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1 Introduction

1.1 Overview

Following the request of the CERN SPSC at its meeting on 23 May 2000, this report
provides further details on the experimental programme and beam schedule of CLOUD.
Specifically, we describe (in §4 and §5) two examples of the type of experiments to be
performed by CLOUD, and their expected precisions. The experimental and theoretical
motivation for these experiments is summarised in §3. The beam requirements and sched-
ule are elaborated in §7. We also summarise the progress on the detector design since the
proposal [1] in §2, and the expected scope of the aerosol and cloud simulations for the
experiment in §6.

1.2 Choice of experiments

The ions and radicals produced in the atmosphere by galactic cosmic rays (GCRs) may
influence cloud microphysics in several ways:

1. Nucleation (creation) of new condensation nuclei (CN) from trace condensable
vapours.

2. Growth of CN into cloud condensation nuclei (CCN), which seed cloud droplets.

3. Activation of CCN into cloud droplets in the presence of supersaturated water
vapour.

4. Creation of ice nuclei, which cause the freezing of supercooled liquid droplets in
clouds.

If the rate or efficiency of any of these processes is significantly modified by ions in the
atmosphere, then the GCR intensity could modify the droplet number concentrations of
clouds and thereby affect their lifetimes and radiative properties. Motivated by the exper-
imental and theoretical considerations summarised in §3, we have selected for this report
one example experiment from each of the first two processes listed above, specifically:

Exp.1: Binary homogeneous nucleation of ultrafine condensation nuclei (UCN) of sul-
phuric acid and water, under atmospheric conditions (§4).

Exp.2: Growth of these UCN into CCN in the presence of additional vapours: sulphuric
acid, water, ammonia and low volatility organic compounds (LVOCs), again under
atmospheric conditions (§5).

These examples are part of the category I experiments (“Creation & growth of aerosols”)
listed in Table 3 (p.29) of the CLOUD proposal.
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2 Progress on the detector design

2.1 Summary

Since the proposal we have improved the detector design by replacing the buffer expansion
tank and flow chamber (described in §4 of the proposal) by a single device, a reactor

chamber (Figs. 1 and 2).

Figure 1: Horizontal section of the cloud chamber and the new reactor chamber.

The reactor chamber will be located in the beamline, immediately behind the cloud
chamber. It performs the same functions as the devices it replaces, but with improved
performance, namely:

1. Buffer tank for small expansions. This functions in the same way as described
previously in the proposal, providing a second method to produce small expansions.

2. A reactor chamber for providing the source of reacted gas/aerosols for the external
detectors. This replaces the function of the original flow chamber but with the
improvement that it is now effective for long growth-time experiments extending for
several days, since diffusion losses to the walls are strongly reduced. Since the aerosol
and trace gas lifetimes from wall losses should scale as the linear dimension of the
vessel (i.e. the ratio of its volume to surface area), we expect the reactor chamber
will have about a factor four longer particle lifetime than the cloud chamber. The
cloud chamber is suitable for growth experiments lasting up to about a day. For
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Figure 2: Vertical section showing the cloud chamber and the new reactor chamber. The latter combines the functions of the
original buffer expansion tank and flow reactor chamber, and replaces them.
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longer growth-time experiments the reactor chamber can now provide samples of
reacted gas/aerosols for analysis in the cloud chamber itself since its volume is
much larger than the cloud chamber (by a factor 64).

The estimated extra cost of the reactor chamber over the original buffer expansion
tank and flow chamber it replaces is 30 kCHF.

2.2 Reactor chamber design

The reactor chamber is a cylinder of internal dimensions 2 m (diameter) × 2 m (height).
The inner vessel can be operated between atmospheric pressure and a vacuum. It is
constructed from aluminium, with black teflon lining the inner surface. The teflon is
made partly conductive in order to prevent any charge buildup. An inner field cage
provides a simple clearing field.

The reactor chamber is exposed to the same beam as the cloud chamber and operated
at the same temperature and pressure. However, since it simply provides a container for
trace gases and aerosols to react in the presence of the beam (i.e. no droplet activation is
involved), the requirements on the temperature stability are less demanding than for the
cloud chamber, and a stability of a few × 0.1K is adequate. The temperature is controlled
with liquid fluorocarbon circulated in pipes around the outer surface of the reactor vessel.
Heater cables are also wrapped around the reactor vessel to allow cleaning by bakeout
under vacuum. A simplified thermal insulation is employed, comprising superinsulation
and a vacuum layer. The liquid system is independent of the one used for the cloud
chamber in order to maintain the precise temperature stability of 0.01K required for the
cloud chamber.

The reactor chamber is equipped with gas/aerosol inlet and outlet pipes. A small fan
is installed inside the vessel to provide the option of slow stirring of the gas filling to assist,
where necessary, homogeneous mixing throughout the large volume. A special inlet pipe
located near the fan provides fresh trace gas to replace losses to the walls or to aerosol
growth. The reactor vessel is also equipped with sampling probes to extract gas and
aerosols for the external detectors (mass/ion/mobility spectrometers, trace gas analysers
and aerosol particle sizers). The tip of each sampling probe can be independently adjusted
to any radial position (0 < r < 1m) inside the vessel. The reactor vessel also includes
ports connecting to the vacuum system and to the active volume of the cloud chamber.

Access to the inside of the reactor vessel is provided by a removable hatch in the side
wall and, for full access, the top of the vacuum tank and reactor vessel are also removable.
The vessel is equipped with internal illumination and two inspection ports. Internal UV
lamps are also provided for experiments involving photochemical processes.

2.3 Reactor chamber performance

The performance of the reactor chamber principally concerns the lifetime of trace gases
and aerosols due to wall losses. Aerosols that strike the walls will be lost due to attractive
van der Waals forces. Since the diffusion coefficient of aerosol particles is small, the wall
losses due to thermal diffusion are small (see Fig. 42 of the proposal). Trace gas molecules,
on the other hand, have a high diffusion rate. However these molecules strike the walls
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at high velocity and mostly rebound (which is, after all, the origin of gas pressure in a
vessel). The fraction that do not rebound depends on temperature and on the nature of
the gas molecules and the surface material.

The experience of the AIDA aerosol facility [2] at Forschungszentrum Karlsruhe is
instructive in this regard. AIDA is a large cylindrical vessel of internal dimensions 4 m
(diameter) × 7m (height) with an inner ceramic lining. The temperature is controlled to
0.5K precision by cold air circulating around the outside of the vessel. It is equipped with
an internal fan to ensure homogeneous mixing. Operation of the fan is found to have only
a small effect on aerosol lifetimes. The measured 1/e lifetimes in AIDA for trace O3 and
NO2 gases at room temperature are 70 h and 370 h, respectively. Since the lifetimes should
scale as the linear dimension of the vessel, this implies the CLOUD reactor chamber should
have corresponding lifetimes of about 30 h and 150 h, respectively. In fact, since teflon is
superior to ceramic as a lining material, these lifetime figures are probably conservative.
During long-duration experiments with CLOUD, the losses of trace vapours due to wall
adhesion or to aerosol growth will be compensated by a continuous small inflow of trace
gases.

3 Experimental and theoretical motivation

3.1 Present experimental knowledge

There are only sparse experimental data on the effect of ions in the atmosphere on new
particle formation—and none, to our knowledge, on the effect of ions on particle growth
from CN to CCN. Observations have been made of nucleation bursts of CN in the at-
mosphere that cannot be explained by classical theories. For example, Hõrrak et al. [3]
reported the spontaneous formation of bursts of intermediate size ions in urban air, which
they suggest may be due to ion-induced nucleation. Also, Clarke et al. [4] observed
formation of new ultrafine particles in the tropical marine (Pacific) boundary layer that
could not be explained by classical binary (H2SO4-H2O) homogeneous nucleation theory
at the low ambient concentrations of sulphuric acid (1–5·107 molecules cm−3).

However a recent study by Yu and Turco [5] based on an ion-mediated model is able
to reproduce the observations of Clarke et al., as described below. Their model indicates
that the nucleation rate of fresh CN in the marine boundary layer1 is generally limited by
the available ion production rate from GCRs. In contrast, the nucleation rate in the upper
atmosphere is generally limited by the trace vapour concentration since the temperatures
are lower and the trace vapour saturation ratios correspondingly higher, and so binary
homogeneous nucleation can occur at an appreciable rate. This could explain why satellite
observations show a solar modulation signal only in clouds below about 3 km (Fig. 6 in
the CLOUD proposal).

Direct experimental evidence that ions are involved in the nucleation of new particles
under atmospheric conditions is lacking. However positive effects with ions have been seen.
For example, Bricard et al. [6] observed new particle production in filtered (aerosol-free)
Paris air exposed to very high radiation doses (3 · 108 Bq m−3 × 300 s). Vohra et al. [7],

1The boundary layer extends from the Earth’s surface up to about 1 km; the region extending from
about 1 km to the tropopause is known as the free troposphere.
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on the other hand, carried out experiments with radon at naturally-occurring ionisation
levels of 3–15 Bq m−3 and observed new particle production proportional to ionisation
rate, but using artificial air containing high concentrations of trace gases (300 ppb SO2,
100 ppb C2H4 and 160 ppb O3).

In short, many of the CLOUD experiments will be the first of their kind and, as
such, there are good prospects for making important advances in our understanding of
the importance of ionising particle radiation on aerosol and cloud physics.

3.2 Physical model of ion-mediated nucleation and growth

Despite intensive research over several decades, the origin of the ubiquitous background
of ultrafine aerosols in the troposphere has not yet been determined. Moreover even the
fundamental mechanism that leads to new particle formation remains poorly understood.
It has been suggested that ionisation from GCRs plays a key role in the formation of
new aerosol particles [8]–[12], and indeed this will be one of the major areas of study for
CLOUD.

The classical theory of binary H2SO4-H2O homogeneous nucleation fails to explain
observations of new ultrafine particle formation in clean regions of the lower atmosphere,
such as occurs over oceans and in pristine continental air [4, 13, 14, 15]. Typically the
nucleation rates predicted by classical theory are far lower (by as much as 10 orders of
magnitude) than the experimentally-observed rates. Recent modelling work [5] demon-
strates that thermodynamically-stable charged clusters, caused by vapours condensing
onto ions produced by GCRs, can form at much lower ambient vapour concentrations and
grow significantly faster than neutral clusters.

The steps involved in the creation of CCN from condensable vapours (in this case,
sulphuric acid) are shown in Fig. 3. Molecular H2SO4-H2O clusters form and evaporate
continually (step 1) by kinetic motion. Under suitable conditions some clusters will reach
the critical size of about 1–2 nm diameter—known as nucleation (step 2). Once the critical
size is reached, continued growth of the cluster becomes preferential thermodynamically.

The nucleation of aerosols in the atmosphere involves several competing processes
which include molecular clustering, evaporation, scavenging of condensable vapour by pre-
existing particles, and sedimentation by rainfall. In this environment, electrically charged
embryos have a competitive advantage over neutral embryos. Charged clusters provide
additional electrostatic attractions with polar molecules, allowing critical embryos to form
with fewer molecules than for neutral clusters. Therefore ions can greatly enhance the rate
of formation of new particles in regions where the concentration of condensable vapours is
too low for stable neutral clusters to form at an appreciable rate, such as frequently occurs
in the marine boundary layer. The key parameters controlling the rate of new particle
formation are the concentrations of condensable vapours, the GCR ionisation rate, and
the surface area of pre-existing particles.

Once formed, the ultrafine condensation nuclei (UCN) continue to grow (step 3). The
main growth process up to diameters of about 10 nm is molecular condensation; for larger
sizes the main growth mechanism is coagulation of existing CN. During the growth of
CN to CCN, other vapours in the atmosphere such as ammonia, nitric acid and organic
compounds are known to be important. The growth rate is also expected to be enhanced
by the presence of ions, becoming less significant with increasing size of the aerosol particle.
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Figure 3: Possible influence of galactic cosmic rays (GCRs) on the nucleation of new condensation nuclei (CN) and on their growth
into cloud condensation nuclei (CCN) in the marine boundary layer, ultimately increasing the number of cloud droplets. The
labelled steps comprise: 1) formation of molecular clusters from condensable vapours, 2) formation of critical embryos (ultrafine
CN) from molecular clusters, 3) growth of CN into CCN, and 4) activation of CCN into cloud droplets. The upper path corresponds
to neutral (uncharged) aerosol particles and the lower path to charged aerosol particles (from GCR ionisation). Charged aerosols
are expected to have an enhanced growth rate and reduced evaporation relative to neutral aerosols. Dimethyl sulphide (DMS) from
plankton is the major source of sulphur dioxide—the precursor of sulphuric acid—in remote marine environments.
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This enhancement is largest when the two colliding particles have opposite sign (+−),
but there is also an increased rate between one charged and one neutral particle (+0 or
−0), when compared with two neutral particles (00). Finally the activation of CCN into
cloud droplets (step 4) may also be influenced by charge. However the effect is expected
to be small for the typical electric charges found on aerosol particles under fair-weather
conditions.

There is a continual interchange between charged and neutral particles as small ions
diffuse onto existing CN and CCN, either neutralising or charging them in the process.
This implies that ions may potentially affect the production rate of a large fraction of
the CCN produced by gas-to-particle conversion, regardless of whether or not the original
UCN were produced via ion-mediated processes.

It is important to note that aerosol particles and trace vapours are continually being
scavenged from the atmosphere by rainfall. Following a precipitation event, the air is
left with a relatively low aerosol particle number concentration and a low aerosol surface
area. It is under these conditions that the nucleation of fresh UCN is most likely to
occur. Furthermore, for clean environments, this indicates that the rate at which new
particles are produced and grow into CCN can strongly affect the lifetime and radiative
properties of the clouds in these regions, since there is rarely sufficient time for a large
CCN population to form.

3.3 Aerosol effects on cloud radiative properties

The effect that a change in the CCN number concentration has on the radiative properties
of a cloud can be quantitatively estimated as follows [16, 17]. Assuming the liquid water
content and depth of the cloud is fixed, then its optical thickness, τ , is given by τ ∝ Nr2,
where N is the droplet number concentration and r the mean droplet radius. Since
N ∝ r−3, this indicates τ ∝ N1/3. Therefore a change of the droplet number concentration
by ∆N leads to a change of the optical thickness by ∆τ , where

∆τ

τ
=

1

3
·
∆N

N
(1)

The albedo (reflectivity), A, of a cloud is the fraction of incident radiation that is reflected
into the backward hemisphere. For the scattering of solar radiation by clouds [16, 17],

A ≈
τ

τ + 6.7
(2)

Differentiating Eq. 2 and combining with Eq. 1 gives,

∆A

A
= (1 − A) ·

∆N

N
(3)

The rather thin stratiform clouds that cover an appreciable fraction of the Earth’s sur-
face, and especially marine regions, have an albedo of about 0.5 and a droplet number
concentration of about 100 cm−3 or less (see Fig. 9). Equation 3 shows that these clouds
are very sensitive to changes in the CCN number concentration; their reflectance changes
by 0.5% or more per single additional cloud droplet per cubic centimetre of air! This in
turn indicates that GCR-induced changes in the CCN number concentration of only a few
per cent could produce significant effects on the radiative properties of such clouds.
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4 Exp.1: Nucleation of ultrafine CN

4.1 Model predictions

The recent model study of Yu and Turco [5] provides quantitative predictions of the
ion-mediated nucleation of ultrafine condensation nuclei (UCN) and their subsequent
growth, under the ambient conditions measured in the Pacific boundary layer by Clarke
et al. [4]. Their model incorporates the effects of electrostatic interactions between
charged and neutral molecules and clusters. Although the basic physics is well known,
several parameters of the model are poorly constrained by experimental data—such as the
‘sticking’ probability when two particles collide—and, in these cases, reasonable values
have been estimated. The model predictions should be therefore be taken as representative
of the magnitude of ion-mediated effects, rather than as definitive. Nevertheless the model
studies of Yu and Turco represent the most quantitative that presently exist on the possible
effects of GCR ionisation on aerosol formation and growth under atmospheric conditions.

Figure 4: Ion-mediated model simulation by Yu and Turco [5] of the binary nucleation of
new ultrafine condensation nuclei (UCN) from H2SO4-H2O vapour in the marine boundary
layer. An initial background CN concentration of 100 cm−3 is assumed. The simulations
agree well with the range of values measured by Clarke et al. [4], indicated by the vertical
bars on the right hand side. Classical binary homogeneous nucleation theory, which does
not include ion-mediated effects, predicts no nucleation under these conditions (see Fig. 5).
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To compare directly with the data of Clarke et al., the simulation is initialised at 11:00
local time under the experimentally-observed conditions, namely T = 298 K, relative hu-
midity (RH) = 95% and an initial background aerosol distribution of 100 cm−3. Sulphuric
acid vapour is generated in situ at the observed rate of

104 · sin[π(t − 6)/12] molecules cm−3s−1 (4)

where 6 < t < 18 h is the local time. The H2SO4 production rate is set to zero at other
times. The ion pair production rate is 2 cm−3s−1, corresponding to GCRs at ground level.

Figure 5: The rates of ion-induced and classical binary homogeneous nucleation of H2SO4-
H2O aerosol particles as a function of H2SO4 concentration in the marine boundary layer,
estimated by Raes et al. [10]. A background (d=100 nm) CN concentration of 400 cm−3

is included. The expected measurement precisions for CLOUD are indicated by points
with error bars. More recent estimates by Viisanen, Kulmala and Laaksonen [18, 19]
suggest the curve labelled ‘homogeneous’ in the figure should be shifted to the right by
about a factor five higher H2SO4 concentrations.

The results of the simulation are shown in Fig. 4, in comparison with the experimental
data. The model predicts negligible UCN (>3 nm diameter) formation until the H2SO4

concentration reaches about 107 cm−3 (at about 11:15 local time) and then, within one
hour, a UCN population of about 104 cm−3 has formed. The H2SO4 concentration falls
after 12:00 due to a decreased production rate and to scavenging by the aerosol particles.
The newly-formed particles continue to grow, and after 12:00 an appreciable fraction

10



exceed 10 nm diameter (labelled ‘CN’). The simulation agrees well with the experimental
observations of Clarke et al., which are indicated by the vertical bars in Fig. 4.

Under these conditions classical binary homogeneous nucleation theory predicts an
insignificant production of new particles. Figure 5, for example, shows the results of an
earlier calculation by Raes, Janssens and Van Dingenen [10], which indicates negligible
new particle formation (i.e. below the so-called critical nucleation rate of 1 cm−3s−1) until
the H2SO4 concentration reaches about 4·108 molecules cm−3s−1. Raes et al. estimate the
threshold for ion-induced nucleation occurs at an H2SO4 concentration about one order of
magnitude lower. (Yu and Turco estimate the ion-mediated threshold to be still lower by
about a factor of four, i.e. near 107 molecules cm−3s−1. This is mainly due to the higher
RH and lower background aerosol concentration in Yu and Turco’s simulation.) Note also
from Fig. 5 that the maximum production rate of new aerosols by ion-induced nucleation
is predicted to be limited by the GCR intensity (2 cm−3s−1 at ground level).

4.2 Experimental goals

The purpose of this experiment is to measure the effect of ionising particle radiation
on the rate of formation of ultrafine condensation nuclei in the few-nm size range, in
the presence of sulphuric acid and water vapours. Sulphuric acid is chosen because field
measurements indicate it is an important precursor vapour for gas-to-particle conversion
in the atmosphere.

The basic parameter to be measured is the nucleation rate, J [cm−3s−1], of UCN as
a function of the primary experimental variables, namely, sulphuric acid vapour concen-
tration, relative humidity, temperature, background aerosol concentration and ion-pair
production rate. A representative expectation of the variation of J with sulphuric acid
vapour concentration and ion-pair production rate is shown in Fig. 5. This figure indi-
cates that a large measurement range is required for the nucleation rate since it is a steep
function of parameters such as vapour concentration (and also temperature).

The nucleation rate is determined by a measurement of the UCN number concentration
[cm−3] after a time t [s]. In the case of the cloud chamber, the minimum detectable particle
number (after activation to visible droplets) is about 1 particle per 10 cm3. Assuming
an exposure time of an hour (3600 s), this indicates the minimum measurable nucleation
rate is J ∼ 3 · 10−5 cm−3s−1. The maximum nucleation rate that can be measured is
about 12 orders of magnitude higher. The maximum measurable droplet density in the
cloud chamber is about 107 cm−3. Depending on the variable under study, if the effective
exposure time is adjusted to about 1 s duration then a maximum J of 107 cm−3s−1 can
be measured. If the variable under study is ion pair concentration then this is achieved
by initiating a cloud chamber expansion cycle 1 s after the arrival of the beam pulse.
If the variable is sulphuric acid saturation ratio, then a short, precise saturation pulse
can be generated by a piston expansion during the nucleation phase, followed by a small
re-compression which arrests nucleation but allows droplet growth and observation. We
have used the latter technique extensively for nucleation studies with the Vienna cloud
chambers (see, for example, ref. [20]).
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4.3 Experimental measurements

The experimental conditions for the first run are as follows:

H2SO4 molecular concentration 5 · 107 cm−3

Relative humidity 100 %
Temperature 298 K
Background aerosol concentration 0 cm−3

Pressure 101 kPa
Beam intensity 103 π/p pulse−1

The carrier gas is pure artificial air (80:20 N2:O2). The procedure is first to adjust the
cloud chamber and reactor chamber to the desired temperature and then to fill both of
them with the specified gas mixture at the desired pressure.

Before starting the run, thermodynamic equilibrium is established. During this period
the clearing field is used to clear ions produced by GCRs from the chambers. The clearing
time for small ions is about 2 s in the cloud chamber and 8 s in the reactor chamber.
This should be compared with the typical ion lifetime of ∼ 1000 s under atmospheric
conditions and with the time needed for an ion to attract an H2SO4 molecule of ∼ 50 s at
these concentrations. Therefore when the clearing field is present it reduces the ambient
ion pair concentration from GCRs by about a factor 100 below the natural level, and also
essentially excludes ion-mediated nucleation processes. The clearing field is therefore a
very effective tool for measurements at “zero GCR” ionisation.

Figure 6: Evolution of the CN size spectra from ion-mediated nucleation and growth under
conditions typical of the marine boundary layer [5]. The expected measurement precisions
for CLOUD are indicated by the points with error bars. The solid curve indicates the
initial assumed background aerosol concentration of 100 cm−3. When sulphuric acid-water
CN reach diameters of about 100 nm they become efficient CCN for seeding clouds.
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Figure 7: Ion-mediated nucleation and growth of CN under conditions typical of the
marine boundary layer [5]. Each curve shows the evolution of the number of CN above
an indicated minimum diameter, d. The expected measurement precisions for CLOUD
are indicated by points with error bars.

After thermodynamic equilibrium is established, the chambers are exposed to the beam
for the required period. In the case of UCN nucleation and growth to ∼ 10 nm diameter,
the characteristic times at atmospheric vapour concentrations are up to about one hour
(Figs. 6 and 7), with the first UCN appearing after about 10 minutes. During the beam
exposure small quantities of gas are continually drawn off from the reactor chamber via the
sampling probes for analysis in the external mass spectrometers, mobility spectrometers,
and particle sizers and counters. In this way the evolution of the UCN nucleation and
growth can be analysed and recorded continuously during the 1-hour beam exposure.

In order to detect and measure UCN concentrations in the cloud chamber, a large
volume expansion ratio of about 35% is required to create a water vapour supersaturation
of about 600%. Under these conditions, the cloud chamber is sensitive to all particles
above 1.2 nm diameter and and to all charged particles down to molecular sizes of 0.2
nm (see Fig. 49 in the proposal). In the case of commercial particle sizers the lowest
detection limit is about 3 nm diameter. Therefore, when studying UCN nucleation, the
cloud chamber will provide information complementary to the external particle sizers. The
latter will be used to measure the UCN size spectra versus time (i.e. the distributions
shown in Fig. 6). The cloud chamber, in contrast, integrates the particle count above a
certain minimum size which is set by the expansion ratio. Once an expansion and droplet
activation cycle has taken place, the cloud chamber must be refilled with a fresh mixture
since the residual aerosols after droplet evaporation may have been altered during the
activated phase.
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During each run the following quantities will be measured with the detectors2 indi-
cated:

Quantity Detector

UCN nucleation rate, J [cm−3s−1] Cloud chamber, CPC
UCN size spectrum SMPS
UCN mass spectrum (< 104 amu) ToFMS, IOMAS
UCN chemical composition PITMAS
Charged UCN mobility spectrum PIMS
Trace gas concentrations CIMS
Small ion concentration PIMS
Ion pair production rate BCS

The expected experimental precisions for the first two quantities are indicated by the
error bars in Figs. 5–7. In addition the various thermodynamic conditions—such as tem-
perature, pressure and relative humidity—will be recorded.

After completing a run with a fixed set of conditions, the ‘primary’ variable under study
is changed and the next run is started. The primary variables are those for which the
nucleation rate may be most sensitive, and which will therefore be studied in detail. They
include the H2SO4 concentration, relative humidity, temperature, background aerosol
concentration, and ionisation rate. Pressure is a secondary variable. The approximate
ranges of study for the primary variables are as follows:

H2SO4 concentration 3 · 106 − 1010 cm−3

Relative humidity 40 − 100 %
Temperature 268 − 298 K
Background aerosol concentration 0 − 1000 cm−3

Beam intensity 0 − 103 π/p pulse−1

This series of measurements should allow CLOUD to determine the effect of GCR ioni-
sation on the nucleation of sulphuric acid-water UCN under conditions corresponding to
the marine boundary layer. This experiment is estimated to require 4 weeks beamtime
(§7.2).

5 Exp.2: Growth of CN into CCN

5.1 Model predictions

Yu and Turco have extended their ion-mediated simulation in time to follow the growth
of freshly formed UCN into CCN over a period of several days [21]. The initial conditions
are the same as described in §4.1 except that organic vapours are now included in the
simulation, and an initial background aerosol distribution of 10 cm−3 is assumed, which
corresponds to clean air, freshly scavenged by precipitation. Although H2SO4 vapour is

2The acronyms are as follows: BCS (beam counter system), CIMS (chemical ionisation mass spec-
trometer), CPC (condensation particle counter), IOMAS (ion mass spectrometer), PIMS (programmable
ion mobility spectrometer), PITMAS (quadrupole ion trap mass spectrometer), SMPS (scanning mobility
particle sizer) and ToFMS (time-of-flight mass spectrometer).
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Figure 8: Ion-mediated model predictions of the nucleation of UCN and growth into CCN
in the presence of trace H2SO4 and organic vapours, under conditions typical of the marine
boundary layer [21]. When these aerosols reach diameters of about 100 nm they become
efficient CCN. The expected measurement precisions for CLOUD are indicated by the
points with error bars. An initial background CN number concentration of 10 cm−3 is
assumed. Note that dilution (mixing) has not been considered in these simulations, so
the final aerosol concentrations are much higher than are typically found in the marine
boundary layer (∼100 cm−3).

important for the nucleation of new aerosols, the atmospheric concentrations are generally
too small to account for all of the subsequent rate of growth of CN into CCN, and so
additional vapours are implicated. The model assumes constant production rates for non-
volatile organic compounds of 0.5µgm−3 day−1 and for low volatile organic compounds
of 5µgm−3 day−1, as suggested by field observations.

The results are shown in Fig. 8. The simulations indicate a significant production
of CCN (diameters above ∼100 nm) by ion-mediated processes after about 24 h. These
characteristic times for the in situ growth of new CN and CCN are consistent with our
field measurements [15, 22]. Note in Fig. 8 that, although the H2SO4 vapour production
rate peaks each day at 12:00 (Eq. 4), it does not lead to the formation of new UCN after
the first day because of scavenging by the existing aerosols.

5.2 Experimental goals

The purpose of this experiment is to measure the effect of ionising particle radiation on the
rate of growth of CN into CCN (i.e. from ∼5 nm diameter to ∼100 nm) in the presence of
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Figure 9: Measurements of CCN concentrations at several sites: marine (solid curves)
and continental (dashed curves) as a function of the water vapour supersaturation [24].
The CCN concentrations are equal to the cloud droplet concentrations at a given super-
saturation. The expected measurement precisions for CLOUD are indicated by the points
with error bars.

condensable vapours that are known to be important in the atmosphere: sulphuric acid,
water, ammonia and organic compounds.

The basic parameter to be measured is the CCN concentration, CCN(s). The CCN
are the subset of the CN population that activate into droplets at a specified water vapour
supersaturation, s. The fraction of the CN that constitute CCN depends not only on their
size but also on their chemical composition and other properties. Field measurements
show that CCN(s) [cm−3] can often be parametrised as [23]

CCN(s) = c sk

where s [%] is the water vapour supersaturation, and c [cm−3] and k are empirical param-
eters that embed the information about the size and chemical composition of the aerosol
population. Measurements of CCN(s) versus s at several sites are shown in Fig. 9 [24].
This figure illustrates the low CCN population (10–100 cm−3) that characterises clean
marine regions. The peak values of s reached in the atmosphere depend on the spectrum
of CCN and on other conditions such as the updraft velocity of the air parcel. For marine
stratiform clouds, the typical values of s are in the range 0.1 to 0.5%. Even for strongly
convective clouds the peak values of s are rarely above 1% since droplet activation arrests
further increase. In the CLOUD experiment the CCN concentration is measured with the
cloud chamber operated with a small volume expansion ratio of ∼ 10−3, corresponding
to a piston movement of ∼500µm (see Table 5 on p.65 of the proposal). The expected
measurement precision of CCN(s) is indicated in Fig. 9.
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Other important parameters to measure in this experiment are the size-discriminated
aerosol number concentrations (Fig. 8) and the aerosol size spectra (Fig. 6). Both will be
measured versus time over the duration of each run, which lasts about 2 days.

5.3 Experimental measurements

The experimental conditions for the first run are the same as for the previous experiment
(§4.3), with the addition of ammonia and low volatility organic compounds (LVOCs)3 in
trace amounts:

NH3 concentration 1 ppbv
LVOC concentration 5 µgm−3 day−1

The procedure is similar to the previous experiment, except in the following respects.
The beam exposure time for a single run is now 2 days. During this time small quantities
of the trace vapours are introduced into the cloud chamber and the reactor chamber to
compensate for wall losses and for aerosol growth. As before, during the beam exposure
small samples of gas are continually drawn off from the reactor chamber via the sampling
probes for analysis in the external detectors. In this way the evolution of the CN into
CCN can be measured over the course of the beam exposure.

After the first expansion of the cloud chamber to measure CCN(s) at, say, s = 0.3%,
the cloud chamber is cleared and re-filled from the reactor chamber. The volume of the
cloud chamber is less than 2% of that of the reactor chamber. Therefore a total of about
5 samples for CCN(0.3%) measurements can be made this way over the course of the 2
day exposure period without serious impact on the contents of the reactor chamber. At
the end of the 2-day run, several samples will be drawn off sequentially from the reactor
chamber into the cloud chamber in order to measure the final CCN(s) distribution over
the range 0.1 < s < 1.0%4 (Fig. 9).

During each run the following quantities will be measured:

Quantity Detector

CCN concentration, CCN(s) [cm−3] Cloud chamber
CN concentration CPC
CN size spectrum SMPS
UCN mass spectrum (< 104 amu) ToFMS, IOMAS
CN chemical composition PITMAS
Charged CN mobility spectrum PIMS
Trace gas concentrations CIMS
Small ion concentration PIMS
Ion pair production rate BCS

As for the previous experiment, after completing a run with a fixed set of conditions,
the primary variable under study is changed and the next run is started. In view of

3LVOCs that may be important for aerosol growth in the atmosphere include terpenes, acetone,
isoprene and the higher n-alkanes.

4The cloud chamber hydraulic system can be programmed to provide a continuous, precise slow piston
expansion if required. This may allow a continuous scan measurement of CCN(s) to be made over the
range 0.1 < s < 1.0% with a single chamber filling.
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the long duration of these runs, the primary variables in the first round experiment will
be limited to trace gas concentrations, background aerosol concentrations, and beam
intensity. Their approximate ranges of study are as follows:

LVOC concentration 0.5 - 50 µgm−3 day−1

Background aerosol concentration 0 - 1000 cm−3

Beam intensity 0 − 103 π/p pulse−1

For the run at zero beam intensity, it may be necessary to start the experiment with a
beam exposure of about 1 hour in order to generate the initial CN population. For the
remainder of this run, the beam would be turned off so the growth of the CN into CCN
could be measured under zero-beam conditions.

This series of measurements should allow CLOUD to determine the effect of GCR
ionisation on the growth of CN into CCN under conditions characteristic of the marine
boundary layer. The CCN concentrations will be parametrised as a function of water
vapour supersaturation and other variables so the results can be readily incorporated into
cloud models. This experiment is estimated to require 8 weeks beamtime (§7.2).

6 Goals of the aerosol and cloud simulations

The experimental results obtained with CLOUD will be evaluated with aerosol and cloud
simulations. The basic physics aims of these simulations are as follows:

1. To incorporate the microphysics of ion-mediated processes into the aerosol and cloud
models.

2. To examine the sensitivity of clouds under atmospheric conditions to variations in
the GCR intensity, in the presence of other sources of natural variability.

As is familiar with Monte Carlo simulations in particle physics experiments, there
will be a close feedback between the simulations and the experimental observations to
confirm a) that the simulations closely reproduce the experimental data and b) that the
underlying microphysics is understood. We expect the simulations will also eventually
become important in guiding the direction of the experimental programme.

As well as a detector simulation, this work will require a complete simulation of the mi-
crophysical processes under study. Already existing within our collaboration are detailed
models of aerosol nucleation, growth and activation, and also two sophisticated cloud
models—for cumulus and marine stratus clouds, respectively. Ion-mediated microphysics
will be incorporated into these models based on the experimental data from CLOUD.

It is important to make clear that the present modelling expertise of our collaboration
extends as far as single clouds. If item 2 above reveals discernible GCR effects on single
clouds, we would seek to provide suitable parametrisations for the climate modelling
community to explore the influence of GCR effects on the global climate.

7 Accelerator requirements
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7.1 Beam requirements

As described in the proposal (§7), we request to install CLOUD at the CERN PS in the
T11 beamline of the East Hall. The experimental area layout including the new reactor
chamber is shown in Fig. 10. A dedicated counting room for CLOUD will be installed
above the current T11 counting room. The cloud chamber and reactor chamber will
be permanently located at the downstream end of the T11 beamline, with the external
detectors installed nearby. The upstream half of the present free space along the T11
beamline will be left open for installing small test experiments during the beam periods
that CLOUD is not operating. However, during its operation periods, CLOUD would be
the sole user of T11.

The present energy, maximum intensity and particle composition of the T11 beam is
suitable for CLOUD. However, we have a special requirement that the minimum beam
intensity can be adjusted to about 100 particles per pulse spread over an area of about
30 × 30 cm2 (i.e. near to the natural GCR ionisation rate). The low intensity may be
reached by closing beam collimators and perhaps adding a beam absorber. By suitable de-
focusing of the quadrupole magnets in the T11 beamline, a transverse size at the detector
of 30×30 cm2 seems feasible. The transverse dimensions of the beam scintillation counters
have been increased to 40× 40 cm2 to accommodate the larger beam size (Figs. 1 and 2).

Table 1: Estimated beam requirements and schedule during the first year of CLOUD
operation.

Date No. weeks Activity or Experiment

Mar - Apr 2002 8 Checkout

May 2002 4 Exp.1: UCN nucleation

Jun 2002 4 Exp.2: CN→CCN growth

Oct 2002 4 Exp.2: CN→CCN growth

Nov 2002 4 Exp.3: Creation of ice nuclei

Totals: 8 weeks Checkout

16 weeks Data taking

7.2 Beam schedule

The estimated beamtime required during the first year of CLOUD operation is 24 weeks,
as summarised in Table 1. The checkout period includes setting up the correct operation
of the hardware and data acquisition, and carrying out technical performance tests.

The estimated beamtime required for each of the two experiments described in this
document is 4 weeks and 8 weeks, respectively, as follows:
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Figure 10: Experimental area layout of the CLOUD experiment at the CERN PS in the T11 beamline of the East Hall.
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Exp.1. Nucleation of UCN: Each run is estimated to require 1 shift (8 h) for setup
and beam exposure. The experimental variables and the approximate number of
different values that will be measured are as follows:

H2SO4 concentration 6 measurements
Relative humidity 3 ”
Temperature 4 ”
Background aerosol concentration 3 ”

This totals 16 runs, assuming only the variable under study is changed in a given
family of measurements. Each of these 16 different sets of operating conditions will
be measured at 4 beam intensities: 0, 1, 3 and 10 × the natural GCR ionisation rate
in the boundary layer. (A value of ‘0’ corresponds to the beam-off measurement.)
The total beam time is therefore 64 shifts (3 weeks); or a calendar time of 4 weeks
after allowing for downtime, chamber cleaning, etc.

Exp.2. Growth of CN into CCN: Each run is estimated to require 6 shifts (48 h) for
setup and beam exposure. The experimental variables and the approximate number
of different values that will be measured are as follows:

Trace gas concentrations 4 measurements
Background aerosol concentration 3 ”

This totals 7 runs, each requiring 6 shifts, to total 42 shifts. Each of these 7 different
sets of operating conditions will be measured at 3 beam intensities: 0, 1 and 10 × the
natural GCR ionisation rate. The total beam time is therefore 126 shifts (6 weeks);
or a calendar time of 8 weeks.

As regards the experimental programme for the subsequent years, 2003 and 2004, at
this stage it is not possible to define the schedule precisely since it will depend on the
outcome of the initial studies as well as developments elsewhere in the field. However we
can estimate the beamtime required for the various experiments summarised in Table 3
(p.29) of the proposal as follows:

Experiment Beamtime [weeks]

NOx formation 2
Polar stratospheric aerosols 6
Droplet activation 4
UCN nucleation II (ternary vapours) 8
CN → CCN growth II 8
Creation of ice nuclei II 4

Total: 32 weeks

Therefore during 2003 and 2004 we estimate at least 16 weeks of beamtime will be required
for CLOUD each year, which represents just over one half of the normal yearly operation
of the East Hall beamlines.

21



Acknowledgements

We would like to thank Richard Turco, Fangqun Yu and Peter Zink for stimulating and
informative discussions.

References

[1] CLOUD collaboration (B. Fastrup et al.), CERN proposal SPSC/P317, SPSC 2000-
021 (2000).

[2] H. Bunz et al., The novel aerosol chamber facility AIDA: status and first results,
Proc. 7th European Symposium on the Physico-Chemical Behaviour of Atmospheric

Pollutants, eds. B. Larson, B. Versino and G. Angeletti, Venice (1996) 673.
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