, except that 7o(Q) is replaced by .
effective 75%(Q) depending on ¢:

e; _ b q— 1 ‘ q——l 1
W@ =@+ Qg [ B vy
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p LCax 21y B_llncA 2_nf_]

3 3 =373 T3z
where ns is the number of flavors (ny = 5 at LEP1).

For our comparison of the data with the theoretical predictions quoted above, we will
use the following parameters

Oy = 25°, A =0.16 GeV.

The first parameter is free. Its value is chosen to make our study comparable with the
DELPHI analysis [4]. A larger value of ©¢ would allow a larger range of values of the
variable z to be studied, but the statistics available would be smaller at larger z. On the
other hand, a smaller value of ©y would reduce the range of z to be tested due to detector
resolution. Only weak dependence of the correlation functions on ©p has been found at LEP
energies [4], in agreement with the analytical QCD predictions.

The value of A chosen is that found in tuning the JETSET 7.4 PS program [7] on L3
data [8] and in our most recent determination of a(mz) [9].

The effective coupling constant is evaluated at @ ~ E©,, which gives as(EQg) ~ 0.17
according to the first-order QCD expression for a,(Q). This value leads to Y (EOp) =~ 0.57.

13.3 Experimental procedure

In this paper, we present an experimental investigation of local fluctuations in the final-state
hadron system produced in Z® decays at /s = 91.2 GeV. The sphericity axis is used as the
jet axis. The final-state hadrons were recorded with the L3 detector during the 1994 LEP
running period. The calculations are based on approximately 810k selected hadronic events.
They are selected by the standard L3 selection procedure, based on energy deposition in the
electromagnetic and hadronic calorimeters and momentum measurement of charged tracks
in the Central Tracking Detector including the Silicon Microvertex Detector. From these
events, good tracks are selected to calculate the NFMs. The entire selection procedure is
described in more detail in Chapter 9.

To carry out a correction procedure, a Monte-Carlo sample of multihadronic events is
generated with JETSET 7.4 PS [7] including initial-state photon radiation. On the first
level (generator level), the sample generated directly from the JETSET model contains all
charged final-state particles with a lifetime larger than 10~%. On the second level (detector
level), it includes distortions due particle interactions with the detector material, limited
resolution, multi-track separation, acceptance of the detector, event selection and various
detector imperfections. The Monte-Carlo events were processed with the same reconstruction
program as used for the experimental data.

A corrected NFM is found by means of the following correction procedure

cor raw Fqgen
FPr=Cy F™, Cy= ?q—de—t. (13.6)
Here, F£*" and Fge“ symbolize an NFM of order ¢ calculated from the generator level and
detector level of JETSET 7.4 PS model, respectively. Fy*" represents the same quantity
calculated directly from the data.
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Using the same method, the data are further corrected for the occurrence of Bose-Einsteis
correlations, initial-state photon radiation and Dalitz decays. For this, additional Monte
Carlo samples are used. The first one is the default JETSET 7.4 sample, which does no
include the initial-state photon radiation and Bose-Einstein correlations. Fjef is calculates
from this sample. Then, the correction factor

def
c) = £
q Fqgen

corrects the data for initial-state photon radiation or Bose-Einstein correlations, since thes
effects are not included in the analytical QCD calculations. Since the Bose-Einstein corre
lations are simulated in JETSET model essentially as final-state interactions between pair:
of identical pions, such an implementation was shown cannot correctly reproduce the loca
multiplicity fluctuations (see Chapter 12). Therefore, in addition to the data corrected wit]
Cgl), below we show the data without this correction procedure.

To correct the data for the occurrence of Dalitz decays of the #°, the following correctior
factor

Dz
c® = Fq

q F‘;ief
is used. Here, FqDZ is obtained from the default-parameter JETSET, but without Dalit:
pairs.

The corrections including Cgl) and Céz) are of the order of ~ 10% for the second-orde
NFM and approximately ~ 15% for the fifth-order NFM.

The resolution of the L3 detector for a number of relevant variables has been estimatec
in Chapter 10. The resolution of polar angle defined with respect to the thrust axis is founc
to be approximately 0.013 radians. For higher orders NFMs, the minimum angle © is choser
according to the many-particle resolutions studied in Chapter 10.

13.4 Analysis

Fig. 13.2 shows the experimental result on the behavior of the NFMs as a function of the
scaling variable z. The corrected data (full circles) were obtained by using the three correc
tion factors Cy, C’,gl) and C{? discussed above. The error bars show only statistical error:
and include the statistical errors on the correction factors under the conservative assumptior
that all statistical errors on each correction factor are independent. To increase statistics
we evaluated the NFMs in each sphericity hemisphere of an event and averaged the results
assuming that the local fluctuations in each jet are independent.

The open symbols show the predictions of the JETSET 7.4 PS model for hadronic (oper
circles) and partonic (open triangles) levels. The open circles show the JETSET 7.4 PS
default, without initial-state photon radiation, Bose-Einstein correlations and Dalitz decays
The data and the hadronic level of the JETSET model have a slope much steeper than tha
for the partonic level. The Monte-Carlo prediction for hadrons gives a reasonable descriptior
of the fluctuations for z < 0.4 (© > 0.03), but overestimates the data for very small angulas
intervals (z > 0.4).

It has been suggested in (3] that it is instructive to consider the ratio F,(z)/F,(0) ix
order to reduce hadronization effects on the actual behavior of the NFMs. In addition, this
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reduces a theoretical ambiguity for the evaluation of NFMs in full phase space (z = 0) tha
renders the comparison of the data with the analytical predictions uncertain. In terms ¢
Fo(z)/F4(0), the power law (13.1) can be rewritten as

In ?:E()i =2(1 - Dg)(g —1)In 5/-(?9. (13.7

The behavior of the 1u(Fy(z)/F;(0)) as a function of z is shown in TFig. 13.3. The partoni
level of JETSET is indeed much closer to the data, though a significant difference betwee
the slopes for the data and the partonic level of JETSET is still present.

The comparison of the analytical QCD predictions (13.2)-(13.5) for A = 0.16 GeV .
the corrected data is shown in Fig. 13.4. Here we also show data (full triangles) which ar
not corrected for Bose-Einstein correlations. These data were obtained by using only tw
correction factors C; and C{?. Since the contribution of initial-state photon radiations i
relatively small, full triangles essentially represent the data with Bose-Einstein correlation
between identical pions. Predictions (13.3)-(13.5) lead to the saturation effects seen in th
data, but significantly underestimate the observed signal, especially for ¢ = 2. The reaso:
for the saturation effect seen on the QCD predictions is the dependence of o, (Q) on €
The fixed coupling regime (see (13.2) and solid lines in Fig. 13.4) approximates the runnin
coupling regime for small z, but does not exhibit the saturation effect seen in the data. Th
MLLA predictions do not differ significantly from the DLLA result (13.3) (Fig. 13.4).

Agreement of the QCD predictions for the second-order NFM with the data can b
achieved by decreasing the value of A. A similar observation has been made by DELPHI [4
in a study according to parameterization derived in [1]. As an example, Fig 13.5 shows th
case of A = 0.04 GeV. Such an effective value makes the coupling constant smaller and thi
can expand the range of reliability of the perturbative QCD calculations (for A = 0.04 GeV
as(EOq) ~ 0.13, v(E©g) =~ 0.50). However, this leads to a large disagreement between th
QCD predictions and the data for higher-order NFMs at large z. We have varied A in th
range of 0.04 — 0.25 GeV and found that there is no value of A in this range which produce
agreement for all orders of NFMs.

Note also that the disagreement for the second-order NFMs can also be reduced b
considering the second-order expression for o (Q) or by replacing ny = 3, instead of n; = ¢
This leads to a decrease of the v(E©y). In this case, however, again no good agreement ca;
be reached for all higher-orders of the NFMs.

13.5 Conclusion

The predictions of the DLLA and MLLA of perturbative QCD are shown to be in disagree
ment with the local fluctuations as observed for hadronic Z° decay. This conclusion is vali
for relatively large values of A (A = 0.16 GeV) as well as for small values (A = 0.04 GeV'
In the latter case, a reasonable estimate for the second-order NFM can be reached, consis
tent with the DELPHI conclusion [4]: However, our analysis shows that, in this case, th
theoretical higher-order NFMs strongly overestimate the data.

In the theoretical predictions discussed above, energy-momentum conservation in tripl
parton vertices is not embedded. A recent study [10] of this effect shows that the energy
conservation constraint is sizeable and leads to a stronger saturation effect. Hence, energy
momentum conservation is not the reason for the disagreement observed for Fy(z)/F>(0).
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Figure 13.4: The analytical QCD predictions for A = 0.16 GeV: 1) a, = const (13.2); 2)
DLLA (a) (eq. (13.3)); 3) DLLA (b) (eg. (13.4)); 4) MLLA (egs. (13.3) and (13.5)).
The corrected data (full circles) obtained by using correction factors C,, C’él) and C,gz). Full
triangles show the data corrected only with C, and C’éz).
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As has been commented in [2], the most probable reason for the disagreements witk
experimental data is the asymptotic character of the QCD predictions, corresponding to ar
infinite number of partons in an event. Another contribution to the failure of the prediction:
can lie with the local parton-hadron duality hypothesis, which is used to justify comparison o
the predictions of perturbative QCD. The predictions are for partons, but the experimenta.
results are calculated from data on particles. The non-perturbative domain of QCD maj
have a large influence on the values of the NFMs.
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Summary

This thesis is based on two separate but mutually complementary sources. First, it contains
theoretical studies of local multiplicity fluctuations of final-state hadrons observed in all
types of high-energy processes. The results are outlined in subsection 2.4 and at the end of
each paper reproduced in this thesis. Below we summarize in short the main results:

e We developed a new method for a precise measurement of local multiplicity fluctua-
tions, the so-called bunching-parameter method. The method opens up the possibility
to study local fluctuations without the trivial contamination arising from the finite
size of the event-sample. In moving to ever smaller phase-space intervals, this is a big
advantage over the previously used tools, such as normalized factorial moments and
normalized cumulant moments.

e It was shown that the method is able to reveal local fluctuations in more detail than
the conventional normalized-factorial moment method. Hence, the method proposed
can be used to obtain a refined insight into various production mechanisms.

o The method can be generalized to examine bin-bin correlations and admits the use
of the interparticle distance-measure technique as the next step in the direction of
maximal utilization of the information provided by experiments.

o Based on the fact that the bunching parameters have a more direct link to the structure
of the multiplicity distribution inside a small phase-space interval, we suggest a possible
form of multifractal distribution which is more relevant to the observed fluctuations
than the commonly used negative-binomial distribution.

The second part of this thesis describes an experimental application of the approach
developed in the first part. Local multiplicity fluctuations of charged particles produced in
Z° decay are analyzed from the data collected in 1994 by the L3 Collaboration at CERN.
The main results are:

e The resolution of the L3 detector was determined for the different variables and data
taking periods. It was found that the resolution is sufficient for the precision analysis
in the case of the 1994 data taking period, but not in the case of that of 1993.
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e Using the method proposed, we analyzed the behavior of the bunching parameter
for charged final-state particles in different phase-space variables. The results confirn
that the bunching-parameter method is particularly sensitive to the structure of loca
fluctuations.

e A strong multifractal structure of the fluctuations was observed inside jets, while th
calculations in the variables defined with respect to the heam axis did not show suc]
a trend. This new result was achieved entirely with the help of the method develope
and described in the theoretical part of this thesis.

e The JETSET 7.4 PS model tuned by the L3 Collaboration cannot reproduce the de
tails of the fluctuations. For the one-dimensional analysis, better agreement may b
achieved by further tuning of the model parameters and by improving the Bose-Einstei:
modeling. However, the problem of the discrepancy found for unlike-particle combins
tions is more complicated, and further improvement of the model itself is necessary.

e A significant disagreement was found between the analytical perturbative QCD predic
tions for angular intermittency and the data. This discrepancy suggests large contri
butions to the local multiplicity fluctuations in small angular regions from high-orde
perturbative QCD and from non-perturbative effects.

An understanding of the intermittency phenomenon in various high-energy processes is sti
insufficient. If one believes that Quantum Chromo Dynamics is the best candidate for
theory of Strong Interactions, one should expect that it provides a suitable framework fc
the description of the local fluctuations. A big step has already been made to actuall
derive the intermittency in perturbative QCD for the simplest ete -annihilation processe:
However, there is a long way to go toward the understanding and analytical description ¢
contributions to the local fluctuations from the non-perturbative regime of QCD, as well
from resonance decays and Bose-Einstein interference.
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Samenvatting

Dit proefschrift berust op twee afzonderlijke, maar elkaar aanvullende onderzoeken. Ten
eerste bevat het een theoretische studie naar lokale schaalinvariante vertakkingsfluctuaties,
die in de afgelopen jaren zijn waargenomen in de hadronische eindtoestanden van alle zoorten
hoge-energieprocessen. De resultaten hiervan worden beschreven in subsectie 2.4 en aan
het einde van elk van de in dit proefschrift opgenomen publicaties. In het kort zijn de
voornaamste resultaten de volgende:

e We hebben een nieuwe methode ontwikkeld voor een precisiemeeting van de lokale
vertakkingsfluctuaties, de samenbundelingsparametermethode. Deze methode maakt
het mogelijk om lokale fluctuaties te bestuderen zonder hinder van de triviale verstor-
ing, die het gevolg is van de eindige omvang van de verzameling gevallen. Bij het
bestuderen van voortdurend kieinere faseruimte-intervallen is dit een groot voordeel
ten opzichte van eerder gebruikte middelen zoals genormaliseerde factoriéle momenten
of genormaliseerde cumulatieve momenten.

e Er wordt aangetoond, dat met deze methode in meer detail naar lokale fluctuaties
kan worden gekeken, dan met de conventionele genormaliseerde factoriéle momenten.
Daarom is de voorgestelde methode geschikt om een verfijnd inzicht te krijgen in de
verschillende productieprocessen.

e De methode kan worden veralgemeend om interval-interval correlaties te bestuderen.
Ze staat toe een afstandsmaat tussen de deeltjes te introduceren als een volgende stap
naar het optimaal gebruik van de informatie, die door de experimenten wordt geleverd.

e Op grond van het feit, dat de samenbundelingsparameters directer verbonden zijn met
de structuur van de vertakkingsverdeling binnen een klein faseruimte interval stellen
we een multifractale distributie voor, die meer vertelt over de waargenomen fluctuaties,
dan een negatief binomiaal verdeling.

Het tweede deel van dit proefschrift is de toepassing in een experiment van de benadering
ontwikkeld in het eerste deel. Lokale vertakkingsfluctuaties van geladen deeltjes afkomstig
uit het verval van Z bosonen zijn geanalyseerd in gegevens uit 1994, afkomstig van de L3
samenwerking in CERN. De voornaamste resultaten zijn:
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Samenvattin

Een bepaling van het oplossend vermogen van de L3 detector voor verschillende var
abelen in enkele opnameperiodes. Het oplossend vormogen bleek voldoende voor ee
precisiestudie voor de gegevens uit de periode 1994, maar niet voor die uit 1993.

Met behulp van de voorgestelde methode hebben we het gedrag van de samenbunde;
ingsparameters bestudeerd voor de verschillende faseruimtevariabelen van deeltjes i
de eindtoestand. De resultaten bevestingen dat samenbundelingsparameters bijzonde
gevoelig zijn voor de structuur van lokale fluctuaties.

We nemen een sterke multifractale structuur waar in de fluctuaties binnen de uitgaanc
deeltjesbundels, terwijl deze ontbreekt in de berekeningen gedaan ten opzichte van c
inkomende bundelas. Dit is een nieuw resultaat volledig voortkomend uit de hi
ontwikkelde methode.

Het door de L3 samenwerking afgeregelde JETSET 7.4 PS model kan de details v
de fluctuaties niet voorspellen. Voor een een-dimensionale analyse kan betere overee:
stemming worden bereikt door de modelparameters bij te stellen en de Bose-Einste
effecten te verbeteren. Niettemin, de afwijking gevonden voor ongelijk geladen deel
jesparen is ingewikkelder en een verdere verbetering van ket model is noodzakelijk.

Analytische QCD storingsberekeningen voor de hoekcorrelaties wijken significant
van de data. Dit doet vermoeden, dat grote bijdragen tot lokale fluctuaties afkomst
zijn van perturbatieve QCD van hogere orde en van niet-perturbatieve verschijnsels
in het kleine hoek gebied.

Een volledig begrip van de correlaties in de verschillende hoge energie reacties is nog v
weg. Wie gelooft in Quantum Chromo Dynamica als beste kandidaat voor een theorie v
de sterke wisselwerking zou mogen verwachten, dat dit ook een goede basis zou verschaff
voor de beschrijving van lokale fluctuaties. Een grote stap voorwaarts is al gemaakt do
het feitelijk afleiden van de correlaties met QCD-storingsrekening voor de eenvoudigste et
annihilatieprocessen. Toch ligt er nog een lange weg naar begrip en analytische beschrijvi
van de bijdrage aan lokale fluctuaties van het niet-storingsbeschreven deel van QCD, van
resonantievervallen en van de Bose-Einstein-interferentie.
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