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Abstract. We give a new proof of the small excess regularity theorems for integer multiplicity

recti�able currents of arbitrary dimension and codimension minimizing an elliptic parametric

variational integral. This proof does not use indirect blow-up arguments, it covers interior and

boundary regularity, it applies to almost minimizing currents, and it gives an explicit and often

optimal modulus of continuity for the derivative, i.e. for the tangent plane �eld of the almost

minimizing currents.

0 Introduction

The regularity theory for integer multiplicity recti�able currents minimizing a parametric
elliptic variational integral was initiated in the pioneering work of F.J. Almgren [Alm1],
where the regularity is proved at interior support points with small cylindrical excess.
Almgren's results are presented in F. Federer's monograph [Fe, Chap. 5]. E. Bombieri has
given a somewhat simpler proof which also applies to approximately minimizing currents.
This is important in order to be abble to include problems with side conditions, such as
volume constraints or obstacle conditions, in the regularity theory (see Section 1). In [Alm2]
Almgren also treated the more general situation of almost minimizing currents and sets. A
new and elegant proof of Almgren's original regularity theorem was presented by R. Schoen
and L. Simon [SS]. This proof avoids the indirect blow-up arguments of the previous authors
and it uses a direct P.D.E. argument instead. The interior regularity theory for (almost)
minimizing currents has been thus quite well developed for some years.

With regard to boundary regularity the situation is di�erent. One only has the work
of R. Hardt [Ha1] which showed how to extend the reasoning from [Fe, Chap. 5.3] to the
boundary situation. Apart from [Ha1], we are not aware of any published treatment of
boundary regularity for (almost) minimizing currents and general elliptic integrands. (This
problem is addressed, however, in the unpublished thesis [Li] of F.H. Lin.)

Our present work comes from an attempt to understand the question of boundary reg-
ularity better and to give a simpler proof of Hardt's boundary regularity result, and if
possible to extend it to the case of almost minimizing currents. We �rst tried to carry
over the simple method of [SS] to the boundary situation. This failed, however, for reasons
explained below. Instead we have combined arguments from [Bo] with the idea of harmonic
approximation as presented in [Si1, 21.1] and we have added some new estimates related to
the integrands one obtains from a given smooth integrand by transforming it with di�eo-
morphisms that 
atten the boundary. As a result, we have obtained small excess regularity
theorems for almost minimizing currents which give an optimal modulus of continuity for
the tangent plane �eld in many situations. It seems that even in the interior situation such
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optimal regularity theorems are new and cannot be deduced from [Alm2], [Alm1], [Fe], [Bo],
[SS] by simply giving quantitative versions of all the arguments involved.

We present our main result in Theorem 6.1 (the interior �-regularity theorem), and The-
orem 6.4 (the optimal boundary �-regularity theorem). The precise technical assumptions
are collected in Section 1 where we also explain the notion of almost minimizing currents.
As an example for the boundary regularity statements one can deduce from Theorem 6.4
we state the following theorem:

0.1 Theorem (optimal boundary regularity).Suppose F is a positive elliptic integrand
of degree n and of class C2 on the open subset D of R

n+k and 0 < � < 1. Then there
exists # > 0 such that if T is an integer multiplicity recti�able n-current which is almost
minimizing for (F; !) in D with modulus !(r) = const r2�, if a 2 D\ spt (@T ) and spt (@T )
locally at a is an (n � 1)-dimensional submanifold of class C1;� in D, and if the lower
density of kTk at a satis�es

�n
� (kTk; a) � 1

2
+ # ;

then sptT is locally at a an n-dimensional submanifold of class C1;� up to the boundary.

It can be seen from the proof in Section 7 that the constant # > 0 depends only on
the exponent �, the ellipticity constant of F , a bound for F (x; �) and its derivatives up to
second order with respect to the tangent n-plane variable �, and a modulus of continuity
for the second derivative of F with respect to �. Moreover, a version of Theorem 0.1
holds for boundaries B satisfying a C1;�(�) Dini condition with modulus �(�) such that
K(r) =

R 1
0 %

�1�(%)d% < 1, and for moduli of almost minimality !(�) such that 
(r) =hR 1
0 %

�1
q
!(%)d%

i2
< 1. Then spt T is locally at a an n-dimensional submanifold of Dini

class C1;
(�) up to the boundary with modulus 
(r) = const
h
r2� + K(r)2 + 
(r)

i1=2
where

0 < � < 1 can be prescribed. (The precise technical conditions on �(�) and !(�) are
described in Section 1.)

We should note that, in general, one cannot verify the density assumption for kTk in
Theorem 0.1 at least for some boundary points. In other words, it is not clear that the
small excess boundary regularity theorem can be applied at all to minimizers of a given
geometric variational problem. This unsatisfactory situation is in contrast to the interior
theory where the �-regularity theorem can always be applied at a dense set of points in the
support and, hence, the regular set of an almost minimizing current is open and dense in
its support.

Of course, if one makes additional assumptions concerning the prescribed boundary or
the integrand, then one can say more. For example, in [Ha1, Sec. 4] it is proved that one
has boundary regularity of codimension one currents near boundary points satisfying an
appropriate barrier condition. For the area integrand, R. Hardt and L. Simon [HS] have
even proved full boundary regularity for minimizing currents of codimension one. (This has
been extend to minimizing currents with prescribed mean curvature in [DS2].) The interior
singular set of area minimizing codimension one currents is known to be of codimension
at least 7, by Federer's result [Fe1] (see [Ma], [MM], [DS1] for currents of prescribed mean
curvature). With regard to the area integrand we also mention [HaL], Allard's work [All1],
[All2] on regularity and boundary regularity of minimizers in the varifold setting, and
Almgren's monumental theory [Alm3] which gives interior regularity up to codimension
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two for area minimizing currents of arbitrary codimension. Finally, for codimension one
minimizers of elliptic variational integrals we know that the singular set has codimension at
least two, by the result of Schoen, Simon and Almgren [SSA]. In the present work, however,
we are interested in general elliptic integrands and currents of arbitrary codimension, and
we want to prove, starting from some weak initial assumptions (smallness of excess and a
density condition) the best possible regularity for almost minimizing currents.

We now outline our proof of the regularity theorems. We begin in Section 2 with mass
and height estimates for the recti�able n-current T in R

n+k which is almost minimizing with
respect to an elliptic integrand F and has small excess over the n-plane R

n � f0gk. These
estimates are standard and extended to the boundary situation, where @T has support
in R

n�1 � f0gk+1, without di�culties. The next step is to approximate T by the graph
of a Lipschitz function g. The Lipschitz approximation is also well-known in the interior
situation and easily established in the boundary case. We present in Section 3 a suitable
version. Since T is almost minimizing for F it can be shown, along the lines of [Bo], that
g is an approximate solution (in a certain sense) to the homogeneous system of P.D.E.
associated with the constant coe�cient elliptic quadratic form A that is obtained from F
by freezing the coe�cients at a point. We will call exact solutions of this system A-harmonic
functions in what follows.

It is known from Almgren's work [Alm1] that the crucial step in the regularity proof
is excess improvement, i.e. one must �nd a new n-plane ~S, obtained from S = R

n � f0gk
by an isometry close to the identity, such that the excess of T over this tilted n-plane ~S is
substantially smaller than the excess of T over S. In Section 5 we establish such an excess
improvement (Lemma 5.2) and derive from it a growth condition for the cylindrical excess
as a function of the radius of the cylinder (Lemma 5.4). From this excess growth condition
the �-regularity theorems of Section 6 then follow in a well-known manner, e.g. as in [Ha1],
but we give full proofs in order to obtain an explicit modulus of continuity for the tangent
plane �eld of T .

The essential point in which our proof di�ers from the previous ones, is the method
of �nding the tilted n-plane ~S with improved excess. In Almgren's and Bombieri's work
[Alm1], [Alm2], [Bo], [Fe, 5.3] this is done using blow-up by a sequence of certain scaling
transformations �� for which the scaled Lipschitz approximations g� converge to an A-
harmonic function u. The plane ~S is then obtained from the tangent plane to graph u
(at the appropriate point) by the inverse scaling ��1� with � � 1. This proof of the
excess improvement lemma is indirect and, hence, does not give an explicit constant in the
estimate.

The idea of Schoen and Simon [SS] is to choose u as a solution of the Dirichlet problem
associated with A on a ball, taking the values of the Lipschitz approximation g as boundary
values. The plane ~S is then chosen as the tangent plane to graph u at the center of the ball.
However, one needs a C1;� estimate for u up to the boundary of the ball in order to prove
that the excess of T over ~S is substantially smaller, and therefore g has to be replaced by a
smoothing g� of g with appropriately chosen smoothing radius (depending on the size of the
excess over the original plane S). It is this point which creates problems when treating the
boundary regularity problem. There one would have to consider half balls, and we could
not �nd a way to smooth the half balls and the Lipschitz function g in such a way that
the crucial estimates could be obtained along the lines of [SS]. Furthermore, as Schoen and
Simon employ the Euler equation for the minimizing current T , it is not immediately clear
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how to treat almost minimizing currents.

Our method here is to replace the Lipschitz function g, which is already known to be
approximatively A-harmonic, by a nearest A-harmonic function, in a sense. This is made
possible by a simple lemma (Lemma 3.3) analogous to [Si2, 21.1]. In order to show that the
tangent plane ~S to the graph of this function u gives the desired excess improvement we
need a reverse Poincar�e inequality (Caccioppoli inequality). We establish this in Lemma
4.1 in a weak form, which can be proved in the boundary situation as in [Bo], and we use a
covering argument from [Si2] to derive from this the required strong version (Lemma 4.2).

Of course, all the ingredients of our proof have already been used previously in regu-
larity theory. In particular, the idea of approximating (almost) minimizing currents by the
solution of a constant coe�cient elliptic P.D.E. system is by now a standard technique,
dating back to DeGiorgi [DeG]. We believe, however, that the way in which we have com-
bined the ingredients in our proof is new and has de�nite conceptual advantages: It is the
�rst uni�ed treatment of interior and boundary regularity; it applies to almost minimizing
currents; it does not use an indirect blow-up argument and gives constants which are (in
principle) explicitely computable in the regularity estimates; it enables one to derive an
explicit and frequently optimal modulus of continuity for the derivative (i.e. the tangent
plane �eld); it uses only natural and quite weak assumptions on the elliptic integrand; it
is very 
exible and can be applied to regularity questions related to (almost) minimizers of
variational integrals or to weak solutions of nonlinear elliptic P.D.E. systems in a variety of
di�erent situations. This last point is perhaps the most important one. In fact, variants of
the method used in this paper play a role in [DGr], [DGa], and [DGG] to obtain new and
sometimes optimal regularity results.

Finally, we want to point out that the fact that our proof only requires minimal assump-
tions on the integrand F is not merely an irrelevant technicality, but essential for optimal
boundary regularity. Namely, if we study boundary regularity of an (almost) minimizing
current T for a smooth elliptic integrand F , and we have small excess and a prescribed
boundary of class C1;�, say, then an almost unavoidable procedure is to 
atten the bound-
ary by transforming it into an a�ne subspace with the same dimension using suitable C1;�

di�eomorphisms. This will give correspondingly transformed currents ~T and integrands ~F
such that ~T is almost minimizing with respect to ~F and ~T has a 
at boundary. However,
~F (x; �) will only be C1;� with respect to the space variable x, and therefore we have to
prove C1;� regularity for minimizers to integrands with this weak regularity in the case of
a 
at boundary in order to derive the expected C1;� regularity of T up to the boundary.
In fact, with a straightforward adaptation of the interior regularity theory to the case of
a 
at boundary, with the given C1;� smoothness of ~F , we could only establish C1;�=(2��)

regularity of ~T losing something in the H�older exponent. (We do not know whether this
loss, which also occurs in a variety of other situations, is merely a technical problem or is
indeed unavoidable.) In our estimates therefore we needed to keep distinct the continuity
modulus of x 7! ~F (x; �) from the continuity modulus of the same function in directions
perpendicular to the 
at boundary. For ~F as above, this second modulus is substantially
smaller than the �rst one. Carefully tracking how the di�erent moduli enter the various
estimates (which is possible in our regularity proof), we were able to prove in the end C1;�

regularity of T up to the boundary without any loss in the H�older exponent. This way of
proceeding is a new technique introduced in the present paper that may also be of interest
with regard to other boundary regularity problems.
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1 Recti�able currents, parametric integrands, and almost mini-

mizers

By an n-dimensional integer multiplicity recti�able current T on R
n+k we mean a

generalized oriented surface which can be represented by integration as a linear functional
on the space of smooth n-forms � with compact support in R

n+k as follows

hT; �i =
Z
MT

h�; ~T i#T dHn =
Z
Rn+k

h�; ~T i dkTk :

Here Hn denotes the n-dimensional Hausdor� measure in R
n+k , the supporting setMT �

R
n+k is countably (Hn; n) rect�able (i.e. it can be covered by countably many n-submanifolds
of class C1 in R

n+k and a set of zero Hn measure), #T is a positive integer valued Hn

summable multiplicity function, and ~T is an n-measurable orientation n-vector�eld
for MT (i.e. ~T (x) equals, at Hn almost every point x 2 MT , the exterior product of some
orthonormal basis in the n-dimensional approximate tangent space Tann(Hn MT ; x)). As
usual, we have written kTk for the Radon measure Hn #T associated with T , understand-
ing that #T is extended by the value zero on R

n+k nMT , and we note that summability of
#T is equivalent to �niteness of the mass (or n-area)

M (T ) = kTk(Rn+k) =
Z
MT

#T dHn :

We refer to [Fe] and [Si1] for the basic notions and notations related to currents. Notations
not explained in this paper are taken from [Fe]. Our usage is consistent with this reference,
except that what we have called an integer multiplicity recti�able current above would be
a locally recti�able current with �nite mass in the language of [Fe]. The abelian group
of these n-dimensional currents on R

n+k is denoted by Rn(R
n+k), its elements will also be

called recti�able n-currents or simply n-currents. We will always assume dimension n � 2
and codimension k � 1.

A parametric integrand of degree n on an open set D in R
n+k is a continuous map

F :D �^
n
R
n+k ! R

which is positively homogeneous of degree one in the second variable, i.e. F (x; r�) = rF (x; �)
for r > 0. The integral of F over an n-current as above (with #T � 0 outside D) is then

F (T ) =
Z
MT

F (x; ~T (x))#TdHnx =
Z
D
F (x; ~T (x))dkTkx ;

provided the integral exists and is �nite. This is the case, for example, if jF j is bounded by
the area integrand, i.e. jF (x; �)j � �j�j holds for all (x; �) with a �nite constant �. For
the purpose of regularity theory it is no restriction to assume D = R

n+k .

We now list the assumptions on the integrand which we shall use in our regularity
theorems. The �rst set of assumptions requires bounds for F (x; �) and its derivativesD(2)F ,
D2

(2)F with respect to the tangent plane variable � 2 VnR
n+k as follws:

j�j � F (x; �) � �j�j ;(1.1)
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kD(2)F (x; �)k � � ;(1.2)

kD2
(2)F (x; �)k � �j�j�1 ;(1.3)

for all x 2 R
n+k and 0 6= � 2 V

nR
n+k , where � � 1 is a �nite constant. (1.1) means,

in particular, that F is estimated from above and from below by the area integrand
M(x; �) = j�j. (It is convenient to assume the constant 1 in the estimate from below; this
is, of course, no essential restriction.) We also need a uniform modulus of continuity for
� 7! D2

(2)F (x; �),


D2
(2)F (x; �)�D2

(2)F (x;
~�)



 � �(j� � ~�j)(1.4)

for all x 2 R
n+k and �; ~� 2 VnR

n+k with j�j = 1 = j~�j, where �(0+) = 0 = �(0). We assume
continuity of F and D(2)F with respect to the space variable x as follows:

jF (x; �)� F (~x; �)j � �(jx� ~xj)j�j ;(1.5)




D(2)F (x; �)�D(2)F (~x; �)



 � �(jx� ~xj)(1.6)

for all x, ~x, �, where �: [0;1[! [0;1] is nondecreasing with �(0+) = 0 = �(0) and
]0;1[3 r 7! 1

r
�(r) nonincreasing. We may also assume that �(1) is as small as we like; this

can be achieved by scaling with homotheties. In the proof of the regularity theorem we
need a restriction on the decay of �(r) as r # 0, cf. (1.15). This condition is satis�ed when
�(r) � r� holds for some � > 0 and all su�ciently small r > 0. We also have to require
that r 7! r���(r) is nonincreasing for some exponent 0 < � < 1.

In (1.1){(1.6) we assume implicitely that all the appearing derivatives of F depend
continuously on (x; �), � 6= 0. With regard to the notation of norms we use j q j to denote
natural Euclidean norms and k q k for operator type norms (largest Euclidean norm of
values obtaind from evaluating on unit vectors).

For the treatement of boundary regularity we also need the continuity modulus �( q) of
x 7! F (x; �) in directions perpendicular to the boundary tangent plane R

n�1 � f0g, i.e.

jF (x; �)� F (~x; �)j � �(jx� ~xj)j�j ; if xi = ~xi for i = 1; : : : ; n� 1,(1.7)




D(2)F (x; �)�D(2)F (~x; �)



 � �(jx� ~xj) ; if xi = ~xi for i = 1 : : : ; n� 1,(1.8)

where 0 � �(r) � �(r) is a nondecreasing function of r � 0 with ]0;1[3 r 7! 1
r
�(r)

nondecreasing and a further condition stated in (1.15) below. The reason for introducing the
modulus �( q) is the following: If F is obtained from a smooth integrand by transformation
with a di�eomorphism � that maps a given C1 submanifold � of Rn+k to its tangent plane
R
n�1 � f0g � R

n+k at the origin and has the form �(x) = x + 	(x1; : : : ; xn�1), then the
modulus �( q) of F is essentially the continuity modulus of the tangent plane distribution
of � while �(r) � const r is a Lipschitz modul even when � is not of class C1;1. We shall
exploit this fact to obtain optimal moduli of continuity in the boundary regularity theorem.
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With �( q ) and �( q ) we associate the following functions b�( q) and b�( q ) which enter the
regularity estimates:

b�(r) = sup
0�2s�1

h
�(s)� ( s

r
)2
i

and b�(r) = sup
0�2s�1

h
�(s)� ( s

r
)2
i

for r > 0.(1.9)

One readily veri�es that b�( q) is nondecreasing with b�(0+) = 0 and b�(1
2
) � �(1

2
) � 1

4
+ b�(1).

Furthermore, from the fact that �(#2r) � #2�(r) holds for 0 < # � 1 we deduce b�(#r) �
#2 b�(r) and, hence, that r 7! 1

r

qb�(r) is nonincreasing. We also note that 1
4
�(r)2 � b�(r) �

�(r) holds for 0 < r � r0 whenever 0 < r0 � 1
2
and �(r0) � 1. The �rst inequality

follows by taking s = 1p
2
r�( 1p

2
r) in (1.9) and using �(s) � 1p

2
�( 1p

2
r)2 � 1

2
�(r)2, by the

nonincreasing property of r 7! 1
r
�(r). For the second inequality one observes that �(s)�( s

r
)2

is nonpositive for r � s � 1
2
and uses again (1.9) together with �(s) � s

r
�(r) for 0 < s � r.

As an example, we have b�(r) = const c
2

2�� r
2�
2�� for 0 < r � 1, if �(s) = cs� with 0 < � � 1

and 0 � c � 2��2. The same statements hold for � and b�, of course.
When dealing with the nonparametric situation where the n-currents are represented

by graphs in R
n � R

k we will have to consider the associated nonparametric integrand

F x: Rn � R
k � Hom(Rn ; Rk )! R

which is characterized by

F (Tg) =
Z


F x(y; g(y); Dg(y)) dLny

whenever g: 
 ! R
k is Lipschitz on a bounded domain 
 in R

n and Tg is the n-current
representing the graph of g with natural orientation and multiplicity one. We have

F x(y; z; p) = F
�
(y; z);

^
n
(id; p)e1^ : : :^en

�
;

where e1; : : : ; en is the canonical basis in R
n and (id; p)(y) = (y; py) for y 2 R

n , p 2
Hom(Rn ; Rk). It is convenient to assume conditions analogous to (1.3), (1.4) also for the
total second order derivative D2

(3)F
x of F x with respect to p, i.e.


D2

(3)F
x(y; z; p)




 � � for all y; z; p with jpj � 1,(1.10)




D2
(3)F

x(y; z; p)�D2
(3)F

x(y; z; ~p)



 � �(jp� ~pj)

for all y; z; p; ~p with jpj � 2, j~pj � 2.
(1.11)

Actually these conditions follow from (1.1){(1.4) with suitably modi�ed constant � and
modulus �. For � we will assume, as we may, that it is a nondecreasing function with
�(0+) = 0 = �(0).

We next come to the assumption of ellipticity for F . This is a condition on the constant
coe�cient integrands Fa(x; �) = F (a; �) obtained from F by freezing the coe�cients at
a 2 R

n+k . Following [Fe, 5.1.2] we call F elliptic at a, if there exists a positive constant �
such that the inequality

Fa (T )� Fa (S) � � [M (T )�M (S)](1.12)
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holds whenever S; T are (compactly supported) recti�able n-currents on R
n+k with the same

boundary @S = @T and S is represented by anHn measurable subset of some n-dimensional
a�ne subspace in R

n+k with constant orientation n-vector�eld and Hn summable positive
integer valued multiplicity. (This is the ellipticity condition convenient for us. In Almgren's
original de�nition [Alm1] only 
at n-disks were considered. The ellipticity de�nition in [Bo]
is an adaptation of this taking multiplicities into account; it assumes (1.12) only when S
is an integer multiple of a 
at n-disc with constant orientation. It can be shown that this
is equivalent to the de�nition above.) We will suppose that F is uniformly elliptic in
the sense that (1.12) holds with the same constant � for all points a 2 R

n+k . This is
no restriction as our considerations are of local nature. For the ellipticity constant we
assume 0 < � � 1.

If F is elliptic at a = (b; c) 2 R
n � R

k , then the associated nonparametric integrand
satis�es the Legendre-Hadamard condition in the sense that the Hessean of F x(b; c; p)
with respect to the variable p = (pi�) 2 Hom(Rn ; Rk) is rank one elliptic. In particular, if
(1.12) holds, then with the same constant � we have ([Fe, 5.1.10])

nX
�;�=1

kX
i;j=1

@2F x

@pi�@p
j
�

(b; c; 0)���
i���

j � �j�j2j�j2(1.13)

for all � in R
k and � in (the dual space of) Rn . The nonparametric Legendre-condition does

not imply, however, ellipticity (1.12) if n � 2, k � 2 (see [Sv2]). On the other hand, the
parametric Legendre condition [Fe, 5.1.3], which was adopted in [SS] as the de�nition of
ellipticity, is presumably more restrictive than (1.12) if n � 2, k � 2. This is suggested by
the analogous result for nonparametric variational integrals (e.g. [Sv1]).

Recalling [Fe, 5.1.1] for the transformation of integrands F by di�eomorphisms � and
[Fe, 5.1.4] for the preservation of ellipticity under such transformations one readily veri�es
that the integrand ~F , obtained from the transformed integrand �#F by multiplying with
a suitable positive factor and scaling with a suitable homothety of Rn+k , satis�es the same
set of conditions (1.1){(1.13) with appropriate constants ~�, ~� and moduli ~�, ~�, provided
� is a biLipschitz di�eomorphism of Rn+k with D2� bounded or D� Lipschitz, at least.
In this sense our assumptions on the integrand are invariant with respect to biLipschitz
di�eomorphisms of class C1;1.

A recti�able n-current T is called F minimizing in an open subset D of Rn+k if F (T ) �
F (T +X) for all closed n-currents X with compact support in D. Following Almgren
[Alm2] and Bombieri [Bo] we consider a relaxed minimizing condition which allows the
existence of modi�cations T + X of T with F (T +X) smaller than F (T ), but only by a
factor 1 + !(r) close to 1 if X has its support in a ball of small radius r. We adopt the
de�nition from [Bo] which is as follows: For a given function !: ]0;1[! [0;1] one says
that T is almost minimizing for (F; !) in D, or (F; !) minimizing for short, if

F (T ) � F (T +X) + !(r)M (T K +X)(1.14)

holds for all closed n-currents X with support in a compact set K � D which is contained
in a ball of radius r in R

n+k .

With regard to ! we will always assume that it is a nondecreasing function and �nite
for the values of r appearing in the following. For the regularity theory we need (1.14)
only for small radii r, of course, i.e. we can admit !(r) = 1 for r � � and some � > 0.
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Furthermore, it would be su�cient to know (1.14) for all X satisfying an additional mass
bound M(X) � 
 with some constant 0 < 
 < 1. Additional assumptions on ! and
on the moduli �, b�, �, b� de�ned previously are needed for the iteration argument in the
proof of the excess decay, Lemma 5.4. There we assume that r���(r), r���(r), r�2�!(r)
are nonincreasing functions of r > 0 for some exponent 0 < � < 1 (this is not an essential
restriction, but it excludes Lipschitz modules �(r) = const r; as before, it follows that
r 7! r�2�b�(r) and r 7! r�2�b�(r) are also nonincreasing) and we require that

K(r) =
Z r

0

1

%
�(%) d% <1 ; bK(r) = "Z r

0

1

%

qb�(%) d%#2 <1 ;

cM(r) = "Z r

0

1

%

qb�(%) d%#2 <1 ; 
(r) =

"Z r

0

1

%

q
!(%) d%

#2
<1

(1.15)

for small r > 0. This growth condition for !(r) as r # 0 appears already in [Alm2], [Bo],
[Ta1] and it is, in a sense, necessary for C1 regularity of (F; !) minimizers as shown by
examples in [Ta1] (for the area integrand with codimension k = 1 and a somewhat di�erent
notion of almost minimality). Note that !(r) = r2� and �(r) = r� with 0 < � < 1 satis�es
all the assumptions above with 
(r) = ��2r2� and K(r) = ��1r�. In view of b�(r) � �(r)

for su�ciently small r > 0 the condition cM(r) < 1 is satis�ed for small r > 0 wheneverR r
0

1
%

q
�(%) d% <1 holds, so that �(r) = r� with 0 < � < 1 is again admissible here.

We now discuss some situations were (F; !) minimizing currents arise. The �rst exam-
ples are minimizers for functionals of mean curvature type. Here we assume that the
n-current T is minimizing for F + V on R

n+k where V is some kind of additive volume
functional. More precisely, suppose jV(X)j � 
M (Q) whenever X is a closed recti�able
n-current and Q an (n + 1)-current of least mass with @Q = X. Then we have

F (T ) � F (T +X) +V(X) � F (T +X) + 
M (Q) ;(1.16)

and if sptX � K, where K is contained in a ball of radius r, we can estimate M (Q) by
the mass of the cone over X, to obtain

M (Q) � r
n+1

M (X) � r
n+1

[M (T K +X) +M (T K)] :(1.17)

With the help of (1.1) we readily deduce from (1.16), (1.17) that T is (F; !) minimizing
with a function !(r) = O(r) as r # 0. Functionals of the type M + V occur as energies
in the variational approach to hypersurfaces with prescribed mean curvature or surfaces
with prescribed mean curvature vector (e.g. [Du1], [DF1], [DF2], [DS3], [Ma]). In [DS1]
currents with the almost minimizing property (1.16) for the area integrand F = M were
systematically studied.

A similar situation occurs when T minimizesF subject to a volume constraint V(T ) =
const. If the �rst variation of V does not vanish and X, K, r are as above with r su�ciently
small and M (X) bounded by a �nite constant, then we can correct the volume of T +X
by a deformation ht which is the identity on K to achieve V(ht#T + X) = V(T ) and
jF (ht#T +X)� F (T +X)j � constjV(X)j. Since ht#T+X satis�es the volume constraint
we have F (T ) � F (ht#T +X), and with jV(X)j � 
M (Q) and (1.17) we see as before
that T is (F; !) minimizing (for the unconstrained problem) with !(r) = O(r) as r # 0.

9



See [Du2], [GMT], [Ta3] for a more thorough discussion in the case F =M and k = 1 and
[Alm2] for general F and k = 1.

If T minimizes F subject to an obstacle condition sptT � A, where A � R
n+k is

closed and R
n+k n A is the \obstacle", then one can derive (F; !) minimality of T (for

the unconstrained problem), provided A is su�ciently regular at the boundary and the
integrand F is compatible with the obstacle. By the latter condition we mean that for
0 < r su�ciently small and each point a 2 @A there is a Lipschitz retraction �a of the ball
U (a; r) in R

n+k onto A\U (a; r) such that Fa (�a#S) � Fa (S) holds for n-currents S with
sptS � U (a; r) and spt @S � A\U (a; r). If X is closed with support in U (a; r), then we
can use �a#(T U (a; r)+X) as a comparison current for T U (a; r), and with the help of
(1.5) we deduce that T is (F; !) minimizing with !(r) = O(r) as r # 0 (assuming that the
conditions on the obstacle hold uniformly for all a 2 @A). More generally we assume that
�a retracts U (a; r) without decreasing Fa onto a subset of U (a; r) which is di�eomorphic
to A \ U (a; r) by a C1 di�eomorphism ' of U (a; r) that deviates in the C1 norm from
the identity by at most const r�, 0 < � � 1. Using then (' b�a b'�1)#(T +X) U (a; r) as
comparison current for T U (a; r) in the obstacle problem we obtain the (F; !)-minimizing
property for T with !(r) = O(r�) as r # 0. This can be applied, for example, if F = M is
the area integrand and A is the closure of a (uniform) C1;� domain with �a the nearest point
retraction onto the a�ne tangent half space to A at a. (Actually !(r) = O(r2�) in this case
by the argument below.) More generally we may take A locally uniformly C1;� equivalent,
in a suitable sense, to a convex set. For general elliptic integrands F , codimension k = 1,
and A the closure of a uniform C1;� domain we can again use the nearest point retraction
�a onto the tangent half space of A at a, as the Fa nonincreasing property of �a# is then
a consequence of ellipticity. Thus, solutions of obstacle problems will be (F; !) minimizing
with !(r) = O(r�). We refer to [Alm2], [Li], and (for the area integrand with codimension
1 and multiplicity 1) to [Ta1], [Mi].

Finally, we want to indicate that every oriented uniform C1;� submanifold T of di-
mension n in R

n+k is (M;!) minimizing with M the area integrand and !(r) = O(r2�).
More precisely, the n-current T de�ned by integration over T (with multiplicity 1) has this
property. Considering a 2 T and a closed n-current X with support in a compact set
K � U (a; r) and letting �a be the orthonogal projection of Rn+k onto TanaT we observe

M (�a#(T K)) =M (�a#(T K +X)) �M (T K +X) ;

and hence it su�ces to prove

M (T K) � (1 + !(r))M (�a#(T K))

with !(r) as asserted. This is easily done by writing U (a; r) \ T = U (a; r) \ (graphu) as
a graph over the tangent plane TanaT , if r is small enough, and then using the estimate
jDu(y)j � constjyj� in the area integral of the corresponding function u. For further
discussions of the (F; !) minimizing property of solutions to parametric variational problems
we refer to [Alm2] and (for the area integrand with codimension 1 and multiplicity one,
and with a somewhat di�erent de�nition of almost minimality) to [Ta2].

We will frequently use the following scaling property: If the recti�able n-current T
is (F; !) minimizing in D � R

n+k , a 2 R
n+k , # > 0, � a(x) = x + a denotes the translation

in R
n+k , �#(x) = #x denotes the homothety in R

n+k , ~T = ��1##�
�1
a#T , and ~F (~x; �) =
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F (a + #~x; �) for ~x 2 ~D = ��1# �
�1
a D, then ~T is ( ~F; ~!) minimizing in ~D with ~!(~r) = !(#~r).

Here we have taken ~F instead of the transformed integrand bF = (� a b�#)
# F = #n ~F ,

because then ~F has the same structure constants ~� = �, ~� = � and modulus ~� = � as
F in (1.1){(1.4). For the moduli appearing in (1.5){(1.8) we then have ~�(r) = �(#r),
~�(r) = �(#r). Furthermore, b~�(r) � b�(#r) can be easily derived from the de�nition (1.9) if
0 < # � 1. We also note, for biLipschitz maps G with biLipschitz constant L, that G�1

# T
is (G#F; ~!) minimizing with ~!(~r) = Ln!(L~r).

In the �-regularity theorem (Theorem 6.1) one considers a situation where the (F; !)
minimizing n-current has special projection properties and small cylindrical excess with
respect to an n-plane in R

n+k . We �x this plane to be R
n � f0gk � R

n � R
k and introduce

the following notations to be used throughout this paper: p: Rn+k ! R
n , q: Rn+k ! R

k

are the projections, i.e. p(x) = y, q(x) = z for x = (y; z) 2 R
n � R

k . Open balls in R
n are

denoted by U%(y), the center y is omitted if y = 0, the radius % is omitted if % = 1, so that
U% and U are open balls in R

n with radius % and 1 respectively and centered at the origin.
Closed balls are denoted similarly with U replaced by B. Cylinders in R

n+k over open balls
in R

n will be written C%(y) = U%(y)� R
k = p�1(U%(y)) with the same conventions for the

suppressing of y or %, in particular we will usually work in the unit cylinder C = U� R
k .

Closed cylinders are denoted using C instead of C. The superscript or the subscript "+"
at open balls in R

n indicates intersection with the half space R
n�1�]0;1[, so that e.g. U+

is the open unit half ball in R
n . Similarly, C+

% = C%(y) \ R
n�1�]0;1[�R

k . The closure of

U+
% (y) and C+

% (y) is written B
+
% (y) and C

+
% (y) respectively, in particular B+ is the closed

unit half ball in R
n and C+ = B+ � R

k . Superscripts or subscripts "�" have analogous
meaning with ]�1; 0[ replacing ]0;1[. Balls in a Euclidean space Rl of arbitrary dimension
we denote Ul

r(a), B
l
r(y) or U

l(a; r), Bl(a; r), indicating the dimension. However, in the
case l = n + k we omit the dimension writing U (x; r), B (x; r); no confusion should arise
from this, as it can seen from the context that x 2 R

n+k in this case.

For the interior �-regularity theorem we consider the class of admissible currents in
the interior situation

Ti(n; k;m)

which consists of the n-dimensional currents T on R
n+k with the following properties:

T 2 Rn(R
n+k) ; T = T C ;(1.18)

@T C = 0 ; 0 2 spt T ;(1.19)

p#T = m(En U) :(1.20)

The �rst condition means that T is recti�able and vanishes outside C, by the second
condition T has zero boundary in C and does not vanish on a neighborhood of the origin,
the third condition tells us that the projection of T onto R

n is represented by the unit disc
with standard orientation and multiplicity m. Here m is a given positive integer, and En

denotes the n-current on R
n de�ned by integration of n-forms (with respect to the standard

orientation of Rn).

For the boundary regularity theorem we consider an analogous class of currents T with
@T C prescribed (and nonzero). Thinking of a boundary condition @T = B where B

11



is represented by an oriented submanifold B of class C1;1 in R
n+k it is no restriction, by

the invariance of the structure conditions for the integrand F and the (F; !) minimizing
property of T with respect to transformations by biLipschitz di�eomorphisms of class C1;1,
to assume that B is an (n�1)-dimensional a�ne subspace which we take as Rn�1�f0gk+1 �
R
n+k with the boundary orientation induced from the half space R

n�1�]0;1[ (this is (�1)n
times the standard orientation of Rn�1). We therefore replace (1.19) by

@T C = B with B = (�1)n�1
�
En�1 � �k+10

�
C(1.21)

and (1.20) by

p#T = m (En U+) + (m� 1) (En U�) ;(1.22)

that is p#T is represented by the two half disks U+, U� with standard orientation and
multiplicities m, m� 1 respectively, and

p#B = @ (En U+) U(1.23)

is the oriented boundary of the half disc U+ in U. The class of admissible currents in
the boundary situation

Tb(n; k;m)

is then de�ned as the set of all currents T satisfying (1.18), (1.21) and (1.22). We use the
notation

T�(n; k;m) = Ti(n; k;m) [ Tb(n; k;m)

so that statements made about T 2 T�(n; k;m) are valid in the interior situation and in the

boundary situation as well. We notice that
�
��1%#�

�1
a#T

�
C 2 Ti(n; k;m) if T 2 Ti(n; k;m),

a 2 C \ sptT , and 0 < % � 1 � jpaj. The analogous assertion holds for Tb instead of Ti,
provided a 2 C \ R

n�1 � f0gk+1.
A crucial role in the regularity theory for recti�able n-currents T on R

n+k is played by
the cylindrical excess which is de�ned, for r > 0, by

E (T; r) = r�n [M (T Cr)�M (p#(T Cr))] � 0 ;

and, for y 2 R
n ,

E(T; y; r) = E
�
��1(y;0)#T; r

�
:

If p#(T Cr) = En # holds with a nonnegative multiplicity function #, then one can write

E (T; r) = r�n
Z
Cr

�
1� ~T q~e

�
dkTk = 1

2
r�n

Z
Cr

j~T � ~ej2 dkTk ;(1.24)

where ~e is the orientation vector of En� �k0 (i.e. the exterior product e1^ : : :^en of the �rst
n canonical basis vectors of Rn+k). In particular, we may use (1.24) for T 2 T�(n; k;m),
and we have

E (T; r) = r�nM (T Cr)�m�(n) if T 2 Ti(n; k;m),
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E (T; r) = r�nM (T Cr)� 1
2
(2m� 1)�(n) if T 2 Tb(n; k;m),

where �(n) = Ln(U) is the volume of the unit ball in R
n . We note the mass bound

M (T Cr) � 1+m�(n)rn as a consequence, if E (T; r) � 1. We also note the monotonicity
property rnE (T; r) � snE (T; s) for 0 < r � s. (The main part in the regularity theory is
to prove that also the scaled quantity E (T; r) is decreasing to zero with r # 0.)

Finally, with C1; C2; : : : we denote various constants which are "large", i.e. Ci 2 [1;1[,
while �; �; : : : are small positive constants with values in ]0; 1[. We usually write Ci =
const(n; k;�; �; : : :) or � = �(n; k;�; �; : : :) when the constants appear for the �rst time, in
order to indicate their dependence on parameters or moduli n, k, �, �; : : :.

2 Lower mass estimate and height bound

In this section we establish a lower bound for the mass in balls and an upper bound for
the height of (F; !) minimizing currents T 2 T�(n; k;m). The arguments are well known
in the interior case (cf. [Fe, 5.1.6], [Fe, 5.3.4], [Bo, Sec.IV], [SS, Appendix]) and easily
adapted to the boundary situation, we give proofs here only for the sake of completeness.
For the mass estimate (Lemma 2.1) one only needs the structure condition (1.1) on F ,
i.e. j�j � F ( q ; �) � �j�j, and the boundedness of !. The height estimate (Lemma 2.2)
then follows assuming smallness of the excess of T and, in the case of multiplicity m > 1,
additional conditions on the density of kTk (Remark 2.3).

2.1 Lemma (lower mass estimate). Suppose T 2 T�(n; k;m) is (F; !) minimizing in
C. Then

C1M (T U (x; r)) � [� + !(r)]1�n rn(2.1)

holds for all x 2 spt T and 0 < r < 1� jpxj, where C1 = const(n).

Proof. We use the Euclidean distance function dx to x to obtain, for almost every r
as above, a recti�able slice hT; dx; ri = @(T U (x; r))� (@T ) U (x; r) with T U (x; r) =
T B (x; r) (see [Fe, Sec. 4.3]). We then consider a recti�able current S of least mass in R

n+k

with boundary @S = @(T U (x; r)). From the isoperimetric inequality [Fe, 4.4.2], [Alm4]

we have M (S) � 
nM (@S)n=(n�1), and the convexity of U (x; r) implies sptS � B (x; r).
We may therefore use the (F; !) minimality of T and the structure conditions on F to infer

M (T U (x; r)) � F (T U (x; r)) � F (S) + !(r)M (S)

� [� + !(r)]M (S) � [� + !(r)]
nM (@S)n=(n�1)

� [� + !(r)]
n [M (hT; dx; ri) +M ((@T ) U (x; r))]n=(n�1) :

In the case (@T ) U (x; r) 6= 0 we use additionally the projection from R
n+k onto the

subspace R
n�1 �f0gk+1 to see M ((@T ) U (x; r)) �M (hT; dx; ri), because this projection

maps hT; dx; ri onto �(@T ) U (x; r). In any case

M (T U (x; r)) � [� + !(r)]
n2
n=(n�1)M (hT; dx; ri)n=(n�1)(2.2)
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is valid.

Introducing f(r) =M (T U (x; r)) and recallingM (hT; dx; ri) � f 0(r) for almost all r
([Fe, 4.2.1]) we deduce from (2.2)

f(r) � [� + !(r)]
n2
n=(n�1)f 0(r)n=(n�1) :

Noting f(r) > 0 for r > 0, since x 2 sptT , we may rewrite this di�erential inequality as

d

dr

h
f(r)1=n

i
� [� + !(r)](1�n)=n 
(1�n)=n

n 2n�1 ;(2.3)

valid for almost all r. Finally, we integrate (2.3) using the monotonicity of f and f(0) = 0
to obtain (2.1).

2.2 Lemma (height bound). Suppose T 2 T�(n; k; 1) is (F; !) minimizing in C with a
smallness condition for the excess

C2

h
� + !(1

2
)
in�1

E (T; 1)1=2 � 1(2.4)

where C2 = const(n). Then the estimate

sup
n
jqxjn : x 2 C1=2 \ sptT

o
� C3

h
� + !(1

2
)
in�1

E (T; 1)1=2(2.5)

is valid with C3 = const(n).

Proof. We �rst treat the boundary situation T 2 Tb(n; k; 1). Here we have M (T ) =
E (T; 1) + 1

2
�(n) and, consequently, M (T ) � 3

4
�(n) if C2 in (2.4) is chosen to imply

E (T; 1) � 1
4
�(n). Fix a unit vector u 2 f0gn � R

k � R
n+k and de�ne H(r) = fx 2

C : u qx > rg, Tr = T H(r), and H(r; s) = fx 2 C : r < u qx < sg for r < s. Since
M (p#Tr) �M (T ) and thus

M (p#Tr) � 3
4
�(n) ;(2.6)

we may apply the relative isoperimetric inequality [Fe, 5.3.2] to obtain

M (p#Tr)
1�1=n � const(n)M (@(p#Tr) U) � const(n)M ((@Tr) C) :(2.7)

Suppose nowM (Ts) �
p
E for some s > 0, where E = E (T; 1) � 1

4
and we may assume

E > 0. Then, for 0 < r < s we get from (2.7)

�p
E � E

�1�1=n � [M (Tr)� E (T; 1)]1�1=n �M (p#Tr)
1�1=n

� const(n)M ((@Tr) C) :
(2.8)

Integrating this inequality for r 2]0; s[ and using the identity

hT; `u; ri C = @T H(r)� (@Tr) C = �(@Tr) C
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for the slices of T with respect to the linear function `u(x) = u qx (note that H(r) \
spt @T = ; for r > 0) we obtain from the standard slicing estimate [Fe, 4.3.2(2)] and
M (T ) � const(n)

�
1
2

p
E
�1�1=n

s �
�p

E � E
�1�1=n

s � const(n)
Z s

0
M (hT; `uri) dr

� const(n)
Z
H(0;s)

j~T d`uj dkTk

� const(n)

"Z
H(0;s)

j~T d`uj2 dkTk
#1=2

� const(n)

"Z
H(0;s)

�
1� (~T q~e)2

�
dkTk

#1=2

� const(n)

"
2
Z
H(0;s)

�
1� ~T q~e

�
dkTk

#1=2
� const(n)E (T H(0; s); 1)1=2 � const(n)

p
E :

This implies

s � const(n)E1=2n when s > 0 and M (Ts) �
p
E.(2.9)

On the other hand, if s > 0 with M (Ts) �
p
E and x 2 C1=2 \ sptT with u qx � s+ �

for some 0 < � < 1
2
, then U (x; �) � H(s), and we see from Lemma 2.1

[� + !(�)]1�n �n � C1M (T U (x; �)) � C1M (Ts) � C1

p
E ;

an impossibility if we choose �n = 2
h
� + !(1

2
)
in�1

C1

p
E and we require (2.4) with C2 large

enough to secure � < 1
2
. We deduce

sup
n
u qx : x 2 C1=2 \ sptT

o
� s+ const(n)

h
� + !(1

2
)
i1�1=n

E1=2n

when s > 0 and M (Ts) �
p
E.

(2.10)

Clearly, with (2.9) and (2.10) we have proved

sup
n
u qx : x 2 C1=2 \ sptT

o
� const(n)

h
� + !(1

2
)
i1�1=n

E1=2n ;(2.11)

and (2.5) follows since u 2 f0gn � R
k is arbitrary with juj = 1.

In the interior situation T 2 Ti(n; k; 1) one �rst chooses a median value r0 such that
bothM (T H(r0;1)) andM (T H(�1; r0)) do not exceed

1
2
M (T ). ThenM (p#Tr0) �

1
2
�(n) + 1

2
E holds, and (2.6) is valid for r > r0 assuming again E � 1

4
�(n). Reasoning

as in (2.9), (2.10) one obtains an estimate analogous to (2.11) for the oscillation of `u on
C1=2 \ sptT . The inequality (2.5) then follows from 0 2 spt T . (Cf. the proof of Lemma 2
in [SS].)
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2.3 Remark. In the case case of multiplicitym > 1 one can prove a height estimate
similar to (2.5), provided the additional assumption

�n(kTk; x) � m for kTk almost all x 2 C(2.12)

is satis�ed when T 2 Ti(n; k;m), and

�n(kTk; x) � m for kTk almost all x 2 C+,

�n(kTk; x) � m� 1 for kTk almost all x 2 C�
(2.13)

when T 2 Tb(n; k;m).

For T 2 Ti(n; k;m) and the median value r0 from the proof above we deduce from
(2.12) and E � m

4
�(n) that Ln(P (r)) � 3

4
�(n) for r � r0 and the set P (r) � U of points y

with �n(kp#(T H(r;1))k; y) � 1. Therefore, the relative isoperimetric inequality (2.7)
is again valid, and we may argue as before to obtain (2.5) with C3 = mn=2const(n).

For T 2 Tb(n; k;m) we �rst choose median values r+0 , r
�
0 for the half cylinders C+, C�

analogous to r0 for C. We then argue as in the proof of (2.9) to obtain, with c = const(n)
and H�(: : :) = C� \H(: : :),

M (T H+(r;1)) � 1
2

p
E for r � r+0 + cE1=2n,

M (T H+(�1; r)) � 1
2

p
E for r � r+0 � cE1=2n,

(2.14)

and analogous statements for T H�(: : :) and r�0 .

We claim that jr+0 � r�0 j � 2cE1=2n + � where � = (2C1)
1=n

h
� + !(1

2
)
i1�1=n

E1=2n < 1
2
is

as in the proof of Lemma 2.2 and E = E (T; 1) is su�ciently small (and positive). With this
estimate for jr+0 � r�0 j we can then derive the height estimate (2.5) with C3 = mn=2const(n)
exactly as in the proof of (2.10).

For x 2 C1�� \ sptT we �rst note M (T U (x; �)) � 2
p
E, by Lemma 2.1 and the

de�nition of �, and we infer

M (T (C+ \U (x; �))) > 1
2

p
E or M (T (C� \U (x; �))) > 1

2

p
E ;(2.15)

since M (T (C n (C+ [C�))) � E <
p
E. Assuming jr+0 � r�0 j > 2cE1=2n + 2� we de-

duce u qx 6= s for s = 1
2
(r+0 + r�0 ), because otherwise U (x; �) would be disjoint from

H+(r
+
0 � cE1=2n; r+0 + cE1=2n) and from H�(r�0 � cE1=2n; r�0 + cE1=2n) and then (2.15) would

contradict (2.14). Since 0 2 spt @T and u qx = 0 for x 2 C \ spt @T we conclude s > 0
and @(T H(s;1)) C1�� = 0, or s < 0 and @(T H(�1; s)) C1�� = 0. The second
case being similar, we proceed with the �rst case where [@(p#Ts)] U1�� = 0 and p#Ts is
constant on U1��. But it follows from (2.14), jr+0 � r�0 j > 2cE1=2n, and the choice of s that

M ((p#Ts) U+) � 1
2

p
E and M (T H�(�1; s)) � 1

2

p
E ;

or

M ((p#Ts) U�) � 1
2

p
E and M (T H+(�1; s)) � 1

2

p
E :

16



For
p
E < 2�n�1�(n) this contradicts the constancy of p#Ts on U1=2, because p#T has

multiplicity � m�1 > 0 everywhere on U and
n
x 2 C1=2 \ sptT : u qx = s

o
is empty. The

claim is proved.

We note that the bad hypotheses (2.12), (2.13) are needed only for the relative isoperi-
metric inequality (2.7) and somewhat weaker assumptions would su�ce here. For example,
it would be enough to know the inequalities (2.12), (2.13) on subcylinders of C, C+, C�
with cross sections of positive Ln measure (independent of T ). However, we shall need
scaled versions of the height estimate which we can prove, in the case m � 2, only with
extra assumptions similar to (2.12), (2.13) (cf. [Fe, 5.3.17] and the discussion following
Lemma 2 in [SS]).

3 Harmonic approximation

As a general hypothesis we assume in this section that T 2 T�(n; k;m) is (F; !) minimiz-
ing in C, where the integrand F satis�es j�j � F ( q ; �) � �j�j and !: ]0; 1[! [0;1[ is
nondecreasing, and that the additional density conditions (2.12), (2.13) hold in the case
of multiplicity m � 2. Using the height estimate Lemma 2.2 we �rst show that T can
be approximated, with error estimates in terms of the excess E (T; 1), by the current Tg
associated with the graph of a Lipschitz function g: Rn ! R

k equipped with appropriately
chosen multiplicities and orientation. In the interior case this was done in [SS, Lemma 3]
modifying [All1, 8.12] (cf. [Si1, x20]), and it is not di�cult to adapt the arguments to the
boundary situation treated here. Since the estimates we need are somewhat di�erent from
those in [SS] we give complete proofs. We next show that the approximating function g is,
again with an error dominated by the excess, an approximate solution to the homogeneous
constant coe�cient elliptic system determined by the nonparametric elliptic integrand as-
sociated with F frozen at the origin (i.e. with � 7! F (0; �)). This is similar to Lemma 12
and Lemma 13 in [Bo], in the boundary situation T 2 Tb(n; k;m), however, we can prove
such a statement only on the half ball U+ (and also on U� if m � 2). Finally, we state a
simple Lemma following [Si1, x21], [Si2, x1.6] which asserts that the approximate solution
g is indeed close, in the weak topology of the Sobolev space W 1;2, to an exact solution.

3.1 Lemma (Lipschitz approximation). Given 0 < % � 1
17

and 0 < � � 1 there exists
a Lipschitz map g:U% ! R

k with Lip g � � such that the following assertions are true:

(i) The n-current Tg represented by graph g, with orientation and multiplicities induced
from (p#T ) U% by the projection p, satis�es

kT � Tgk(C%) � C4�
�2nE (T; 1)(3.1)

with a constant C4 = const(n;m)
h
� + !(1

2
)
i2n�2

.

(ii) Let Ag be the set of y 2 U% satis�ng fyg � R
k \ sptT n graph g 6= ; and in the case

T 2 Tb(n; k;m) additionally y 2 U+; then

Ln(Ag) � C5�
�2nE (T; 1)(3.2)

holds with a constant C5 = const(n;m)
h
� + !(1

2
)
i2n�2

.

17



(iii) In the case T 62 Ti(n; k;m)Z
U%nAg

jDgj2 dLn � 3E (T; 1)(3.3)

holds; in the case T 2 Tb(n; k;m) this is valid with U+ \ U% n Ag as domain of
integration.

(iv) For 
 > 0 let Ag;
 = Ag [ fy 2 U% : jDg(y)j � 
g in the case T 2 Ti(n; k;m) and
Ag;
 = Ag [ fy 2 U% \U+ : jDg(y)j � 
g in the case T 2 Tb(n; k;m); then

Ln(Ag;
) �
�
1 + C5�

�2n� 3
�2E (T; 1) ;(3.4)

kTk(Ag;
 � R
k ) �

h
1 +m

�
1 + C5�

�2n� 3
�2iE (T; 1) :(3.5)

(v) g(0) = 0 and in the boundary case T 2 Tb(n; k;m) additionally g(y) = 0 for all
y 2 Un�1

% � f0g.

(vi) If C2

h
� + !(1

2
)
in�1

E (T; 1)1=2 � 1 holds, then

sup
U%

jgjn � C3

h
� + !(1

2
)
in�1

E (T; 1)1=2(3.6)

where C2, C3 are the constants from Lemma 2.2.

Proof. We only treat the boundary case T 2 Tb(n; k;m) as the proof in the interior
situation is similar, but simpler.

For 0 < % � 1
4
and � to be �xed later de�ne the good set

G = fy 2 U% : yn 6= 0 and E (T; y; �) � � for 0 < � < 1� %g :(3.7)

Then for each y 2 U% nG there exists �(y) 2]0; 1� %[ with

1
2

Z
C�(y)(y)

j~T � ~ej2 dkTk = �(y)nE (T; y; �(y)) > �(y)n� :

By the Besicovitch covering theorem we can �nd N = const(n) disjointed systems B1; : : : ;
BN of ballsB (y; �(y)), y 2 U%nG, such that B1[: : :[BN covers U%nG. For i 2 f1; : : : ; Ng
chosen suitably we infer the following estimate for the bad set:

Ln(U% nG) � NLn
�[

B2Bi B
�
� N�(n)

X
B(y;�(y))2Bi

�(y)n(3.8)

� N�(n)
1

2�

Z
C
j~T � ~ej2 dkTk = N�(n)

1

�
E (T; 1) :

We want to show that sptT is a graph over G. For this we �x y, ~y 2 G and x, ~x 2 spt T
with px = y, p~x = ~y, and we distinguish

Case 1: B (y; 2jy � ~yj) � U+ (or � U�);

Case 2: B (y; 2jy � ~yj) \Un�1 � f0g 6= ; :

18



In the �rst case we consider the scaled current eT =
�
(��12jy�~yj b��1x )#T

�
C 2 Ti(n; k;m)

which is ( eF; e!) minimizing in C, where eF has the same structure constant � as F , ande!(r) = !(2jy�~yjr) � !(r) (see Section 1; in the case y = ~y we consider
�
(��1t b��1x )#T

�
C

with t > 0 arbitrary small.) We can therefore apply Lemma 2.2 (and Remark 2.3 in the
case m � 2, as (2.13) for T implies (2.12) for eT ) to obtain

jqx� q~xj � eC3E
� eT ; 1�1=2n 2jy � ~yj ;

provided eC2E
� eT ; 1�1=2 � 1. Here we have abbreviated eC2 = C2

h
� + !(1

2
)
in�1

and eC3 =

C
1=n
3

h
� + !(1

2
)
i1�1=n

. From % � 1
5
we have 2jy � ~yj < 1 � % and hence E

� eT ; 1� =

E (T; y; 2jy � ~yj) � �, by (3.7). Choosing � such that eC2�
1=2 � 1 the conclusion is therefore

jqx� q~xj � eC3�
1=2n2jy � ~yj in case 1.(3.9)

If B (y; 2jy� ~yj) � U� and m � 2, then eT 2 Ti(n; k;m � 1), and the conclusion is the
same.

In the second case we introduce y0 = (y1; : : : ; yn�1; 0) in R
n and observe jy0�yj � 2jy�~yj,

hence

B (y; jy � ~yj) � B (y0; 3jy � ~yj) � B (y0; 6jy � ~yj) � B (y; 8jy � ~yj) � U ;

since % � 1
16
. We now apply the height estimate form Section 2 to the scaled currenteT =

�
(��16jy�~yj b��1(y0;0))#T

�
C 2 Tb(n; k;m) and obtain

max fjqxj; jq~xjg � eC3E (T; y0; 6jy � ~yj)1=2n 6jy � ~yj ;

provided eC2E (T; y0; 6jy � ~yj)1=2 � 1. On account of % � 1
17

we have 8jy � ~yj < 1 � % and

hence, by (3.7), E (T; y0; 6jy � ~yj) �
�
4
3

�n
�. Choosing � > 0 such that eC2

�
4
3

�n=2
�1=2 � 1

we therefore obtain

jqx� q~xj � 2 eC3

q
4
3
�1=2n6jy � ~yj in case 2.(3.10)

We also note

jqxj � eC3

q
3
2
�1=2n2jy � y0j ;(3.11)

which follws from the same reasoning if we apply it with y0 instead of ~y and useB (y; jy � y0j)
� B (y0; 2jy � y0j) � B (y; 3jy � y0j) � U.

Considering y = ~y in (3.9), (3.10) we see that a function g is well de�ned on G in
the case m � 2 and on G \ U+ in the case m = 1 by letting g(y) = qx for x 2 spt T
with px = y. From (3.9), (3.10) we also see Lip g � � if we choose � = C�1

5 �2n with

C5 = const(n;m)
h
� + !(1

2
)
i2n�2

. From (3.11) we further recognize that this remains true

if we extend g to Un�1
% � f0g by zero. Finally, we extend g to all of U% preserving the

Lipschitz constant, then Lip g � � � 1 holds on U% and (v) is valid.
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To prove (i) we note that Tg is the n-current associated with graph g and with multiplic-
ities m on C+\graph g, m�1 on C�\graph g, oriented such that (@Tg) C% = (@T ) C%.
Writing G� = U� \G and A = U% n (G+ [G�) we estimate, using also (2.13) if m > 1,

kT � Tgk(G+ � R
k ) =

Z
graph gjG+

[�n(kTk; q )�m] dHn

� kTk(G+ � R
k )�mLn(G+)(3.12)

= E
�
T (G+ � R

k ); 1
�
;

and simlarly

kT � Tgk(G� � R
k ) � E

�
T (G� � R

k ); 1
�

in the case m � 2,(3.13)

while

kTk(C nC+) � E (T; 1) in the case m = 1,(3.14)

because then (p#T ) (U nU+) = 0. Furthermore,

kT � Tgk(A� R
k ) � (kTk+ kTgk)(A� R

k )

� E
�
T (A� R

k ); 1
�
+m

h
1 + (1 + (Lip g)2)n=2

i
Ln(A) :

(3.15)

Adding (3.13), (3.14), (3.15), taking account of Lip g � � � 1, and using also (3.8) which,
by the choice of � above, may be rewritten

Ln(A) � C5N�(n)�
�2nE (T; 1) ;(3.16)

we deduce (3.1) in the case m � 2 writing C5 for C5N�(n). In the case m = 1 we obtain
the same conclusion from (3.12),(3.14), (3.15), and (3.16), noting that Tg (C nC+) = 0.

Assertion (ii) follows from (3.16) and (3.14), since Ag � A [ p [spt (T (C nC+))] if
m = 1.

For (iii) we use jDgj � Lip g � 1, the de�nition of Ag and (2.13) (if m > 1) to inferZ
U+\U%nAg

jDgj2 dLn � 3
Z
U+\U%nAg

�q
1 + jDgj2 � 1

�
dLn

� 3
Z
U+\U%nAg

[Jn(id� g)� 1] dLn

� 3

m
kTk

�
p�1(U+ \U% nAg)

�
� 3Ln(U+ \U% n Ag)

� 3

m
E (T C+; 1) ;

and a similar inequality, with m replaced by m� 1, holds for the integral on U� \U% nAg

if m � 2.

With regard to (iv) we note that (iii) implies

Ln(Ag;
) �
 
1 +

1


2

!
Ln(Ag) +

3


2
E (T; 1) ;
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hence (3.4) follows from (3.2), and (3.5) from

kTk(p�1Ag;
) � E (T; 1) +mLn(Ag;
) :

Finally, (vi) follows from Lemma 2.2, because g can be chosen to satisfy (3.6) if we

secure eC2E (T; 1)1=2 � 1.

For the next lemma we introduce

A =
�
a��ij

�
=

0@ @2

@pi�@p
j
�

F x
0 (0)

1A
for the Hessean matrix of the nonparametric integrand F x

0 (p) associated with the frozen
integrand F0 = F (0; q). We also write

A(�; �) =
nX

�;�=1

kX
i;j=1

a��ij �
i
��

j
�

for the quadratic form on Hom(Rn ; Rk ) associated with A, i.e. A = D2F x
0 (0). The constant

� and the nondecreasing functions �, �, b�, and � are from the structure conditions (1.1)-
(1.9) on F .

3.2 Lemma (approximate A-harmonicity). Suppose !(1
2
) + �(1

2
) � 1, 0 < % � 1

17
,

C% \ spt T � Un
% � Bk

1=3, and let g be the Lipschitz approximation associated with T , %,
and � = 1 by Lemma 3.1. Then, with C10 = const(n;m;�), E = E (T; 1), and � =
�(1

2
)2 + b�(1

2
) + !(1

2
), the inequality�����

Z
U%

A(Dg;D�) dLn

�����(3.17)

� C10

h

�2E +

p
�(1 + E) +

�p
E +

p
�
�
� (
 +

p
�)
i
sup jD�j

holds for all parameters 0 < 
 � 1 and all functions � 2 C1(U; Rk) with compact support in
U% and satisfying additionally spt � � U+ in the case T 2 Tb(n; k; 1), spt � � UnUn�1�f0g
in the case T 2 Tb(n; k;m), m � 2.

The essential point here is that �=
p
E is small in the later application of this lemma

so that, with the appropriate choice of 
, the constant on the right hand side of (3.17)
is a small quantity times

p
E. Since b�(1

2
) � �(1

2
) we could replace b�(1

2
) by �(1

2
) in the

hypothesis. However, replacing b�(1
2
) by �(1

2
) in the conclusion, i.e. in the de�nition of �,

would yield a weaker conclusion, in general. The hypothesis that T has height � 1
3
in C% is

made only to secure that the (F; !) minimizing property of T is applied in the proof with
a modi�cation of T inside a ball of radius 1

2
. An appropriate version of the lemma is true

without this hypothesis.

Proof. We follow [Bo, Section IV] closely. We may assume sup jD�j � 1, sup j�j � %,
and we de�ne the vertical deformation

ht(x) = x+ t(0; �(px)) for jtj � 1.
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We then decompose

F ((ht#T ) C%) = K(t) + L(t) +M(t)

where

K(t) =
Z
A
�Rk

F
�
ht(x);

^
n
Dht(x)~T (x)

�
dkTkx ;

L(t) =
Z
C%nA
�Rk

F
�
ht(x);

^
n
Dht(x)~Sg(x)

�
dkSgkx ;

M(t) =
Z
C%nA
�Rk

F
�
ht(x);

^
n
Dht(x)~Tg(x)

�
dkTgkx

and we have written A
 for the set Ag;
 � U% de�ned in Lemma 3.1, (iv) and Sg for T �Tg.
(Note that T � Tg = T # in C% n A
 � R

k with a nonnegative function #, cf. (3.13).)

We estimate K(s)�K(0) using the continuity modulus �( q ) for x 7! F (x; �) from (1.7)
and the bound � for the derivative D(2)F from (1.2). We have, for jsj � 1, and kTk almost
all x 2 C%,���F �hs(x);^n

Dhs(x)~T (x)
�
� F (x; ~T (x))

���
�
���F �hs(x);^n

Dhs(x)~T (x)
�
� F

�
x;
^

n
Dhs(x)~T (x)

����
+

�����
Z s

0
D(2)F

�
x;
^

n
Dht(x)~T (x)

� d

dt

^
n
Dht(x)~T (x) dt

�����
� �(js�(px)j)

���^
n
Dhs(x)~T (x)

���+ �

�����
Z s

0

����� ddt^n
Dht(x)~T (x)

����� dt
�����

� �(jsj%)2n + jsj�n2n�1 :

Integrating with respect to kTk A
 � R
k we obtain

jK(s)�K(0)j �
�
�(jsj%)2n + jsj�n2n�1

�
kTk(A
 � R

k) � C6(�(jsj%)+ jsj)
�2E ;(3.18)

where C6 = const(n;m;�) and we have used (3.5).

In the same way, using (3.1) instead of (3.5), we derive

jL(s)� L(0)j � C7(�(jsj%) + jsj)E(3.19)

with C7 = const(n;m;�).

Similarly as above we see, using also the continuity modulus �( q) for x 7! D(2)F (x; �)
from (1.6) and again assuming jsj � 1,���F �hs(x);^n

Dhs(x)~Tg(x)
�
� F

�
x; ~Tg(x)

�
� F

�
0;
^

n
Dhs(x)~Tg(x)

�
+ F

�
0; ~Tg(x)

����
�
���F �hs(x);^n

Dhs(x)~Tg(x)
�
� F

�
x;
^

n
Dhs(x)~Tg(x)

����
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+

�����
Z s

0

h
D(2)F

�
x;
^

n
Dht(x)~Tg(x)

�
�D(2)F

�
0;
^

n
Dht(x)~Tg(x)

�i d
dt

^
n
Dht(x)~Tg(x) dt

�����
� �(jsj%)2n + jsj�(jxj)n2n�1 :

Integrating this with respect to kTgk (C% n A
 � R
k ) we get�����

Z
C%nA
�Rk

h
F
�
hs(x);

^
n
Dhs(x)~Tg(x)

�
� F

�
x; ~Tg(x)

�i
dkTgkx

�
Z
C%nA
�Rk

h
F
�
0;
^

n
Dhs(x)~Tg(x)

�
� F

�
0; ~Tg(x)

�i
dkTgkx

�����(3.20)

� const(n;m)
h
�(jsj%) + jsj�(

p
2%)

i
;

since Lip g � 1 implies kTgk(C%) � mconst(n) and jxj � p
2% for x 2 C% \ sptTg (recall

g(0) = 0).

De�ning the multiplicity function �m by �m � m on U in the case T 2 Ti(n; k;m) and
�m � m on U+, �m � m� 1 on U� in the case T 2 Tb(n; k;m) we can writeZ

C%nA
�Rk
F
�
0;
^

n
Dhs(x)~Tg(x)

�
dkTgkx =

Z
U%nA


F x
0 (D(g + s�))�m dLn(3.21)

and Z
C%nA
�Rk

F
�
0; ~Tg(x)

�
dkTgkx =

Z
U%nA


F x
0 (Dg)�m dLn :(3.22)

Using (1.11) in the Taylor expansion


DF x
0 (p)�DF x

0 (0)�DDF x
0 (0)p




 � �(jpj)jpj

with p = Dg(y) + tD�(y), multiplying with D�(y), and integrating with respect to (t; y)
we further obtain�����

Z
U%nA


h
F x
0 (D(g + s�))� F x

0 (Dg)
i
�m dLn � s

Z
U%nA


DF x
0 (0)D��m dLn

� s
Z
U%nA


D2F x
0 (0)(Dg;D�)�m dLn � 1

2
s2
Z
U%nA


D2F x
0 (0)(D�;D�)�m dLn

�����(3.23)

�
�����
Z s

0

Z
U%nA


(� b jDg + tD�j) jDg + tD�jjD�j�m dLn dt

�����
� m const(n)jsj�(
 + jsj)

�p
E + jsj

�
;

where we have used (3.3), jD�j � 1 and jDgj � 
 on U% nA
 (on U+ \U% nA
 in the case
T 2 Tb(n; k; 1)) in the last step. The second integral appearing in (3.23) can be estimated
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with (3.4), because the integral ofDF x
0 (0)D��m onU% vanishes on account of the hypothesis

on spt �: �����
Z
U%nA


DF x
0 (0)D��m dLn

����� =
�����
Z
A


DF x
0 (0)D��m dLn

����� � const(n;m;�)
�2E :(3.24)

Combining (3.20){(3.24) and applying (3.4) once more we arrive �nally at the following
inequality, valid for jsj � 1:�����M(s)�M(0)� s

Z
U%

D2F x
0 (0)(Dg;D�)�m dLn

�����
� C8�(jsj%) + C8jsj

h
�(
p
2%) + 
�2E + jsj+

�p
E + jsj

�
�(
 + jsj)

i
;

(3.25)

where C8 = const(n;m;�). With (3.18), (3.19), (3.25), and the inequality b�(1
2
) � �(jsj%)�

4s2%2 which follows from (1.9), we have proved�����F ((hs#T ) C%)� F (T C%)� s
Z
U%

D2F x
0 (0)(Dg;D�)�M dLn

�����
� C9�(jsj%) + C9jsj

h
�(
p
2%) + 
�2E + jsj+

�p
E + jsj

�
�(
 + jsj)

i
� C9b�(12) + C9jsj

h
�(1

2
) + 
�2E + 2jsj+

�p
E + jsj

�
�(
 + jsj)

i
;

(3.26)

provided jsj � 1 and spt � is compact in U% not meeting U
n�1�f0g unless �m is constant.

Since, with this condition on spt �, hs#T is an admissible comparison current, we can
employ the (F; !) minimality of T :

F (T C%) � F ((hs#T ) C%) + !(1
2
)M (hs#T C%)

� F ((hs#T ) C%) + !(1
2
)const(n)(m+ E) ;

(3.27)

because hs#T � T has support in Bn+k(0; 1
2
), by our assumptions on C% \ sptT , � and

%. Choosing jsj =
qb�(1

2
) + !(1

2
) (we may assume that this is positive) and the sign of s

carefully (as in [Bo], proof of Lemma 13) we deduce (3.17) from (3.26) and (3.27). The
condition jsj � 1 is satis�ed for this choice in view of the hypothesis �(1

2
) + !(1

2
) � 1 (andb�(1

2
) � �(1

2
)).

For T 2 Tb(n; k;m) with multiplicitym � 2 it is reasonable to expect that the condition
Un�1�f0g\ spt � = ; in (3.17) is not necessary, i.e. g is approximately A-harmonic on U%

and not just on U+\U% and U�\U% separately. However, we could not �nd a proof based
on vertical deformations of the type used above, and this is one of the reasons why we can
obtain a boundary regularity result only in the case m = 1. It seems that a di�erent type of
variations of T is needed to make progress here, variations which can separate \leaves" of
T with zero boundary in C from the \leaf" with boundary @T and multiplicity 1, speaking
intuitively.

So far we have not used ellipticity of the integrand F . However, if A = D2F x
0 (0)

is elliptic in the sense of the Legendre-Hadamard condition (1.13), then we can �nd an
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A-harmonic function, i.e. an exact solution to the homogeneous constant coe�cient el-
liptic system associated with A, which is close in the weak topology of the Sobolev space
W 1;2, to the approximatively A-harmonic function g exhibited in Lemma 3.2. This can be
proved similarly as in [Si1, x21], [Si2, x1]. For the convenience of the reader we formulate
in the next lemma the exact statement which will be used later, and we include the simple
proof.

3.3 Lemma (A-harmonic approximation). There exists a positive function �(n; k; �;
�; �) � 1 with the following property: Whenever A 2 J2Hom(Rn ; Rk ) is (rank one) elliptic
with ellipticity constant � > 0 and upper bound �, � and % are given positive numbers, and
f 2 W 1;2(U%; R

k) with %2�n
R
U%
jDf j2dLn � 1 is approximatively A-harmonic in the sense

that �����%2�n
Z
U%

A(Df;D�) dLn

����� � �(n; k; �;�; �)% sup jD�j

holds for all � 2 C1(U%; R
k) with compact support in U%, then there exists an A-harmonic

function u 2 W 1;2(U%; R
k ) such that

%�n
Z
U%

ju� f j2 dLn � � and %2�n
Z
U%

jDuj2 dLn � 1 :

The same assertion is true if we replace, everywhere in the statement, the n-ball U% by the
half ball U%;+ = U% \ R

n�1�]0;1[ and the Sobolev space W 1;2(U%; R
k) by W 1;2

(0) (U%;+; R
k ),

the space of W 1;2 functions on U%;+ with vanishing boundary trace on Un�1
% � f0g.

Proof. We may assume % = 1, the general case follows by scaling y 7! %�1f(%y).
Supposing the Lemma to be false we have existence of a sequence of quadratic forms Ai 2J2Hom(Rn ; Rk ) with �xed ellipticity constant � > 0 and bound � <1, and a sequence of
fi 2 W 1;2(U; Rk) with kDfikL2 � 1 and����Z

U
Ai(Dfi; D�) dLn

���� � 1

i
sup jD�j(3.28)

for all � 2 C1(U; Rk) with compact support in U, such that for some � > 0 the inequalityZ
U
jfi � uij2 dLn > �(3.29)

is valid for each i and each Ai-harmonic function ui 2 W 1;2(U; Rk) with kDuikL2 � 1.

Clearly, we may assume
R
U fidLn = 0 and apply Poincar�e's inequality and Rellich's

theorem to obtain, after having passed to a subsequence, fi ! f strongly in L2(U; Rk) and
weakly in W 1;2(U; Rk ) and Ai ! A in

J2Hom(Rn ; Rk). Then kDfkL2 � 1, and fromZ
U
A(Df;D�) dLn =

Z
U
A(Df �Dfi; D�) dLn

+
Z
U
(A� Ai)(Dfi; D�) dLn +

Z
U
Ai(Dfi; D�) dLn

and (3.28) we infer that f is A-harmonic.
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Now, the ellipticity of Ai implies (by Fourier transform and Plancherels theorem, i.e.
G�ardings inequality in the case of constant coe�cients) the coercivity conditionZ

U
Ai(D�;D�) dLn � �

Z
U
jD�j2 dLn for � 2 W 1;2

0 (U; Rk),(3.30)

hence we can choose ui as the solution to the Dirichlet problem corresponding to Ai and
the boundary values of f , i.e.

ui � f 2 W 1;2
0 (U; Rk ) ;

Z
U
Ai(Dui; D�) dLn = 0 for � 2 W 1;2

0 (U; Rk ).(3.31)

Then

�
Z
U
jDui �Df j2 dLn �

Z
U
Ai(Dui �Df;Dui �Df) dLn by (3.30),

= �
Z
U
Ai(Df;Dui �Df) dLn by (3.31),

=
Z
U
(A� Ai)(Df;Dui �Df) dLn by A-harmonicity of f ,

� jAi � Aj
�Z
U
jDui �Df j2 dLn

�1=2
on account of kDfkL2 � 1,

and in view of Ai ! A we have convergence ui ! f in W 1;2 norm. But this implies
kui � fikL2 � kui � fkL2 + kf � fikL2 ! 0 as i ! 1 and the same assertion is true for
~ui = min(1; kDuik�1L2 )ui contradicting (3.29).

The proof for W 1;2
(0) (U+; R

k) is the same. We need only to observe that Poincar�e's

inquality is valid in W 1;2
(0) (U+; R

k), Rellich's compactness theorem holds for the embedding

W 1;2
(0) (U+; R

k)! L2(U+; R
k ), and W 1;2

(0) (U+; R
k) is a closed subspace of W 1;2(U+; R

k).

Although the proof of the previous lemma is by contradiction, this does not mean that
our regularity proof is indirect. Our point of view is simply that the lemma guarantees the
existence of a positive function �(n; k; �;�; �) which is, admittedly not in an explicit form,
determined by a property of constant coe�cient elliptic systems, and we will later use this
function in the regularity proof.

4 A reverse Poincar�e inequality

For solutions u to an elliptic equation by a reverse Poincar�e inequality (also called Cac-
cioppoli's inequality) one means an estimate of Dirichlet's integral of u (on a ball) in terms
of the integral of juj2 (on a larger ball). The analogue for (F; !) minimizing currents

T 2 T�(n; k;m) would be an estimate of the excess E
�
T; 1

5

�
of T in C1=5, say, by the in-

tegral
R
C jqxj2dkTk of the squared height function. Up to some small extra term we prove

here such an inequality. In Lemma 4.1 we �rst establish a weak version which has an ad-
ditional term #E (T; 1) on the right-hand side, with an arbitrarily small parameter # > 0,
however. The proof is a re�nement of [Bo, Sec. 5] which requires some new estimates; this
is crucial for the optimality of our regularity results. We then apply a covering argument
which we have found in [Si2] to deduce the strong form of the reverse Poincar�e inequality
in Lemma 4.2. In the following we use the ellipticity constant � > 0 of the integrand F
from (1.12), the bound � from the structure conditions (1.1){(1.3) for F , and the moduli
�, �, b� for F from (1.5){(1.9).
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4.1 Lemma (weak reverse Poincar�e inequality). Suppose T 2 Ti(n; k;m) with m � 0
or T 2 Tb(n; k;m) with m � 1 is (F; !) minimizing in C and C7=8 \ sptT is contained in
the ball Bn+k(0; R). Then, with �(R) = �(R)2+ b�(R)+!(R) the following inequality holds
for all parameters # > 0,

E
�
T; 1

2

�
� #E (T; 1) +

1

#
C11

�
�(R)M (T ) + (1 + �(R))

Z
C
jqxj2 dkTkx

�
;(4.1)

where C11 = const(n; �;�).

Here Ti(n; k; 0) is de�ned exactly as Ti(n; k;m) for m � 1 in Section 1, whithout the
condition 0 2 spt T , however. It will be clear from the proof that this latter condition is
not used in the case T 2 Ti(n; k;m) with m � 1.

Proof. For 0 < r � 1 we write Tr = T Cr and hT; ri = @Tr � (@T ) Cr for the
cylindrical slices of T . Recalling the multiplicity function �m � m on U in the case T 2
Ti(n; k;m) and �m � m on U+, �m � m � 1 on U� in the case T 2 Tb(n; k;m) we further
denote by Pr the image of (p#T ) Ur = (En Ur) �m under the inclusion R

n ! R
n � R

k .
Using, for 0 < # � 5

8
and r > 1

5
, the homotopy

h#(t; x) = x� t(#px;qx) = (1� t)x + t(1� #)(px; 0)

we de�ne, similarly as in [Bo, Section V],

�r;# = P(1�#)r � h##([[0; 1]]� hT; ri)

and verify

�r;# = �r;# Cr ; �r;# C1=2 = P1=2 ;

p#�r;# = p#Tr = (En Ur) �m ; @�r;# = @Tr ;
(4.2)

so that �r;# may be used as a comparison current for Tr if hT; ri is recti�able.
For such r we estimate the excess of �r;# with the standard estimate [Fe, 4.1.9] noting

Liph#(t; q ) � 1� t#:

E (�r;#; 1) = M
�
P(1�#)r

�
+M

�
h##([[0; 1]]� hT; ri)

�
�M (Pr)

� [(1� #)n � 1]M (Pr) +
Z 1

0

Z
@Cr

j(#px;qx)j(1� t#)n�1 dkhT; rikx dt(4.3)

� [1� (1� #)n]
�
1

n#

Z
@Cr

�
#r +

1

2#r
jqxj2

�
dkhT; rikx�M (Pr)

�
:

On account of (see [Fe, 4.3.2(2)])

Z 7=8

5=8

Z
@Cr

jqxj2 dkhT; rikx dr �
Z
C
jqxj2 dkTkx

and Z 7=8

5=8
M (hT; ri) dr �M

�
T (C7=8 nC5=8)

�
;
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hence also (observe M (Pr) = rnM (P1))Z 7=8

5=8

�
M (hT; ri)� n

r
M (Pr)

�
dr

� M
�
T (C7=8 nC5=8)

�
�M

�
P7=8

�
+M

�
P5=8

�
� E (T; 1) ;

we may select r 2]5
8
; 7
8
[ such thatZ

@Cr

jqxj2 dkhT; rikx � 12
Z
C
jqxj2 dkTkx ;

M (hT; ri) � 12M (T ) ;

M (hT; ri) � n

r
M (Pr) + 12E (T; 1) ;

and hT; ri is recti�able (cf. [Fe, 4.3.6]). With this choice of r, (4.3) and [1� (1� #)n] � n#
give

E (�r;#; 1) � 12#rE (T; 1) +
6

#r

Z
C
jqxj2 dkTkx :(4.4)

Similarly, denoting by ~P% the image of (p#T ) (U nU%) = (En (U nU%) �m under
the inclusion R

n ! R
n � R

k and using the homotopy

~h#(t; x) = x + t(#px;�qx) = (1� t)x + t(1 + #)(px; 0)

we de�ne, similarly as in [Bo, Sec. 5],

~�r;# = ~P(1+#)r + ~h##([[0; 1]]� hT; ri) :

For r as above and 0 < # � 1
7
, we then have

~�r;# = ~�r;# (C nCr) ; ~�r;# (C nC(1+#)r) = P1 (C nC(1+#)r) ;

p#

�
Tr + ~�r;#

�
= p#P1 = (En U) �m ; @

�
Tr + ~�r;#

�
= @P1 ;

(4.5)

and obtain the excess estimate (noting Lip ~h#(t; q) � 1+t# and [(1+#)n�1] � (1+#)n�1n#
this time)

E
�
~�r;#; 1

�
� (1 + #)n�1

�
12#rE (T; 1) +

6

#r

Z
C
jqxj2 dkTkx

�
:(4.6)

On account of (4.2) and the hypothesis sptT7=8 � Bn+k(0; R), which by the construction
of �r;# implies spt (�r;#�Tr) � Bn+k(0; R), we can apply the (F; !) minimality of T to get

F (Tr) � F (�r;#) + !(R)M (�r;#) :(4.7)
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On the other hand, in view of (4.5) we can make use of the ellipticity of F0(x; �) = F (0; �)
(we also write F0(�) for F (0; �) in the sequel) to obtain

�2�nE
�
T; 1

2

�
= �

h
M
�
T1=2

�
�M

�
P1=2

�i
� �

h
M
�
Tr + ~�r;#

�
�M (P1)

i
� F0

�
Tr + ~�r;#

�
� F0(P1)

= F
�
Tr + ~�r;# C(1+#)r

�
+ (F0 � F)

�
Tr + ~�r;# C(1+#)r

�
� F0(P(1+#)r) :

Introducing Sr;# = �r;#+ ~�r;# C(1+#)r and recalling (4.2), (4.5) we deduce from (4.7) that
the last expression does not exceed

F (Sr;#) + !(R)M (�r;#) + (F0 � F)
�
Tr + ~�r;# C(1+#)r

�
� F0(P(1+#)r)

= F0(Sr;#)� F0(P(1+#)r) + (F0 � F)(Tr)� (F0 � F)(�r;#) + !(R)M (�r;#) ;

hence we arrive at

�2�nE
�
T; 1

2

�
� F0(Sr;#)� F0(P(1+#)r)

+ !(R)M (�r;#) + (F0 � F)(Tr)� (F0 � F)(�r;#) :
(4.8)

Now using Taylor expansion of F0(�) at � = ~e for j��~ej < p
2 and recalling (1.1){(1.3)

we �nd

F0(Sr;#)� F0(P(1+#)r)

=
Z
C(1+#)r

F0(~Sr;#(x)) dkSr;#kx�
Z
C(1+#)r

F0(~e) dkP(1+#)rk

�
Z
C(1+#)r

h
F0(~e) +DF0(~e)

�
~Sr;# � ~e

�i
dkSr;#kx

+ �
Z
C(1+#)r

j~Sr;#(x)� ~ej2 dkSr;#kx�
Z
C(1+#)r

F0(~e) dkP(1+#)rk ;

where DF0(~e)~e = F0(~e), by homogeneity, andZ
C(1+#)r

DF0(~e)~Sr;#(x) dkSr;#kx =
Z
C(1+#)r

DF0(~e)~e dkP(1+#)rk ;

because @Sr;# = @P(1+#)r, by (4.2) and (4.5), and the integrals are just the evaluations of
Sr;# and P(1+#)r on the constant (hence exact) di�erential n-form DF0(~e). Consequently,
by (4.4), (4.6), and (1.24),

F0(Sr;#)� F0(P(1+#)r) � �
Z
C(1+#)r

j~Sr;# � ~ej2 dkSr;#k

� const(n)�
�
#E (T; 1) +

1

#

Z
C
jqxj2 dkTkx

�
:

(4.9)

To estimate the other terms appearing in (4.8) we introduce f(x) = F (0;~e) � F (x;~e)
and observe
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j(F0 � F)(Tr)� (F0 � F)(Pr)j
�
Z Z 1

0




D(2)F (0; (1� t)~e + t~T (x))�D(2)F (x; (1� t)~e + t~T (x))



 j~T (x)� ~ej dt dkTrkx

+
����Z f(x) dkTrkx�

Z
f(x) dkPrkx

����
�
Z
�(jxj)j~T (x)� ~ej dkTrkx +

Z
jf(x)� f(px; 0)j dkTrkx

+
����Z f(px; 0)dkTrkx�

Z
f(px; 0) dkPrkx

����
� 1

2
#
Z
j~T (x)� ~ej2dkTrkx+ 1

2#
�(R)2M(Tr) +

Z
�(jqxj) dkTrkx

+ �(R) [M(Tr)�M(Pr)]

� (# + �(R))E (T; 1) +
1

2#
�(R)2M(T ) +

Z
�(jqxj) dkTrk :

Here we have used (1.6), (1.7), (1.5), i.e. jf(x)j � �(jxj) � �(R), and the inequality����Z '(px) dkTrkx�
Z
'(px) dkPrkx

���� � sup j'jE (T; 1)

for continuous functions ' on R
n , an inequality which one readily proves by approximating

' with �nitely valued functions. Recalling the de�nition (1.9) of b� we use the inequalities
�(s)� s2 � b�(1

2
) for 0 � s � 1

2
and �(s) � 2s�(1

2
) � s2 + �(1

2
)2 � s2 + �(1

2
)2 for s > 1

2
to

estimate Z
�(jqxj) dkTrkx �

�
�(R)2 + b�(R)�M(T ) +

Z
C
jqxj2 dkTkx :

Collecting the estimates we have proved

j(F0 � F)(Tr)� (F0 � F)(Pr)j

� 2#E (T; 1) +
�
2

#
�(R)2 + b�(R)�M(T ) +

Z
C
jqxj2 dkTkx :

(4.10)

Similarly as above we estimate

j(F0 � F)(�r;#)� (F0 � F)(Pr)j

� (1 + �(R))E (�r;#; 1) +
1
2
�(R)2M (�r;#) +

Z
C
�(jqxj) dk�r;#kx :

Here we apply (4.4) to estimate E (�r;#; 1), and the inequality

M (�r;#) = E (�r;#; 1) +M (Pr) � E (�r;#; 1) +M (T )

to estimate M (�r;#). We use again �(s) � b�(1
2
) + s2 for 0 < s � 1

2
and �(s) � 2s�(1

2
) for

s > 1
2
to getZ

C
�(jqxj) dk�r;#kx � b�(1

2
)M (�r;#) +

Z
jqxj� 1

2

jqxj2 dk�r;#kx+ 2�(1
2
)
Z
jqxj> 1

2

jqxj dk�r;#kx :
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Noting

jq(h#(t; x0))j2 = (1� t)2jqx0j2 � min(jqx0j; jqx0j2)

if jq(h#(t; x0))j � 1
2
and x0 2 spt hT; ri, we estimateZ

jqxj� 1
2

jqxj2 dk�r;#kx

�
Z 1

0

Z
@Cr

min(jqx0j; jqx0j2)j(#px0;qx0)j(1� #t)n�1dkhT; rikx0 dt

� (1 + #r)
Z
@Cr

jqx0j2dkhT; rikx0 � 12(1 + #r)
Z
C
jqxj2dkTkx :

Furthermore,

2�(1
2
)
Z
jqxj> 1

2

jqxj dk�r;#kx

� 2�(1
2
)
Z 1

0

Z
@Cr

(1� t)jqx0jj(#px0;qx0)j(1� #t)n�1dkhT; rikx0 dt

� �(1
2
)2#2r2M (hT; ri) +

h
1 + 2�(1

2
)
i Z

@Cr

jqx0j2 dkhT; rikx0

� �(1
2
)2M (T ) + 24

h
1 + �(1

2
)
i Z
C
jqxj2 dkTkx :

Collecting terms and using the monotonicity of �, �, b� as well as � � � we arrive at

j(F0 � F)(�r;#)� (F0 � F)(Pr)j � 24#E (T; 1) + 5
h
�(R)2 + b�(R)iM (T )

+
80

#

�
1 + �(R)2 + b�(R)� Z

C
jqxj2 dkTkx :

(4.11)

Combining (4.8){(4.11) and estimating the term !(R)M (�r;#) similarly as above we
�nally conclude

�2�nE
�
T; 1

2

�
� const(n)�#E (T; 1) +

7

#

�
�2(R) + b�(R) + !(R)

�
M (T )

+const(n)
�

#

�
1 + �2(R) + b�(R) + !(R)

� Z
C
jqxj2 dkTk :

This is true for 0 < # � 1
7
, but increasing the constants if necessary we obtain the same

inequality trivially for all # > 0, and (4.1) follows.

4.2 Lemma (reverse Poincar�e inequality). Suppose T 2 T�(n; k;m) is (F; !) mini-
mizing in C with support in Bn �Bk(0; h), h > 0, and r =

p
1 + h2. Then the inequality

E
�
T; 1

5

�
� C12

�
�(r)M (T ) + (1 + �(r))

Z
C
jqxj2 dkTkx

�
(4.12)

holds with C12 = const(n; �;�) and �(r) = �(r)2 + b�(r) + !(r).
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The point here is that �(r) is small in later applications so that (4.12) is indeed a reverse
Poincar�e inequality, up to a small extra term. Multiplicity m = 0 is admitted in Lemma
4.2 but irrelevant for later applications.

Again we point out that the condition 0 2 spt T from the de�nition of Ti(n; k;m) is not
needed in the proof.

Proof. We consider the boundary situation T 2 Tb(n; k;m) and n-ballsB�(y) � U such
that y 2 Un�1 � f0g or B�(y) \Un�1 � f0g = ;. We want to apply Lemma 4.1 (with the

comment following it) to the scaled currents T� =
�
��1�#�

�1
(y;0)#T

�
C. (Note that we may

have T� 2 Ti(n; k; 0) in the case T 2 Tb(n; k; 1); this is the reason for admitting m = 0 in
Lemma 4.1.) Clearly, T� satis�es the hypothesis of Lemma 4.1 with respect to the integrand
F�(x; �) = F ((y; 0) + �x; �) and the function !�(%) = !(�%). For the structure constants
and moduli of F� we have �� = �, �� = �, ��(%) = �(�%), ��(%) = �(�%), c��(%) � b�(�%),
and T� has support in Bn+k(0; ��1r). Therefore, (4.1) implies

E
�
T; y; 1

2
�
�
� #E (T; y; �)

+
1

#

"
c��n�2

Z
C�(y)

jqxj2 dkTkx + c0��nM (T C�(y))

#
;

(4.13)

where we have abbreviated c = C11(1+�(r)) and c0 = C11�(r). For balls B%(y) � U which
intersect Un�1 � f0g we de�ne y0 = (y1; : : : ; yn�1; 0) and observe

B%(y) � B2%(y
0) � B4%(y

0) � B5%(y) ;

hence (4.13) applied to B2%(y
0) gives, provided B5%(y) � U,

2�nE (T; y; %) � E (T; y0; 2%)

� #
�
4

5

�n
E (T; y; 5%) +

1

#

"
c(4%)�n�2

Z
C5%(y)

jqxj2 dkTkx + c0(4%)�nM (T C5%(y))

#
:

Increasing c and c0 by a factor const(n) we therefore have

E
�
T; y; 1

5
�
�
� #E (T; y; �) +

1

#

�
c��n�2

Z
C
jqxj2 dkTkx + c0��nM (T )

�
(4.14)

for all balls B�(y) � U and parameters # > 0.

With (4.14) we are in a position to apply a covering argument as in [Si2, x2.8]. For this
we set

'(B�(y)) = �nE (T; y; �) = 1
2

Z
C�(y)

j~T (x)� ~ej2 dkTkx

and rewrite (4.14), using also �2 < 1,

�2'(B�=5(y)) � #�2'(B�(y)) + 
(#)(4.15)

with


(#) =
1

#

�
c5�n

Z
C
jqxj2 dkTkx+ 5�nc0M (T )

�
:(4.16)
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We de�ne

Q = sup
n
%2'(B%(y)) : B5%(y) � U

o
(4.17)

and note Q � 5�2E (T; 0; 1) < 1. Covering B%(y) � U1�% by balls B%=25(yi) with yi 2
B%(y), i = 1; : : : ;M , andM = const(n), we deduce from the subadditivity of the functional
'( q ) on balls in U and from (4.15)

%2'(B%(y)) � %2
MX
i=1

'(B%=25(yi))

� 52
MX
i=1

"
#
�
%

5

�2
'(B%=5(yi)) + 
(#)

#
(4.18)

� 52#QM + 52
(#)M :

Taking the supremum over all balls B%(y) with B5%(y) � U in this inequality we get

Q � 52#QM + 52M
(#) :(4.19)

Fixing now # = (50M)�1 we see Q � 50M
(#) from (4.19), and from (4.17) we obtain

%2'(B%(y)) � 50M
(#) ;

i.e.

E (T; y; %) � %�n�250M
(#) :

Applying this with y = 0, % = 1
5
and recalling (4.16) we have proved (4.12).

The proof in the interior situation T 2 Ti(n; k;m) is simpler, as one can use directly
(4.13) for all balls B�(y) � U.

5 Excess decay

As is well known [Alm1], [Alm2], [Bo], [Fe, x5.3], [Ha1] the crucial step in the regularity
proof is excess improvement, an idea introduced by Almgren. If T is (F; !) minimizing with
small excess E (T; 1) in the cylinder of radius 1 over the n-plane Rn�f0gk in R

n+k , then one
shows that the excess of T over some n-plane S close to R

n � f0gk and in a cylinder with
smaller radius is substantially smaller than E (T; 1). By iteration of this argument one can
prove that the excess of T in concentric cylinders of radius r over some n-plane decreases
to zero with r, and from this excess decay one deduces �nally the regularity of T in a small
cylinder.

In this section we �rst prove (Lemma 5.1) that the square integral of the height of T over
a tilted n-plane S, which is close to R

n �f0gk, can be dominated by a small constant times
E (T; 1)+�(1

2
)2+ b�(1

2
)+!(1

2
), provided this quantity is small. This n-plane S is found as the

graph of the di�erential at zero of the A-harmonic function u which is associated by Lemma
3.3 with the approximatively A-harmonic Lipschitz approximation g of T (Lemma 3.1 and
Lemma 3.2). Then we use the reverse Poincar�e inequality (Lemma 4.2) to replace the
square integral of the height of T over the tilted plane S by the excess of T over this plane
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in a cylinder of smaller radius # 2]0; 1[. The result is Lemma 5.2, an estimate of this latter
excess by #E (T; 1) plus extra terms involving only the (small) quantity �(1

2
)2+ b�(1

2
)+!(1

2
).

The iteration of Lemma 5.2 then leads to the desired excess decay in Lemma 5.4.

We assume in this section that F is an elliptic integrand with ellipticity constant �,
bound �, and moduli �, �, b�, � as in Section 1. In Lemma 5.4 we need the extra assumption
(1.15) on �, b� and the function ! which appears in the (F; !) minimality condition for the
recti�able n-current T .

5.1 Lemma (improving the L2 height estimate by tilting). Suppose T 2 Tb(n; k; 1)
or T 2 Ti(n; k;m) with (2.12), T is (F; !) minimizing in C, � = �(1

2
)2 + b�(1

2
) + !(1

2
) � 1,

E = E (T; 1), 0 < � � 1, 0 < � � 1, 0 < 
 � 1 and a smallness condition

C17

h

�2

p
E +

p
� + �(
 +

p
�)
i
� �(n; k; �;�; �)(5.1)

is satis�ed, where �(n; k; �;�; �) 2]0; 1] is from Lemma 3.3 and C17 = const(n;m; �;�).
Then there exist L 2 Hom(Rn ; Rk) and v 2 R

n+k perpendicular to the n-plane S = graph (L)
such that for 0 < � � 1

17
the inequalityZ

C�=2

dist(x� v; S)2 dkTkx � C18

�

�2E1=n + �n+4 + �

� �
E + ��1�

�
(5.2)

is valid with a constant C18 = const(n;m; �;�). Moreover

kLk � C18

q
E + ��1�(5.3)

holds, and in the case T 2 Tb(n; k; 1) we have L = 0 on R
n�1 � f0g, v = 0, while in the

case T 2 Ti(n; k;m)

jvj � C18

�q
E + ��1�+ E1=2n

�
:(5.4)

Proof. We consider the boundary situation T 2 Tb(n; k; 1) and indicate only some
modi�cations of the proof for the case T 2 Ti(n; k;m) satisfying (2.12). We �x A = D2F x

0 ,
choose % = 1

17
in Lemma 3.2, and let g be the Lipschitz approximation for T corresponding

to � = 1. Then we know from Lemma 3.1, (ii) and (iii)Z
U+\U%

jDgj2 dLn � C13E ;

where C13 = const(n;m)�2n�2 in view of our assumption !(1
2
) � 1. Scaling

f = %n=2�1C�1=2
13

�
E + ��1�

��1=2
g

with a parameter 0 < � � 1, we have

%2�n
Z
U+\U%

jDf j2 dLn � 1
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and obtain from Lemma 3.2Z
U%

A(Df;D�) dLn � %n=2�1C14

h

�2

p
E +

p
� + � (
 +

p
�)
i
sup jD�j

for all functions � 2 C
1(U; Rk) with compact support in U+ \U%, where 0 < 
 � 1 can be

chosen arbitrarily and C14 = max
n
2C

�1=2
13 C10; 1

o
. The hypothesis C% \ sptT � Un

% �Bk
1=3

in Lemma 3.2 is satis�ed, by Lemma 2.2, if we choose the constant in (5.1) large enough.

We now apply Lemma 3.3 to obtain, for given � > 0, an A-harmonic function u 2
W 1;2

(0) (U+ \U%; R
k ) such that

%�2
Z
U+\U%

ju� gj2 dLn � �C13

h
E + ��1�

i
;(5.5)

and Z
U+\U%

jDuj2 dLn � C13

h
E + ��1�

i
;(5.6)

provided

%�n=2C14

h

�2

p
E +

p
� + � (
 +

p
�)
i
� �(n; k; �;�; �) :(5.7)

Noting that u is smooth on U+\U% with u = 0 on Un�1
% �f0g we de�ne L = Du(0) and

observe Ly = yn` for some ` 2 R
k and all y 2 R

n . From the a-priori-estimate for solutions
to homogeneous constant coe�cient elliptic systems

%2 sup
U+\U%=2

kDuk2 + %4 sup
U+\U%=2

kD2uk2 � const(n; �;�)%2�n
Z
U+\U%

jDuj2 dLn(5.8)

(which follows from Caccioppoli's inequality for u and its derivatives of any order, Sobolev's
inequality, and Poincar�e's inequality, see [Ca], [Gi], [Mo]) we deduce by Taylor expansion

sup
y2U+\U�=2

ju(y)� Lyj2 � C15

 
�

%

!4

%2�n
Z
U+\U%

jDuj2 dLn(5.9)

for 0 < � � %, where C15 = const(n; �;�). (In the interior situation T 2 Ti(n; k;m) we
have the same estimate for ju(y)� u(0)� Lyj2 on U�=2.) Combining (5.9) with (5.5) and
(5.6) we getZ

U+\U�=2

jg(y)� Lyj2 dLny

� 2
Z
U+\U�=2

jg(y)� u(y)j2 dLny + 2
Z
U+\U�=2

ju(y)� Lyj2 dLny(5.10)

� C16

�
�+ �n+4

� �
E + ��1�

�
with C16 = const(n;m; �;�). (In the interior situation we get the same estimate for the
integral of jg(y)� u(0)� Lyj2 on U�=2.)

35



Next we estimate with (5.8) and L = Du(0)

sup
y2U+\U%=2

kDu(y)� Lk2 � const(n; �;�)%�n
Z
U+\U%

jDuj2 dLn

and obtain, using (5.6) again,

kLk �
Z
�
U+\U%=2

kL�Du(y)k dLny +
Z
�
U+\U%=2

kDu(y)k dLny

� const(n;m; �;�)
q
E + ��1� :

(5.11)

In order to estimate the integral of dist(x; S)2 for the n-plane S = graph (L) we observeZ
C�=2

dist(x; S)2 dkTkx

=
Z
C+\C�=2n(Ag;
�Rk)

: : : dkTgk+
Z
C�=2

: : : dkT � Tgk+
Z
C�=2\(Ag;
�Rk)

: : : dkTgk
= I + II + III ;

where Ag;
 is the bad set of g corresponding to the parameter 
 as in Lemma 3.1, (iv). For
x 2 C�=2 \ spt T we have

dist(x; S) � jqx� Lpxj � jqxj+ jLpxj

� const(n;m; �;�)
h
E1=2n + �

p
E + ��1�

i
;

by (5.11) and Lemma 2.2. (We have already noted that (5.7) implies the smallness condition
(2.4) necessary to apply Lemma 2.2.) From Lemma 3.1, (i) and (iv) (with � = 1) we
therefore obtain

jIIj+ jIIIj � const(n;m; �;�)
h
E1=n + �2

�
E + ��1�

�i

�2E :

Letting G(y) = (y; g(y)) we also see from (5.10), taking dist(G(y); S) � jg(y) � Lyj and
Lip g � � = 1 into account,

jIj �
Z
U+\U�=2

jg(y)� Lyj2JG(y) dLny

� const(n;m; �;�)
�
�+ �n+4

� �
E + ��1�

�
:

The result isZ
C�=2

dist(x; S)2dkTkx � const(n;m; �;�)
�

�2E1=n + �n+4 + �

� �
E + ��1�

�
:

With this inequality and (5.11) we have proved all the assertions of the Lemma in the
boundary case under the smallness condition (5.7), i.e. (5.1). In the interior case we obtain
the same result and note additionally

1
3

Z
U%=2

ju(0) + Lyj2 dLny �
Z
U%=2

ju(0) + Ly � g(y)j2 dLny +
Z
U%=2

jgj2 dLn

� const(n;m; �;�)
h
(1 + �)

�
E + ��1�

�
+ E1=n

i
;

36



by the analogue of (5.10), by (5.5), and by Lemma 3.1, (vi). In view of

ju(0)j =
�������
Z
�
U%=2

(u(0) + Ly) dLn

�������
this implies the estimate (5.4) for v which equals the orthogonal projection of u(0) onto
S?.

We note that in the boundary case T 2 Tb(n; k;m) with multiplicitym � 2 and with the
additional density condition (2.13) the proof above does not work, because we could only
prove in Lemma 3.2 that g is approximatively A-harmonic on U+ \ U% and on U� \U%

separately. Consequently we can �nd A-harmonic functions u+ near g on U+ \U% and u�
on U�\U% but we do not know that the di�erentials Du+(0), Du�(0) coincide and, hence,
cannot �nd , with the method above, a tilted n-plane S such that (5.2) holds.

In the following Lemma we use, in the interior situation, the modulus b� associated with
� by (1.9), and we recall 1

4
�(1

2
)2 � b�(1

2
) if �(1

2
) � 1.

5.2 Lemma (excess improvement by tilting). For 0 < # � 1
340

there exists a
positive constant �1(n; k;m; �;�; �( q); #) � 1 such that the following is true: Whenever
T 2 Tb(n; k; 1) or T 2 Ti(n; k;m) with (2.12) is (F; !) minimizing in C with spt T � R

n�Bk

and the smallness conditions

E = E (T; 1) � �1 ; � � �1 ;(5.12)

are satis�ed, where � = b�(1
2
) + !(1

2
) in the interior case T 2 Ti(n; k;m) and � = �(1

2
)2 +b�(1

2
) + !(1

2
) in the boundary case T 2 Tb(n; k;m), then there exists a linear isometry � of

R
n+k with

k�� idk � C21

q
E + � ;(5.13)

and with � = id on (Rn�1 � f0g)� f0gk in the case T 2 Tb(n; k; 1), such that

E (�#T; #) � C22#
2E (T; 1) + C21� :(5.14)

Here C22 = const(n;m; �;�), and C21 = const(n; k;m; �;�; #).

Proof. We assume that (5.1) is satis�ed with parameters �, 
 to be speci�ed later,
0 < � � 1, � � 1, and E � 1. Since (5.1) implies the smallness condition (2.1) in the
hypotheses of Lemma 2.2 (by the choice of C17), we can use the height estimate

sup
n
jqxj : x 2 C1=2 \ sptT

o
� const(n;�)E1=2n :(5.15)

Letting S = graph (L) as in Lemma 5.1 we see from (5.3) that there is a linear isometry � of
R
n+k satisfying �S = R

n �f0gk, � = id on (Rn�1 �f0g)�f0gk in the case T 2 Tb(n; k;m),
and

k�� idk � const(n;m; �;�)
q
E + ��1� :(5.16)
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Assuming 0 < � � 1
17

and a smallness condition

C19

�
E1=2n +

q
E + ��1�

�
� �(5.17)

with a su�ciently large constant C19 = const(n;m; �;�), we verify by elementary geometric
considerations, using the height bound (5.15) inC1=2, the height bound 1 inCnC1=2, (5.16),
and (5.4), that�

��1C�=4

�
\ sptT � C�=2(5.18)

and

C�=4 \ ��1w (�sptT ) � Un
�=4 �Bk(0; �) ;(5.19)

where w = �v and v 2 S? is from Lemma 5.1. The conclusion (5.2) of this Lemma and
(5.15) implyZ

C�=4

jqx� wj2 dk�#Tkx =
Z
��1C�=4

dist(x� v; S)2 dkTkx

�
Z
C�=2

dist(x� v; S)2 dkTkx � C18

�

�2E1=n + �n+4 + �

� �
E + ��1�

�
:

(5.20)

We next apply the reverse Poincar�e inequality Lemma 4.2 to the scaled current

~T = ��1�=4#�
�1
w#

�
�#T C�=4

�
:

Since (@ ~T ) C = (@T ) C it is easy to see, by a homotopy connecting � to the identity,
that ~T satis�es all the requirements from the de�nition of the class Tb(n; k; 1) or Ti(n; k;m)
respectively (including (2.12)) with the exception 0 2 spt ~T in the latter case. (This con-
dition, however, is not needed in Lemma 4.2 as we have pointed out there.) ~T is ( ~F; ~!)
minimizing in C with ~!(r) = !(�

4
r), structure constants ~� = �, ~� = �, and moduli

~�(r) = �(�
4
r), ~�(r) = �(�

4
r), b~�(r) � b�(�

4
r). The height h of ~T in C does not exceed 4, by

(5.19), hence ~!(
p
1 + h2) � !(1

2
) and similarly for ~�, ~�, b~�. The conclusion of Lemma 4.2

therefore gives

E
�
�#T;

1
20
�
�
� C12

"
�
�
�

4

��n
M
�
�#T C�=4

�
+(1 + �)

�
�

4

��n�2 Z
C�=4

jqx� wj2 dk�#Tkx
#
;

and combining this with (5.20) we get

E
�
�#T;

1
20
�
�
� C20

h
���n +

�
��n�2
�2E1=n + �2 + ��n�2�

� �
E + ��1�

�i
;(5.21)

where C20 = const(n;m; �;�) and we have used

M
�
�#T C�=4

�
�M

�
T C�=2

�
� E +m�(n) :
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We now specify � = 20# with 0 < # � 1
340

, � = �n+2#2,
p
� = 1

2
C�1
17 �(n; k; �;�; �), and


 = E1=4n. If we require

E1=2n � #n+4 ;(5.22)

then (5.21) gives the desired conclusion (5.14). Moreover, with these speci�cations of � and

 all the smallness assumptions (5.1), (5.17), and (5.22) are satis�ed if we require (5.12)
with a su�ciently small constant �1. (5.13) �nally follows from (5.3).

We note that in the boundary case T 2 Tb(n; k;m) with (2.13) and multiplicity m � 2
the proof above does not work, because it is not clear that the tilted current ~T does again
satisfy the density condition (2.13) which we needed for the height estimate. Thus, here
is a second di�culty (besides that pointed out after Lemma 5.1) which prevents us from
proving boundary regularity in the case of multiplicity m � 2. It seems that one would
need an estimate of the height of ~T by the distance to spt @T to overcome this di�culty.

We now iterate Lemma 5.2. We consider 0 < # � 1
340

such that C22#
2 < 1

2
#. With �1

from (5.12) we choose positive numbers E� � �1 and �� � �1. Starting with T0 2 Tb(n; k; 1)
or T0 2 Ti(n; k;m) satisfying (2.12) such that sptT0 � R

n�Bk and T0 is (F0; !0) minimizing
in C for some integrand F0 with structure constants resp. moduli �0 = �, �0 = �, �0 = �,
�0 � �, �0 � � and for some nondecreasing !0 � !, where �0, �, �0, �, !0, ! satisfy the
conditions of Section 1, we assume

E (T0; 1) � E� ; �0(1) � �� :(5.23)

Here we de�ne

�(r) =

8<:
b�(r) + !(r) in the case T 2 Ti(n; k;m),

�(r)2 + b�(r) + !(r) in the case T0 2 Tb(n; k; 1).
(5.24)

The function �0(r) is de�ned similarly using �0, c�0, c�0, and !0. We may then apply Lemma
5.2 to �nd a linear isometry �0 of R

n+k , with �0 = id on (Rn�1 � f0g) � f0gk in the case
T0 2 Tb(n; k; 1), such that

k�0 � idk � C21

q
E (T0; 1) + �0(1)(5.25)

and

E (T1; 1) � �E (T0; 1) + C21�0(1)(5.26)

hold for T1 =
�
��1##�0#T0

�
C and � = C22#

2 < 1
2
#. Moreover, T1 is (F1; !1) minimizing

in C for an integrand F1 satisfying the same conditions as F0 with constants and moduli
�1 = �, �1 = �, �1 = �, �1(r) � �(#r), c�1(r) � b�(#r), !1(r) � !(#r), and in the boundary
case also �1(r) � �(#r), c�1(r) � b�(#r), i.e. �1(r) � �(#r). Hence, making use of (5.26) we
see that (5.23) holds for T1, �1(1) provided

C21�� � (1� �)E� :(5.27)

If we impose an additional smallness condition

C23E� � #2n(5.28)
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with su�ciently large constant C23 = const(n; k;m; �;�), then the height estimate Lemma
2.2 and (5.25) imply also the height condition spt T1 � R

n �Bk for T1.

Thus, T1 satis�es the same set of conditions as T0 and we can proceed to obtain Ti, �i,
�i such that

Ti+1 =
�
��1##�i#Ti

�
C ; �i(r) � �(#ir) ;

k�i � idk � C21

q
E (Ti; 1) + �i(1) ;

(5.29)

and

E (Ti+1; 1) � �E (Ti; 1) + C21�i(1) :(5.30)

From (5.30) and (5.29) we deduce

E (Ti; 1) � �iE (T0; 1) + C21

iX
j=1

�j�1�(#i�j) :

To simplify this we use the assumption that r�2��(r)2, r�2�b�(r), r�2�b�(r), r�2�!(r), hence
also r�2��(r), are nonincreasing for some 0 < � < 1. Therefore �(#i�j) � #�2�j�(#i) in
the last sum and, consequently,

E (Ti; 1) � �iE (T0; 1) + 2C21#
�2��(#i) ;(5.31)

provided we have chosen � = C22#
2 � 1

2
#2�.

We next want to prove that ~�i = �i�i�1 : : :�0 converges to some limit isometry �1.
From (5.29) and (5.31) we have




~�i � ~�i�1



 = k�i � idk � C21

h
�iE (T0; 1) + (2C21#

�2� + 1)�(#i)
i1=2

:

It follows that
P1

i=1 k~�i � ~�i�1k converges, provided P1
i=1

q
�(#i) <1. In view of

1

�
(1� #�)

q
�(#i) =

q
�(#i)

#�i

Z #i

#i+1
r��1 dr �

Z #i

#i+1

1

r

q
�(r) dr(5.32)

the convergence of
P1

i=1

q
�(#i) is implied by the condition (cf. (1.15))

1 > X(r) =

8><>:
bK(r) + 
(r) in the case T 2 Ti(n; k;m),

K(r)2 +cM(r) + 
(r) in the case T0 2 Tb(n; k; 1).
(5.33)

Assuming (5.33) we obtain a limit �1 of the ~�i with the estimate (recalling � � 1
2
#2� � 1)




�1 � ~�i�1



 � 2C21

�q
�iE (T0; 1) +

�

1� #�

q
2C21#�2� + 1

q
X(#i)

�
;(5.34)
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where i = 0 gives an estimate for k�1 � idk. Imposing a further smallness condition

C24

�q
E� +

q
X�
�
� 1(5.35)

with a su�ciently large constant C24 = const(n; k;m; �;�; #) and assuming X(1) � X�, we
see from (5.34) and sptTi � R

n �Bk that�
�1#

~��1i#Ti+1
�

C# =
�
��1# �1#

~��1i�1#Ti
�

C# :

This implies, by induction,

E
�
�1#

~��1i�1#Ti; #
�
= E

�
�1#T0; #

i+1
�
:(5.36)

We now invoke the following simple Lemma:

5.3 Lemma (excess comparison for tilting). Suppose T 2 T�(n; k;m) with spt T �
R
n � Bk and � is a linear isometry of Rn+k with � = id on (Rn � f0g)� f0gk in the case
T 2 Tb(n; k;m). If k�� idk � 1

5
, then

%nE (�#T; %) � 2E (T; 1) + n2k�� idk2M (T )

holds for 0 < % � 2
3
.

Proof. The hypotheses imply (��1C%) \ sptT \ @C = ;, and with a homotopy argu-
ment one sees that p#(�#T C%) = (En U%) �m with the same nonnegative multiplicity
function �m as in p#T = (En U) �m. Therefore

%nE (�#T; %) =
1
2

Z
C%

�����!�#T � ~e
���2 dk�#Tk � 1

2

Z
C

���(^
n
�)~T � ~e

���2 dkTk
�
Z
C

���~T � ~e
���2 dkTk+ Z

C

���(^
n
�)~T � ~T

���2 dkTk
� 2E (T; 1) + n2k�� idk2M (T ) :

Applying this with � = �1~��1i�1 and T = Ti, and noting that (5.34), (5.35) imply
k�� idk � 1

5
if C24 is chosen large enough, we deduce

E
�
�1#T0; #

i+1
�
� 2#�nE (Ti; 1) + const(n;m)




�1 � ~�i�1



2 ;

and with (5.31), (5.36), (5.34) we obtain, noting that �(#i) � const(#)X(#i) by (5.32),

E
�
�1#T0; #

i+1
�
� C25

h
�iE (T0; 1) + X(#

i)
i
:(5.37)

This is the discrete version of the excess decay for T0 over the tilted n-plane �
�1
1 (Rn�f0gk).

The following Lemma is an immediate consequence. We recall the de�nition of X in (5.33)
and the assumed existence of 0 < � < 1 such that r���(r), r���(r), r�2�!(r), hence also
r�2�b�(r), r�2�b�(r) and r�2��(r), are nonincreasing.

41



5.4 Lemma (excess decay). For � � � < 1 there exists a positive constant �0 =
�0(n; k;m; �;�; �( q ); �) such that the following is true: Whenever T 2 Tb(n; k; 1) or T 2
Ti(n; k;m) with (2.12) is (F; !) minimizing in C with

E (T; 1) + X(1) � �0 ;(5.38)

then there exists a linear isometry � of Rn+k with � = id on (Rn�1 �f0g)�f0gk in the case
T 2 Tb(n; k; 1) such that

k�� idk2 � C26 [E (T; 1) + X(1)](5.39)

and

E
�
�#(T C1=2); r

�
� C26

h
r2�E (T; 1) + X(r)

i
for 0 < r � 1

3
,(5.40)

E (T; r) � C26 [E (T; 1) + X(1)] for 0 < r � 1,(5.41)

where C26 = const(n; k;m; �;�; �).

Proof. We de�ne T0 = �2#(T C1=2) and observe that T0 is (F0; !0) minimizing with
�0 = �, �0 = �, �0 = �, �0 � �(1

2
r), for � de�ned in (5.24) and �0 analogously. Clearly,

we may replace � by any larger exponent in ]0; 1[ and hence assume � = �. We de�ne #

depending on n, m, �, �, and � by # = min
n
(2C22)

�1=(2�2�); 1
340

o
so that C22 � 1

2
#2��2

and � = C22#
2 � 1

2
#2�. Choosing �0 small enough we see that all our previous smallness

conditions (5.23), (5.27), (5.28), and (5.35) are satis�ed, and spt T0 � R
n � Bk holds by

Lemma 2.2. We let � be the limit isometry �1 produced above. Then (5.39) follows from
(5.34) and E (T0; 1) � 2nE (T; 1).

For #i+2 < r � #i+1 with i � 0 we obtain from (5.37)

E (�#T0; r) � #�nE
�
�#T0; #

i+1
�
� #�nC25

h
�iE (T0; 1) + X(#

i)
i

� #�nC25

h
#�4�r2�E (T0; 1) + X(#

�2r)
i
:

This implies (5.40) for 0 < r � 1
2
#, because we have X(t%) � t2�X(%) for t � 1 and

E
�
�#(T C1=2);

1
2
r
�
= E (�#T0; r). For 1

2
# < r � 1

3
we deduce (5.40) from (5.39) with

Lemma 5.3, decreasing �0 if necessary.

With regard to (5.41) we note that by Lemma 2.2, (5.38), (5.39), and (5.40) we have
the following, provided �0 is chosen su�ciently small:

eTr = h
��1r#�#(T C1=2)

i
C 2 T�(n; k;m) ;

sup
n
jqxj : x 2 spt eTro � 1 ;

k�� idk2 � C26 [E (T; 1) + X(1)] � 1
25
;

E
� eTr; 1� � C26 [E (T; 1) + X(1)] ;

(��1#
eTr) C1=2 = (��1r#T ) C1=2 ;

42



for 0 < r � 1
8
. With Lemma 5.3 and M

� eTr� � E
� eTr; 1�+m�(n) we conclude

E
�
T;

r
2

�
= E

�
��1r#T;

1
2

�
= E

�
��1#

eTr; 12�
� const(n;m)

h
E
� eTr; 1�+ k��1 � idk2

i
� 2const(n;m)C26 [E (T; 1) + X(1)] :

Increasing C26 suitably we have therefore proved (5.41) for 0 < r � 1
16
, and for 1

16
� r � 1

it holds trivially, by the scaling property of the excess, provided C26 � 16n.

6 The �-regularity theorem

In this section we use the excess decay (Lemma 5.4) to prove the �-regularity theorem: An
(F; !) minimizing current T with su�ciently small excess in arbitrarily small balls centered
at a 2 sptT is, locally at a, represented by a C1 submanifold (with boundary spt @T if @T
is, locally at a, represented by a smooth submanifold). It is well known how to deduce this
result from the excess decay (e.g. [All2], [Ha1]), but we give a complete proof, in order to
controll the dependence of constants and to derive an explicit modulus of continuity for the
�rst oder derivatives.

We assume here all the structure conditions from Section 1 on the integrand F and
the function ! in the condition of (F; !) minimality. In particular, � > 0 is the ellipticity
constant of F , � is a bound for F (x; �) and its derivatives up to order 2 with respect to the
tangent plane variable �, �( q ) is a modulus of continuity for this second derivative, �, � are
moduli for F (x; �) and D(2)F (x; �) with respect to the space variable x as in (1.4){(1.8), b�,b� are associated with �, � by (1.9), and K, bK, cM, 
 are de�ned in (1.15). The exponent
0 < � < 1 is such that r���(r), r���(r), r�2�!(r) are nonincreasing functions of r > 0.
Recall also the density condition (2.12), i.e. �n(kTk; x) � m for kTk almost all x, in the
case T 2 Ti(n; k;m) with m � 2. In the boundary situation T 2 Tb(n; k;m) we must
assume m = 1 for reasons explained in section 5. E (T; 1) is the cylindrical excess of T in
the cylinder C = Un � R

k � R
n+k .

6.1 Theorem (interior and boundary �-regularity theorem). Corresponding to
� � � < 1 there exists a positive constant �(n; k;m; �;�; �( q ); �) such that the following is
true: If T 2 Ti(n; k;m) with (2.12) or T 2 Tb(n; k;m) with m = 1 is (F; !) minimizing in
C with

E (T; 1) + bK(1) + 
(1) � � ;(6.1)

then T C1=34 is represented by the graph, taken with multiplicity m, of a continuously
di�erentiable function g which is de�ned over the n-disk U1=34 in the case T 2 Ti(n; k;m)
and over the half n-disk B+ \ U1=34 in the case T 2 Tb(n; k;m), m = 1. Moreover, the
derivative Dg has the following modulus of continuity:

jDg(a)�Dg(b)j � C33

h
ja� bj2�E (T; 1) + bK(ja� bj) + 
(ja� bj)

i1=2
(6.2)

for a; b in the domain of g, where C33 = const(n; k;m; �;�; �).
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Since one can always 
atten the boundary by a di�eomorphism and achieve smallness
of bK(1) and 
(1) by scaling, Theorem 6.1 can be applied to (F; !) minimizing recti�able n-
currents T in R

n+k , with F su�ciently regular, at all points a 2 sptT where E (T; a; %i) <
1
2
�

for a sequence %i # 0 and where, in the case a 2 spt @T , @T is represented locally by an
oriented C1;1 submanifold of dimension n � 1 in R

n+k an p#T has multiplicity 0 and 1 on
the two sides of the projection of spt @T near a. In this situation the theorem gives interior
and boundary C1;� regularity of T locally at 0 for all 0 < � < 1 when 
 � 0 (i.e. T is F
minimizing), and regularity with continuity modulus const 
 for the derivative when 
 6� 0
(which is optimal in the case !(r) = const r�, cf. Section 1). The radius 1

17
of the domain

of g can, of course, be replaced by any radius 0 < r < 1 (if one admits dependence of � and
C33 on r). This is easily seen from the scaling properties of the excess and the functionsbK(r), 
(r).

Proof. We require � < �0 with �0(n; k;m; �;�; �( q); �) from Lemma 5.4, and we will
impose further smallness conditions on � in the course of the proof.

Step 1. We prove that the excess of T is uniformly small in all cylinders Cr(y) � C
with y 2 B1=2 and in the boundary case additionally y 2 B+.

In the interior situation T 2 Ti(n; k;m) we observe E (T; y; r0) � 2nE (T; 0; 1) � 2n� for

r0 = 1 � jyj, hence choosing � � 2�n�1�0 we see that the scaled current
�
��1r0#�

�1
x#T

�
C

with x 2 p�1fyg \ sptT satis�es the hypotheses of Lemma 5.4. From (5.41) we therefore
get a bound const � � on E (T; y; r) for all 0 < r � r0, and decreasing � we achieve

E (T; y; r) + bK(r) + 
(r) � const(n; k;m; �;�; �)� � �0(6.3)

for all y 2 B1=2 and 0 < r � 1� jyj.
In the boundary situation we apply Lemma 5.4 similarly, but estimate K(r)2 +cM(r) �

5bK(r) for 0 < r � 1
2
, which follows from 1

4
�(%)2 � b�(%) and b�(%) � b�(%) for 0 < % � 1

2
. We

then obtain (6.3) for T 2 Tb(n; k; 1) and centers y 2 Bn�1
1=2 � f0g. If y 2 U+ \ B1=2 then

we consider y0 = (y1; : : : ; yn�1; 0) 2 Bn�1
1=2 � f0g and r0 = yn 2]0; 12 ]. In the case r0 � 1

4
we

deduce (6.3) for 0 < r � 1� jyj as above. In the case r0 <
1
4
we have Ur(y) � U2r(y

0) � U
for r0 � r � 1

4
, and using the smallness of E (T; y0; 2r) we deduce again a corresponding

estimate for E (T; y; r), r0 � r � 1
4
. For 0 < r < r0 a similar estimate follows from the

smallness of E (T; y; r0) by the scaling argument above and Lemma 5.4.

Replacing T by �2#(T C1=2) and choosing � small enough we may therefore assume
that (6.3) holds for all y 2 U and 0 < r � 1 � jyj, where yn � 0 is required additionally
in the boundary case. (In Theorem 6.1 we have stated the conclusion for the radius 1

34

instead of % = 1
17
, because we have expanded T by a factor 2.) This means that Lemma

5.4 can be applied to all the rescaled currents
�
��1r#�

�1
x#T

�
C with x 2 p�1fyg \ spt T ,

0 < r � 1 � jyj, and in the boundary case additionally x = (y; 0) or Ur(y) � U+. By
Lemma 2.2 we may also assume that these currents have height � 1, i.e. support in R

n�Bk.

Step 2. We prove that C1=17 \ spt T is the graph of a Lipschitz function de�ned on
U1=17 in the case T 2 Ti(n; k;m) and on B+ \U1=17 in the case T 2 Tb(n; k; 1). Moreover,
T C1=17 is represented by the graph of g with appropriate orientation and multiplicity.

For this we recall the de�nition of the good points y in the proof of the Lipschitz ap-
proximation Lemma 3.1 (see (3.7)): y 2 U% (and yn 6= 0 in the boundary case) with
E (T; y; r) � � for 0 < r < 1 � %, where ��1 = const(n;�) (since we may assume ! � 1
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here). Comparing with (6.3) we see that the bad set is empty, if � is chosen su�ciently
small. This means that C%\ sptT in the interior case and C+\C%\ sptT in the boundary
case equals graph g, where g denotes here restriction of the Lipschitz approximation to U%

or to U+ \ U% respectively. According to Lemma 3.1 we have Lip g � 1, g(0) = 0 in the
interior case, g has zero boundary values on Un�1

% � f0g in the boundary case, and we
may take % = 1

17
. For the current Tg representing graph g with appropriate orientation and

multiplicity we have p#Tg = (p#T ) U%. Then T C% = Tg or T (C+\C%) = Tg follows,
because y 7! (y; g(y)) is biLipschitz.

In the boundary case T 2 Tb(n; k; 1) we must also prove (C% nC+) \ sptT � (Un�1 �
f0g) � f0gk. Suppose x = (y; z) 2 C% \ spt T such that yn < 0 or yn = 0 and z 6= 0.
Choose r = jynj if yn < 0 or r = 1p

2
jzj else. On account of Lip g � 1 we then have

U (x; r) \ graph g = ; and E (T; y0; 2r) � 2�nE (T; y; r) � (2r)�nM (T U (x; r)), because
p#Tg = p#T and hence p#(T U (x; r)) = 0. But from Lemma 2.1 we have a lower boundeC1M (T U (x; r)) � rn with eC1 = const(n;�), hence E (T; y0; 2r) � 2�n eC�1

1 follows. On
the other hand, by choosing � small enough we can achieve E (T; y0; 2r) < 2�n eC�1

1 in step
1, and with this contradiction step 2 is �nished.

For the next step in the regularity proof we need

6.2 Lemma. Suppose g, h: Rn ! R
k are Lipschitz mappings and di�erentiable at y 2 R

n .
Let ~G(y), ~H(y) be the orientation vectors of graph g and graph h. Then

jDg(y)�Dh(y)j2 � 4
h
1 + (Lip g)2

in h
1 + (Liph)2

in ��� ~G(y)� ~H(y)
���2 :(6.4)

Proof. We have ~G(y) = �
j�j for � = ~e +

Pn
i=1

Pk
j=1 �

j
i~e

i
j + ~r, where �ji = @ig

j(y),

~e ij = e1^ : : :^ei�1^en+j^ei+1^ : : :^en in terms of the canonical basis e1; : : : ; en+k of R
n+k ,

and ~r 2 V
nR

n+k is orthogonal to ~e and all the ~e ij . Similarly ~H(y) = �
j�j with � = ~e +Pn

i=1

Pk
j=1 �

j
i~e

i
j + ~s. The clain then follows from

j� � �j2 � j(�ij)� (� ij)j2 = jDg(y)�Dh(y)j2

and

j� � �j � j�j
����� �j�j � �

j�j

�����+ j�jj�j
����� 1j�j � 1

j�j

�����
� j�j(1 + j�j)

����� �j�j � �

j�j

����� � 2j�jj�j
����� �j�j � �

j�j

����� ;
where we have used � q~e = 1 = � q~e, j�j � 1, and j�j2 � [1 + (Lip g)2]

n
resp. j�j2 �

[1 + (Liph)2]
n
in the last inequality.

We continue with the proof of the �-regularity-theorem:

Step 3 (Interior regularity). Here we treat the case T 2 Ti(n; k;m) and de�ne
D�g(y) as the Lebesgue value of Dg at y 2 U% whenever it exists. We consider a, b 2 U%

(with % = 1
17
) and let Ta = ��1(a;g(a))#T . By (6.3) we can apply Lemma 5.4 to �r0#Ta C,

where 0 < r0 � 1� jaj, and we obtain a linear isometry �a of R
n+k such that, by (5.40),

E (�a#Ta; 0; r) � C26

"�
r

r0

�2�
E (T; a; r0) + bK(r) + 
(r)

#
(6.5)
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for 0 < r � 1
3
r0. (Note that we can write �a#Ta instead of �a#(Ta Cr0=2) in (6.5), because

k�a � idk is small and Ta has height � r0 in Cr0, cf. the end of step 1.) Representing
��1a (Rn �f0gk) as the graph of a linear function La 2 Hom(Rn ; Rk), recalling Lip g � 1, and
observing kLak � 1 on account of (5.39) and (6.1) (with � small enough), we deduce from
Lemma 6.2, for 0 < r � r0,Z

Ur=2(a)\U%

jDg(y)� Laj2 dLny � 22n+2
Z
Ur=2(a)\U%

���~T (y; g(y))� (
^

n
��1a )~e

���2 dLny

� 22n+2
Z
Cr=2(a)

���~T (x)� (
^

n
��1a )~e

���2 dkTkx � 22n+2
Z
Cr

������!�a#Ta � ~e
���2 dk�a#Takx(6.6)

= 22n+3rnE (�a#Ta; 0; r) :

(We have used here �a(Cr=2 \ sptTa) � Cr which is true, because Ta has height � r in Cr

and k�a � idk is small.) Letting r # 0 we conclude with (6.5) that D�g(a) = La and

(
^

n
��1a )~e = ~T �(a; g(a)) ;(6.7)

the Lebesgue value of ~T at (a; g(a)) with respect to the measure kTk = mHn graph g.

From (6.5), (6.6) and the analogous inequality for Lb = D�g(b) with r = 2jb � aj � 4
17

we also deduce

jD�g(b)�D�g(a)j2 � 2n+1

�(n)jb� ajn
Z
Ur=2(a)\Ur=2(b)\U%

jLa � Lbj2 dLn

� 22n+2

�(n)rn

"Z
Ur=2(a)\U%

jDg(y)� Laj2dLny +
Z
Ur=2(b)\U%

jDg(y)� Lbj2dLny

#
(6.8)

� C27

h
r2�E (T; 0; 1) + bK(r) + 
(r)

i
with C27 = const(n; k;m; �;�; �( q ); �). Since r = 2jb� aj and bK(2r) + 
(2r) � 22�(bK(r) +

(r)) the continuity modulus (6.2) for Dg is proved.

Step 4 (boundary regularity). Here we consider T 2 Tb(n:k; 1) and �rst distinguish
several special cases for a; b 2 B+ \U% (% =

1
17
).

The special case 1 is a, b 2 Un�1
% �f0g. In this case we can proceed exactly as in Step

3, using the boundary version of Lemma 5.4 and K(r)2 +cM(r) � 5bK(r). The result is that
the Lebesgue values of Dg at a, b exist (de�ned here with half balls U+ \Ur(a), of course,
instead of balls Ur(a)) and satisfy

jD�g(b)�D�g(a)j2 � C27

h
jb� aj2�E (T; 1) + bK(jb� aj) + 
(jb� aj)

i
;(6.9)

if we rede�ne C27 suitably.

The special case 2 is a 2 Un�1
% � f0g and b 2 U% with bn > 0 and ja � bj � 2bn.

We de�ne Ta, �a as in step 3 and have (6.5) again for r0 � 1 � jaj and 0 < r < 1
3
r0.

We next want to apply the interior regularity result from step 3 to �a#T in Cr1(
bb) where
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�a(b; g(b)) = (bb; bc) and r1 = bbn. Recalling that �a = id and g = 0 on Un�1
% � f0g, and

Lip g � 1, we see

jbn � r1j = jb� bbj � j(b; g(b))� �a(b; g(b))j �
p
2k�a � idkbn :

Since k�a � idk is small we conclude 4
5
bn � r1 � 6

5
bn and Ur1(

bb) � U+ \U4bn(a), hence

E
�
�a#T; bb; r1� � 5nE (�a#T; a; 4bn)

� 5nC26

��
17
4
bn
�2�

E
�
T; a; 16

17

�
+ bK(4bn) + 
(4bn)

�
;

(6.10)

by (6.5) applied with r0 =
16
17

and r = 4bn � 4
17
. ( From (6.3) we could not obtain a bound

on E
�
�a#T; bb; r1� which is small for small bn > 0 as in (6.10). This is the reason why we

must apply the interior excess growth lemma to �a#T instead of T .)

Now, as in case 1 and step 3 the Lebesgue values D�g(a), D�g(b) exist with

r�n
Z
U+
% \Ur=2(a)

jDg(y)�D�g(a)j2dLny

� 22n+3C26

"�
r

r0

�2�
E (T; a; r0) + bK(r) + 
(r)

#(6.11)

for 0 < r � 1
3
r0 � 1

3
(1� jaj), by the analogs of (6.5) and (6.6), andZ

Ur=3(b)\U%

jDg(y)�D�g(b)j2 dLny

� 22n+2
Z
Cr=3(b)

���~T (x)� ~T �(b; g(b))
���2 dkTkx(6.12)

� 22n+2
Z
Cr=2(bb)

������!�a#T (x)����!
�a#T

�
(bb; bc)���2 dk�a#Tkx

for 0 < r � bn, by the analogs of (6.6), (6.7) at b and the fact that k�a � idk is small,
sptT is the graph a function vanishing on Un�1

% � f0g with Lipschitz constant � 1, and

�a(Cr=3(b) \ sptT ) � Cr=2(bb) \ �asptT .

Decreasing � if necessary we see from (6.10) that �a#T , after translating (bb; bc) to the
origin and applying the homothety ��1r1 , satis�es the hypotheses of Lemma 5.4. The analogs
of (6.6), (6.7), (6.5) for �a#T , bb, r � r1 instead of T , a, r � r0 then give

22n+2
Z
Cr=2(bb)

������!�a#T (x)����!
�a#T

�
(bb; bc)���2 dk�a#Tkx

� C28r
n

"�
r

r1

�2�
E
�
�a#T; bb; r1�+ bK(r) + 
(r)

#
;

(6.13)

with C28 = const(n; k;m:�;�; �). Combinig this with (6.12) we have, for 0 < r � 1
3
r1,

r�n
Z
Ur=3(b)\U%

jDg(y)�D�g(b)j2dLny

� C28

"�
r

r1

�2�
E
�
�a#T; bb; r1�+ bK(r) + 
(r)

#
:

(6.14)
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We now choose r = 1
3
r1 in (6.14), r = 2jb � aj and r0 = 16

17
in (6.11) and recall

2
5
jb� aj � 4

5
bn � r1 = bbn � 6

5
bn � 6

5
jb� aj, 
(t%) � t2�
(%) and bK(t%) � t2� bK(%) for t � 1,

to deduce Z
Ur1=9

(b)\U%

jDg(y)�D�g(b)j2dLny +
Z
U+
% \Ujb�aj(a)

jDg(y)�D�g(a)j2dLny

� jb� ajnC29

h
jb� aj2�E (T; 0; 1) + bK(jb� aj) + 
(jb� aj)

i
;

where C29 = const(n; k;m; �;�; �). Since Ur1=9(b) \U+
% \Ujb�aj(a) contains a half-ball of

radius 1
18
r1 � 1

45
jb� aj we conclude as in (6.8)

jD�g(b)�D�g(a)j2 � C30

h
jb� aj2�E (T; 0; 1) + bK(jb� aj) + 
(jb� aj)

i
(6.15)

with C30 = const(n; k;m; �;�; �).

The special case 3 is b;~b 2 U% with 0 < bn � ~bn and jb � ~bj � 2
15
bn. In this case

we choose a 2 Un�1
% � f0g such that ja � bj � 2bn and ja � ~bj � 2~bn. From (6.14) with

r = 2jb� ~bj and from (6.10) we obtain, recalling r1 � 4
5
bn,

jb� ~bj�n
Z
U2jb�~bj=3(b)\U%

jDg(y)�D�g(b)j2dLny � C31

"
jb� ~bj2�E (T; 0; 1)

+ bK(2jb� ~bj) + 
(2jb� ~bj) +
�����b� ~b

bn

�����
2� bK(4bn) +

�����b� ~b

bn

�����
2�


(4bn)

#

with C31 = const(n; k;m; �;�; �), and the same estimate is valid with b;~b interchanged. On
account of � � � the exponent 2� can be replaced by 2� in the last two summands, and frombK(t%) +
(t%) � t2�(bK(%) +
(%)) for t � 1 and the fact that U2jb�~bj=3(b)\U2jb�~bj=3(~b)\U%

contains a half-ball of radius 1
6
jb� ~bj we infer

jD�g(b)�D�g(~b)j2 � C32

h
jb� ~bj2�E (T; 0; 1) + bK(jb� ~bj) + 
(jb� ~bj)

i
(6.16)

with C32 = const(n; k;m; �;�; �).

In the general case we consider a; b 2 B+ \ U% (% = 1
17
) with the aim to prove the

estimate (6.2). In the special cases this estimate follows from (6.9), (6.15), and (6.16).
If a 2 Un�1

% � f0g and b 2 U+ \ U% with jb � aj > 2bn, we apply the special case 1 to
a and b0 = (b1; : : : ; bn�1; 0) and the special case 2 to b0 and b, and (6.2) follows because
ja�b0j � ja�bj and jb�b0j � ja�bj. The only remaining case is a; b 2 U% with 0 < an � bn
and ja�bj > 2

15
an. In this case we apply the special case 1 to a

0 = (a1; : : : ; an�1; 0) and b0 =
(b1; : : : ; bn�1; 0), and the special case 2 to a0; a and to b0; b. On account of ja0� b0j � ja� bj,
ja� a0j = an <

15
2
ja� bj, and jb� b0j � jb� aj+ ja� a0j+ ja0 � b0j � 19

2
ja� bj the estimate

(6.2) then follows again from (6.9) and (6.15), since bK(t%) + 
(t%) � t2�(bK(%) + 
(%)) for
t � 1.

The preceding theorem is not completely satisfactory with regard to boundary regular-
ity, for the following reason: if T is (F; !) minimizing for a smooth integrand F and @T is
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represented locally by an (n�1)-dimensional oriented submanifold B of Rn+k with multi-
plicity 1 and with continuity modulus � for the tangent plane �eld of B, then we can 
atten
the boundary locally by transforming B into (Un�1 � f0g) � f0gk with a di�eomorphism
��1 of class C1;�(�) and apply Theorem 6.1 to the transformed curent ~T = ��1# T and to

the transformed integrand ~F = �#F (provided the hypotheses of the theorem are satis�ed
by ~T and ~F ). However, the continuity modulus of ~F and D(2)

~F with respect to the space
variable will not be better than �, in general, hence Theorem 6.1 will only give C1 regularity
for T with the modulus (bK + 
)1=2. For example, if �(r) = const r� with 0 < � < 1 and
!(r) = const r2� then we obtain only the modulus const r�=(2��) for the tangent plane �eld
of T , wheras the expected boundary regularity of T in this situation is C1;�. Using the full
strength of Lemma 5.4, however, we can prove the continuity modulus (K2 + 
)1=2 for the
tangent plane �eld of T , i.e. the optimal C1;� boundary regularity in the example. For this
we need the following variant of Lemma 5.3 for nonlinear mappings:

6.3 Lemma (excess comparison for di�eomorhisms). Suppose � is a C1 di�eomor-
phism between open sets of Rn+k , sup kD�k � L and sup kD��1k � L with 1 � L < 1,
and T 2 Rn(R

n+k ) such that p#(T Cr(y)) and p#((�#T ) C~r(~y)) have nonnegative mul-
tiplicities and C~r(~y) \ spt (�#T ) is contained in �(Cr(y) \ spt T ). Then we have

~rnE (�#T; ~y; ~r) � 2LnrnE (T; y; r) + n2L3n�2M (T Cr(y)) sup
Cr(y)\spt T

kD�� idk2 :

Proof. From the area formula [Fe, 3.2.20, 4.1.30] and (1.24) we obtain

2~rnE (�#T; ~y; ~r) =
Z
C~r(~y)

j��!�#T � ~ej2 dk�#Tk

�
Z
Cr(y)

j��!�#T (�(x))� ~ej2j(^
n
D�(x))~T (x)j dkTkx

� 2Ln
Z
Cr(y)

�
j~T � ~ej2 +

���(^
n
D�)~T � j(^

n
D�)~T j~T

���2� dkTk ;
because L�n � j(VnD�)~T j � Ln and

��!
�#T (�(x)) = j(VnD�(x))~T (x)j�1(VnD�(x))~T (x).

The claim then follows with

j(^
n
D�(x))~T (x)� ~T (x)j � kD�� idk

n�1X
j=0

kD�(x)kj :

It is clear that a variant of the Lemma holds for � only biLipschitz, where D� above
has to be interpreted as the approximative di�erential with respect to the recti�able set
underlying T .

For the formulation of the optimal small excess boundary regularity theorem we now
�x some notations and assumptions: We consider T = T C 2 Rn(R

n+k) such that @T
is represented in C by the graph of a C1 function ('0; : : : ; 'k) = ':Un�1 ! R

1+k , taken
with suitable orientation and multiplicity 1. We assume '(0) = 0, D'(0) = 0, and

kD'(y0)�D'(y00)k � �(jy0 � y00j) for y0, y00 2 Un�1,
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where � is a continuity modulus for the tangent plane �eld of the boundary (@T ) C.
We assume � su�ciently small so that U is divided into two components by graph'0 =
p(graph'), and for p#T we assume that it has multiplicities 1 on D+ = f(y0; yn) 2 U :
yn > '0(y

0)g and multiplicity 0 on D� = f(y0; yn) 2 U : yn < '0(y
0)g, i.e. p#T = En D+.

For the integrand F we require all conditions from Section 1 in particular the bound �, the
ellipticity constant �, and the modulus � for � 7! D2

(2)F (x; �) from (1.4), but we denote the
continuity modulus for x 7! F (x; �) and x 7! D2F (x; �) by � this time, i.e. instead of (1.5),
(1.6) we have

jF (x; �)� F (~x; �)j � �(jx� ~xj)j�j ;
kD(2)F (x; �)�D(2)F (~x; �)k � �(jx� ~xj) ;

and we do not make use of the special modulus introduced in (1.7), (1.8) (and denoted
� there). For the functions �, �, ! we assume all the conditions stated in Section 1. In

particular there exists 0 < � < 1 such that r���(r), r���(r) and r��
q
!(r) are nonincreas-

ing functions of r > 0. With � we associate the function b� by (1.9) and with �, b�, ! the

functions K, cM, 
 by (1.15). We then have

6.4 Theorem (optimal boundary �-regularity theorem). For � � � < 1 there exists
a positive constant �1(n; k; �;�; �( q ); �) sucht that if T , F satify the assumptions above, T
is (F; !) minimizing in C and

E (T; 1) + K(1)2 +cM(1) + 
(1) � �1 ;(6.17)

then T C1=50 is represented by the graph, taken with multiplicity 1, of a continuously
di�erentiable function g:U1=50 \ p(sptT ) ! R

k . Moreover, the derivative Dg has the
following modulus of continuity:

jDg(a)�Dg(b)j � C41

h
r2�E (T; 1) + K(r)2 +cM(r) + 
(r)

i1=2
(6.18)

for a, b 2 U1=50 \ p(sptT ) with ja� bj � r, where C41 = const(n; k; �;�; �).

For example, if the boundary is of class C1;�, i.e. �(r) � const r� for small r > 0, if the

integrand is smooth (�(r) � const r2�=(1+�) is su�cient, as then cM(r) � const r2� follows),
and if !(r) � const r2�, then (6.18) gives H�older continuity of Dg up to the boundary with
exponent � 2]0; 1[. This is, of course, the best possible boundary regularity result, if the
prescribed boundary is merely of class C1;�. If the boundary is of Dini class C1;�(�), where
r 7! r���(r) > 0 is decreasing for all 0 < � < 1, then Theorem gives C1;K(�) Dini boundary
regularity, provided K(1) =

R 1
0

1
%
�(%) d% is �nite and cM(r), 
(r) are dominated by K(r) as

r # 0 (e.g. �(r) � const r�, !(r) � const r2� as above, for some 0 < � < 1).

Proof. We de�ne �(~x) = ~x + (0; '(~x1; : : : ; ~xn�1)) 2 R
n�1 � R

1+k for ~x 2 C so that
��1(x) = x � (0; '(x1; : : : ; xn�1)). If �1, and hence also �(1) � K(1), is su�ciently small,
we have Lip' � �(1) � 1

7
and Lip� � 8

7
, Lip��1 � 8

7
. Then �(C7=8) � C follows because

�(0) = 0, and � acts on fyg � R
n as a translation. Letting ~T = (��17=8#�

�1
# T ) C) and

~F (~x; ~�) = (8
7
)nF (�(7

8
~x;
V
nD�(7

8
~x)~�) we verify that ~T 2 Tb(n; k; 1) is ( ~F ; ~!) minimizing in

C with ~!(r) = !((Lip�)7
8
r) � !(r). The transformed integrand ~F satis�es (1.1){(1.4)

and (1.12) with bound ~� � C�, modulus ~�(r) � C[�(Cr) + �r], and ellipticity constant
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~� � C�1� (by[Fe, 5.1.4]), where C = const(n; k). For the modulus ~� associated with ~F
by (1.5), (1.6) we obtain ~�(r) � C[�((Lip�)7

8
r) + ��(7

8
r)] � C[�(r) + ��(r)], and for the

modulus ~� associated with ~F by (1.7), (1.8) we �nd, using the special structure of �, i.e.
the independence of D�(~x) from ~xn; : : : ; ~xn+k, the estimate ~�(r) � �((Lip�)7

8
r) � C�(r).

It follows that ~X(r), de�ned by (5.33) and (1.15), (1.9) in terms of ~�, ~�, ~!, does not exceed

C[K(r)2 +M(r)2 + cM(r) + 
(r)], where K, M, cM, 
 are de�ned in terms of �, �, ! as in

(1.15), (1.9). If �1, and hence also b�(1) � cM(1), is small enough, then we see �(r)2 � 16b�(r)
and M(r)2 � 16cM(r) for 0 < r � 1, recalling the discussion following (1.9). Consequently,

~X(r) � const(n; k)
h
K(r)2 +cM(r) + 
(r)

i
for 0 < r � 1.(6.19)

We also note that

E
�
~T ; 1

�
� const(n)

h
E (T; 1) + �(7

8
)2
i
;(6.20)

by Lemma 6.3. It follows from (6.17), (6.19), (6.20) and �(1) � K(1) that ~T satis�es the
hypotheses of Lemma 5.4, provided �1 is chosen su�ciently small.

In the rest of the proof we will need additional smallness conditions for �1 in various
arguments, and we will tacitly assume that �1 has been chosen to satisfy these conditions.
By C34, C35; : : : we denote constants depending only on n, k, �, �, �. As in Step 1 of the
proof of Theorem 6.1 we next establish uniform smallness

E
�
~T ; y; r

�
+ K(r)2 +cM(r) + 
(r) � C34�1 ;(6.21)

for y 2 B1=2 with yn � 0 and for r > 0 with r � 1� jyj. In the case yn = 0, 1
2
� r � 1� jyj

this follows from (6.17) and (6.20) by passing to the scaled current (��1r#�
�1
(y;0)

~T ) C, and
from the excess bound (5.41) together with (6.19) we obtain (6.21) also when yn = 0,
0 < r < 1

2
. In the case yn > 0 we deduce (6.21) for (7

8
)2yn � r � 1� jyj by applying (6.21)

with center y0 = (y1; : : : ; yn�1; 0) and radius r0 = 2yn when 2yn � 1 � jy0j and with center
0 and radius 1 when 2yn > 1 � jy0j (which implies r � (7

8
)2yn > (7

8
)2 1

4
). Using this with

r = yn we see from Lemma 6.3 and

M
�
~T Cr(y)

�
� rn

h
�(n) +E

�
~T ; y; r

�i
(6.22)

that ((��149r=64�
�1
x )#T ) C for x 2 sptT with px = p�(7

8
y; 0) satis�es the hypotheses of

Lemma 5.4 in the interior situation (with respect to the corresponding transformation of the
integrand F ). From the conclusion (5.41) of this lemma we get (6.21) also for 0 < r < (7

8
)2yn

by using Lemma 6.3 again (and the analogue of (6.22)). (Note that we cannot apply the

interior case of lemma 5.4 directly to ~T , because we did not assume that
R 1
0

1
%

qb�(%) d% is

�nite.) Combining (6.21) with the height estimate of Lemma 2.2 we �nd that the height of
(��1r#�

�1
~x#

~T ) C does not exceed 1
3
, say, if ~x 2 spt ~T , p~x 2 B1=2\B+, and 0 < 2r < 1�jp~xj.

Applying the di�eomorphism � we obtain corresponding height estimates for T , e.g. for
0 < r � 7

16
the height of T Cr does not exceed

2
3
(8
7
)2r < r.

Exactly as in Step 2 of the proof for Theorem 6.1 we see from (6.21) that ~T C1=34

is represented by the graph, taken with multiplicity 1, of a Lipschitz function ~g:U1=34 \
B+ ! R

k with Lip ~g � 1 and ~g = 0 on Un�1
1=34 � f0g. Consequently, T is represented in
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C1=50 (since (7
8
)2 1

34
< 1

50
) by the graph of a function g:U1=50 \ p(sptT ) ! R

k such that
graph g = C1=50 \ � b�7=8(graph ~g), g(y

0; '0(y
0)) = ('1(y

0); : : : ; 'k(y0)) for (y0; '0(y
0)) 2

C1=50 \ p(spt @T ), and Lip g � 2.

From the excess decay Lemma 5.4 for ~T we obtain the existence of a linear isometry �0

of Rn+k with �0 = id on (Rn�1 � f0g)� f0gk, k�0 � idk � C35�1, and

E
�
�0#( ~T C1=2); r

�
� C35

h
r2�E

�
~T ; 1

�
+ K(r)2 +cM(r) + 
(r)

i
(6.23)

for 0 < r < 1
3
. Letting 	 = �0

b�8=7
b� b�7=8

b��10 we have (	#�0#( ~T C1=2)) C1=3 =
(�0#�8=7#(T C7=16)) C1=3 and

kD	(~x)� idk =



�0D�(7

8
��10 ~x)��10 � id




 = 


D�(7
8
��10 ~x)� id




 � �(7
8
j~xj) :

On account of the smallness of k�0� idk and the controlled height of ~T C1=2 and T C7=16

we can therefore apply Lemma 6.3 to deduce with (6.23), the analog of (6.22), and �(r) �
K(r), the estimate

E
�
�0#(T C7=16); r

�
� C36

h
r2�E (T; 1) + K(r)2 +cM(r) + 
(r)

i
(6.24)

for 0 < r � 1
4
.

Consider now x 2 sptT with px = y = (0; : : : ; 0; yn) and 0 < yn � 1
8
. For bx = �0x

and by = pbx we then have by = (0; : : : ; 0; byn) with 2
3
yn � byn � 3

2
yn, because �0 = id on

(Rn�1 � f0g) � f0gk, k�0 � idk is small, T Cr has height at most r for 0 < r � 7
16
.

Therefore Cyn=2(by) is contained in C2yn , and from (6.24) we obtain

E
�
�0#(T C7=16); by; 12yn�

� 4nC36

h
(2yn)

2�E (T; 1) + K(2yn)
2 +cM(2yn) + 
(2yn)

i
:

(6.25)

Since Cyn=2(by) does not intersect the support of �0#(@T C7=16), the hypotheses of the
interior excess decay estimate in Lemma 5.4 are satis�ed for (��1yn=2�0�

�1
x )#(T C7=16)) C

and for the corresponding transformation of the integrand F . Consequently, there exists a
linear isometry �x of R

n+k , close to the identity, such that for Tx = ��1x#(T C7=16) we have

E (�x#Tx; r) � C26

24 r

yn

!2�

E
�
�0#(T C7=16); r

�
+cM(r) + 
(r)

35
for 0 < r � 1

6
yn. Combining this with (6.25), and using (r=yn)

2�
(2yn) � (r=yn)
2�
(2yn) �

22�
(r) � 22�
(r) and the analogous inequality for cM we infer

E (�x#Tx; r) � C37

h
r2�E (T; 1) + K(r)2 +cM(r) + 
(r)

i
(6.26)

for x 2 sptT with px = (0; : : : ; 0; yn), 0 < yn � 1
8
, and 0 < r � 1

6
yn.

Now, choosing �1 su�ciently small we obtain linear isometries �a corresponding to a 2
C1=8\ spt @T such that k�a� idk � const(n; k)�(jaj) and the scaled currents ((�4�a�

�1
a )#
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(T C7=16)) C together with the correspondingly scaled version of F satisfy all the as-
sumptions which we have used for T above to derive (6.24) and (6.26). Here, the smallness
of the excess follows from (6.17) and Lemma 5.3. More precisely, with a mass estimate as
in (6.22) we obtain the following estimate, valid for a 2 C1=8\spt @T , Ta = ��1a#(T C7=16),
some linear isometry �a of R

n+k close to the identity, and 0 < r � 1
16
:

E (�a#Ta; r) � C38

h
r2�

�
E (T; 1) + �(jaj)2

�
+ K(r)2 +cM(r) + 
(r)

i
� C39

h
r2�E (T; 1) + K(r)2 +cM(r) + 
(r)

i
:

(6.27)

Here we have used r��(jaj) � r��(1) � �(r) � K(r). Moreover, if b 2 C1=32 \ spt T n spt @T
and a is a nearest point to b in spt @T , then jaj < 1

16
and p�4�a�

�1
a (b) = (0; : : : ; 0; yn)

with 0 < yn � 4jb � aj < 1
8
. Hence (6.26) implies, by the same reasoning, the existence of

a linear isometry �b of R
n+k close to the identity such that Tb = ��1b#(T C7=16) satis�es

E (�b#Tb; r) � C40

h
r2�E (T; 1) + K(r)2 +cM(r) + 
(r)

i
(6.28)

for 0 < r � 1
24
yn. Since 4jb � aj � p

2yn, because �4#�a#�
�1
a#(T C7=16) has height

in Cr not exceeding r for 0 < r � 7
16
, we see that (6.28) is valid in particular for b 2

C1=32 \ sptT n spt (@T ) and 0 < r � 1
9
dist(pb;p(spt (@T )).

With (6.27) and (6.28) we can now proceed exactly as in Step 4 of the proof of The-
orem 6.1 in order to establish the asserted continuity modulus (6.18) for Dg. One uses
the fact that T C1=50 is represented by the graph of g with Lip g � 2 and estimates
jDg(a) � Dg(b)j2 for a, b 2 C1=50 \ p(sptT ) distinguishing the three special cases a,
b 2 p(spt @T ), resp. a 2 p(spt @T ) and b 62 p(spt @T ), resp. a, b 62 p(spt @T ) with
ja � bj � 1

9
dist(a;p(spt @T )) � 1

9
dist(b;p(spt @T )). The general case is reduced to the

special cases by the triangle inequality. As the reasoning is clear from the proof of Theorem
6.1 we can omit details.

7 Proof of the boundary regularity theorem

For completeness we indicate here how the boundary regularity theorem stated in the
introduction follows from the �-regularity theorem. The proof follows [Ha1, Section 3]
closely, with simple modi�cations to treat almost minimizing currents. We �rst observe
that the following compactness lemma for almost minimizing currents holds:

7.1 Lemma (compactness for sequences of almost minimizing currents). Suppose
Ti 2 Rn(R

n+k) is (Fi; !i) minimizing in the open subset D of Rn+k for i = 1; 2; : : :, where the
parametric integrands Fi satify (1.1) uniformly and converge to F uniformly on compact
subsets of D � V

nR
n+k as i ! 1 and where lim supi!1 !i � ! holds on ]0;1[ with a

nondecreasing function !: ]0;1[! [0;1] which is continuous from the right with !(0+) =
0. If Ti ! T0 holds locally on D with respect to the 
at metric distance and supiM (Ti) <1
then T0 2 Rn(R

n+k) is (F; !) minimizing in D. Moreover, every subset A of D with positive
distance to (sptT0) [ S1i=1 spt @Ti intersects only �nitely many of the sets sptTi.

The proof is a straightforward adaptation of [Ha1, Lemma 3.5] which in turn is modelled
after [Fe, 5.4.2]. It uses only the de�nition of almost minimality, standard properties of
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convergence with respect to the 
at distance [Fe, 4.1.24], and the lower mass bound from
Lemma 2.1 which holds uniformly for the Ti with su�ciently large i by the hypotheses on
the integrands Fi and the functions !i. (Note that !i(r) � 1 + !(r) < 1 for some r > 0
and all su�ciently large i.) We omit the details and proceed to the

Proof of the boundary regularity theorem. We argue by contradiction verifying
also the assertions made in Section 0 about the dependence of the constant # > 0 on
the data. If the theorem were false we would have, after applying linear isometries to
transform the point a to the origin and the tangent space of the boundaries at a to R

n�1 �
f0gk+1 � R

n+k and after suitable scalings by homotheties of Rn+k , sequences of currents
Ti 2 Rn(R

n+k), parametric integrands Fi, and C1;� functions 'i:U
n�1(0; 1) ! R

1+k , such
that no Ti satis�es the conclusion of Theorem 6.4 locally at 0 and the following assertions
hold:

Ti is (Fi; !i) minimizing in U(0; 1) = Un+k(0; 1) with !i(r) = �i r
�,

limi!1 �i = 0 ;
(7.1)

(@Ti) U(0; 1) is represented by the graph of 'i taken with suitable
orientation and multiplicity 1; morover '(0) = 0, D'(0) = 0, and

kD'(y0)�D'(y00)k � �ijy0 � y00j� for y0, y00 2 Un�1,

with limi!1 �i = 0 ;

(7.2)

M (Ti U(0; 1)) � 1
2
�(n) + 1

i
;(7.3)

Fi satis�es the structure conditions (1.1){(1.12) with limi!1 �i = 0
and with �, �, �( q) independent of i .

(7.4)

Moreover, as the Fi satisfy a uniform Lipschitz condition on each compact subset ofU(0; 1)�V
nR

n+k we may assume, after passing to a subsequence, that for some continuous integrand
F0:U(0; 1)� V

nR
n+k ! [0;1[ (which has constant coe�cients, because �i ! 0) we have

Fi ! F0 uniformly on compact subsets of U(0; 1)� V
nR

n+k as i!1.(7.5)

Now, sinceM (Ti U(0; 1))+M ((@Ti) U(0; 1)) is bounded, by (7.3) and (7.2), we may
apply the local version of the compactness theorem [Si1, 31.3] (cf. the reasoning in the proof
of [Fe, 5.4.3]) to deduce, passing to a subsequence again, convergence Ti ! T0 2 Rn(R

n+k)
locally on U(0; 1) in the 
at metric distance. Clearly,

M (T0) � 1
2
�(n)(7.6)

holds, by (7.3), and

U(0; 1) \ spt (@T0) = Un�1(0; 1)� f0g1+k � R
n+k(7.7)

by (7.2). Using the nonexpanding map f(y; z) = (y1; : : : ; yn�1; j(yn; z)j) from R
n � R

k to
R
n�1 � [0;1[ one gets from (7.6)

M (f#T0) �
Z
U(0;1)

����^
n
Df

�
~T0
��� dkT0k � Z

U(0;1)
dkT0k � 1

2
�(n) ;(7.8)
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and since, for U = Un(0; 1),

U \ spt (f#T0) � f(Un�1 � f0g1+k) = Un�1 � f0g � U

by (7.7) and the de�nition of f , one deduces with the constancy theorem [Fe, 4.1.7] that

f#T0 represents the half ball U+ with multiplicity +1 or �1 and that j(VnDf)~T0j = 1

holds kT0k-almost everywhere. This means that ~T0(y; z) is an orientation vector of the n-
dimensional subspace R(y; z)+R

n�1�f0g of Rn+k for kT0k-almost all (y; z) 2 R
n�(Rk nf0g),

and slicing with the map (y; z) 7! j(yn; z)j�1(yn; z) 2 Sk one sees, using also (7.6), that
T0 represents an n-dimensional half ball in R

n+k with equator Un�1 � f0g. (See [Br2, 4.5]
where the argument of [Ha2, Corollary 1] is adapted to the present situation.) After a
suitable orthogonal transformation of Rn+k we may assume T0 = (En U+)� �k0.

By Lemma 7.1, T0 is absolutely minimizing for F0, and for every 0 < � < 1 the set
f(y; z) 2 B(0; 1 � �) : jzj � �g intersects only �nitely many of the sets sptTi. It is now
clear from (7.1){(7.4) and the constancy theorem [Fe, 4.1.7] that the currents

~Ti = (��11��)#(Ti Un(0; 1� �)�Uk(0; �)) 2 Rn(C)

for � > 0 �xed su�ciently small and for i su�ciently large satisfy the hypotheses of the
boundary case in Theorem 6.4 for the integrands ~Fi and functions ~!i obtained from Fi and
!i by scaling with ��11��. Therefore, for i su�ciently large the currents ~Ti are regular at
the origin as desribed in the conclusion of Theorem 6.4. This contradicts, however, our
assumption on the sequence Ti.

In the interior situation a 2 spt T n spt (@T ) one can conclude with a similar reasoning
that the (F; !) minimizing current T is regular locally at a, provided the n-dimensional
density of kTk has a local minimum at a (on the complement of a set of kTk measure zero)
and Tan (sptT; a) is an n-dimensional subspace of Rn+k (cf. [Fe, 5.3.16] and [Bo, VIII]).
The interior case of Theorem 6.4 then gives the same modulus of continuity for the �eld of
the tangent n-planes to sptT near a as in our boundary regularity theorem.
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