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abstract

Measurements of the trilinear gauge boson vertex coupling parameters

based on data collected in 1997 and 1998 by the OPAL detector at LEP are

presented in this thesis. Integrated luminosities of 57fb�1 at
p
s = 183GeV

and 183fb�1 at
p
s = 189GeV were collected in 1997 and 1998 respectively.

The selected data samples comprise 247 events at
p
s = 183GeV and 747 atp

s = 189GeV. The parameters were measured using a Near Neighbour Maxi-

mum Likelihood analysis; the Near Neighbour technique is a method by which

a di�erential cross-section or probability density at a single position in phase-

space may be obtained from a large reference sample of simulated events. The

main parameters measured are the �W-�W�-�B� set (for the 1997 data) and

�-�g1Z-��
 set (for the 1998 data); these two sets of parameters were cho-

sen as they may have anomalous values without violating the SU(2)L�U(1)Y
symmetry of the Electroweak Lagrangian. The measured parameter values are

�W = 0:012+0:343�0:240 � 0:056

�W� = 0:039+0:144�0:128 � 0:022

�B� = �0:423+0:493�0:345 � 0:470

from the 1997 data and

� = �0:059+0:086�0:081 � 0:061

�g1Z = �0:010+0:076�0:073 � 0:054

��
 = 0:211+0:314�0:251 � 0:210;

from the 1998 data. The �rst quoted error is statistical and the second is the

systematic uncertainty. All of these values are consistent with zero, which is

the value for each of the parameters predicted by the Standard Model.
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chapter 1

An Introduction To The

Standard Model

The goal of physics has always been to comprehend the fundamental inter-

actions between the most elementary constituents of matter. The most widely

accepted theory which does this at present is the Standard Model. However,

it is known to be incomplete, a low-energy approximation which, nevertheless,

has been exceedingly well veri�ed at the energies scales reached to date. One

of the major goals of Particle Physics is to determine where the approxima-

tion becomes invalid. In this thesis, one facet of the electroweak force which

is relatively unconstrained experimentally|the interactions between its force

quanta|is studied in order to measure the values of fundamental parameters

for comparison with those values predicted by the Standard Model.

1.1 The Fundamental Particles

In this section, the Standard Model is described in terms of the properties

and interactions of the fundamental particles[1, 2]; expressed in this way, the

Standard Model seems relatively simple but diverse, with little unity. In the

subsequent section (x1.2) the mathematics underpinning the theory, which

elegantly expresses its unifying principles, is described.

The fundamental physical interactions occur between fermions (commonly

thought of as the \matter" particles), and are mediated by bosons (thought

1



chapter1 An Introduction To The Standard Model

of as the \force-carrying" particles). The di�erence between these two types

of particles is their intrinsic angular momentum (their \spin"); in units of ~,

fermions have half-integral spin and bosons have integral spin.

1.1.1 The Fermions

There are two types of fermionic particles: quarks, those fermions which

can interact via the strong force, and the leptons, which cannot. There are six


avours of quarks|up, down, charm, strange, top and bottom|and there are

six 
avours of lepton|electron, muon, tau and their neutrinos. Each of the

fermions has a corresponding antiparticle, which has the same mass but oppo-

site quantum numbers, making twenty-four fundamental fermions in total. The

fermions are commonly grouped in generations, as in table 1.1; corresponding

fermions in di�erent generations have identical quantum numbers, apart from

that which speci�es the 
avour of the fermion; it should also be noted that,

with the possible exception of the neutrinos which shall be discussed shortly,

the mass of corresponding fermions increases through the generations.

Generation: I II III

Leptons:

 
�e

e�

!  
��

��

!  
��

��

!

Quarks:

 
u

d

!  
c

s

!  
t

b

!

table 1.1: The fundamental fermions, arranged in generations.

Quarks are never observed in isolation, only as composite particles, col-

lectively known as hadrons. Hadrons themselves come in two types: bosonic

mesons which are comprised of a quark-antiquark pair; and fermionic baryons

2



1.1 The Fundamental Particles

comprised of three quarks or three antiquarks. This property of quarks is

somewhat explained by the nature of the colour force, which is outlined later

in this chapter.

As the fermions have half-integral spin, they may, a priori, exist in two

helicity states; however, the situation for neutrinos is not clear at present.

Until very recently neutrinos were thought only to exist in left-handed states

(negative helicity), and, conversely, anti-neutrinos in right-handed (positive

helicity); this would imply that the neutrinos would have to be massless (oth-

erwise there would always be another frame of reference from which the neu-

trino would be observed in the opposite helicity state). But recent results from

Super-Kamiokande[3] have detected evidence of mixing between the di�erent

neutrino 
avours, which implies that they must have a mass, and, therefore,

that both helicity states must exist. As shall be seen, the helicities of the

fermions are important in weak interactions.

The basic quantum numbers for the �rst generation of fermions are given

in table 1.2, where C, Q and t3 are the quantities to which the force quanta

couple, as explained in the next section.

Fermion

Type
Flavour

Colour

Charge
Q (t3)L

Quarks
u R;G or B +2

3
+1

2

d R;G or B �1
3

�1
2

Leptons
e� 0 �1 �1

2

�e 0 0 +1
2

table 1.2: Some quantum numbers of the �rst generation of fundamental fermions;

these are the same for the two successive generations. The quantum numbers for

the corresponding antiparticles are obtained by taking the negative of those given

in the table.

3



chapter1 An Introduction To The Standard Model

1.1.2 The Bosons

Bosons are particles with integral spin and all of the force quanta in the

Standard Model have spin of 1. There are three forces contained within the

Standard Model: the strong force, for which there are eight bosons, called

the \gluons"; the electromagnetic force, for which there is a single boson, the

\photon"; and the weak force, for which there are three, the \W+", \W�" and

the \Z0" bosons. The very di�erent natures of these forces may be explained

by the di�erences in the bosons and their coupling stregths.

Gluons|The Strong Force Quanta

The strong force is mediated by massless particles, called \gluons". The

gluons couple to the colour charge, which has six di�erent types, denoted by

R, G, and B (for red, green and blue) and their antiparticle opposites, R,

G, and B. Each indiviual quark is in one of these colour states. The gluons

themselves have colour, so that interactions between the gluons themselves will

occur. There are eight types of gluons, di�erentiated by their colour state.

One striking feature of the strong force is that the potential energy of

two colour charges increases with their separation (or, more precisely, as the

invariant mass of the intermediary gluon decreases). This implies that coloured

objects|just the quarks and gluons, of the fundamental particles|never exist

as free particles. Because of this, the strong force is never observed as a long

range interaction; it has an e�ective range.

Unlike leptons, when quarks are produced they are observed as showers of

particles. The simplest way to picture this is to think of two quarks being

produced as a colour singlet state, but moving in opposite directions. As they

separate, the potential energy between them increases until two new quarks

are produced; now there are two colour singlet states, which no longer strongly

interact with each other (and so are e�ectively free), but may individually

continue to split into more colour singlet states. When the initial quark-
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1.1 The Fundamental Particles

pairs are produced at high enough energy, showers (or \jets") of particles are

produced, which is how hadrons are observed in High Energy Physics detectors

such as OPAL.

The Photon|The Electromagnetic Force Quantum

The force quantum of electromagnetism is the photon, which couples to

the conventional charge of particles, Q. The photon is massless|implying

that it has an in�nite lifetime|and uncharged|so it cannot interact with

other photons; because of these two properties there is no limit on the range

of the electromagnetic force.

Unlike the strong interaction, the electromagnetic coupling strength de-

creases asymptotically to a �nite value as the invariant mass of the interme-

diary photon decreases; roughly, this implies that the potential energy of two

charges decreases with their separation, so electromagnetically charged parti-

cles may exist as unbound states.

The W� & Z0 Bosons|The Weak Force Quanta

There are three bosons associated with the weak force, two of which|

the W� bosons|have an electric charge, whilst the other|the Z0 boson|is

neutral. These particles are massive particles, with a Breitt-Wigner mass

spectrum; this implies that the weak force bosons have a �nite lifetime, and,

therefore, a limited range. In fact, the range of the electroweak force is of the

order of 10�18m, which is partly why the force appears to be so feeble (it will

be seen in the next section that the true weak coupling strength is the same

as that of electromagnetism).

The W� bosons couple to the weak isospin of a particle, denoted by \t3".

Only the negative helicity fermions and positive helicity antifermions have

non-zero weak isospin, and so the opposite helicity states do not interact with

5



chapter1 An Introduction To The Standard Model

the charged weak force bosons. The Z0 boson couples to a combination of the

weak isospin and electromagnetic charge (as in table 1.3), so that it couples

to fermions and antifermions in both helicity states (although with di�erent

strengths). Only the weak force couples to all the leptons and quarks. In-

teractions with the Z0 bosons do not change the 
avour of the fermions, but

interactions with the W� bosons must.

As the W� bosons are electromagnetically charged and have non-zero weak

isospin, they also couple to the Z0 boson and to the photon. It is the form of

these interactions which is the topic of study of this thesis.

The properties of the force quanta are detailed in table 1.3.

The Higgs Boson

It should be stated that the electromagnetic force and the weak force are

both facets of a single force, called the \electroweak" force. The uni�cation

between these forces cannot easily be expressed in the context of a simple

discussion of their force quanta, and is left until the next section. Su�ce to say

at present that this uni�cation requires an additional boson called the \Higgs

boson", which is yet to be discovered. The Higgs boson is vitally important

to the Standard Model, as all of the particles which have mass do so through

interactions with its associated �eld.

This boson has zero intrinsic spin, and is, therefore, a scalar particle, unlike

the vector force quanta. It has no colour or electromagnetic charge, but it

does have weak isospin of �1
2 . The Higgs boson has a mass, although its value

is not predicted by theory, and, obviously, has not been directly measured;

conspicuous by its absence, the 95% con�dence level lower limit for the Higgs

boson mass is currently 89.7GeV[5].

6



1.1 The Fundamental Particles

F
or
ce

B
os
on

C
ou
p
li
n
g

S
tr
en
gt
h

M
as
s

C
ol
ou
r

Q

t 3

S
tr
on
g

G
lu
on
s

C
a

(c
ol
ou
r
ch
ar
ge
)

0

C
C

0
an
d

su
p
er
p
os
it
io
n
s

of
C
C
st
at
es

0

0

E
le
ct
ro
m
ag
n
et
ic

T
h
e
P
h
ot
on

Q

0

0

0

0

W
ea
k

W
�

t 3

80
:4
1
�
0:
10
G
eV

0

�1
�
1 2

Z
0

(t
3
�
si
n
� W
k
Q
)

si
n
� W
k

co
s
� W
k

91
:1
87
�
0:
00
7G
eV

0

0

0

a
w
h
er
e
C
ca
n
b
e
R
,G
o
r
B

t
a
b
l
e

1
.3
:
P
ro
p
er
ti
es
of
th
e
fo
rc
e-
ca
rr
y
in
g
b
os
on
s[
4]
.

7



chapter1 An Introduction To The Standard Model

1.2 Gauge Theories of Elementary

Particle Physics

Each of the forces described in the previous section are formulated in the

Standard Model as gauge symmetric quantum �eld theories[6, 7]. Two disjunct

theories are required to describe the three forces: quantum chromodynamics

(Q.C.D.) and the electroweak theory, which also contains quantum electrody-

namics (Q.E.D.).

The transition amplitude for a system to change states may be expressed as

an integral equation of the Hamiltonian of the system, which itself is obtained

from the Lagrangian. Hence, the system is fully described by its Lagrangian.

Feynman derived a method whereby the transition amplitude is given by a sum

of representational diagrams; each element of the diagrams has a corresponding

\Feynman Rule", a mathematical expression obtained from the Lagrangian.

Knowing the \Feynman Rules" describing an interaction is equivalent to know-

ing the interaction Lagrangian[8].

As the systems contain particles which may be created or destroyed, their

Lagrangians are constructed from creation and annihilation operators which

act on the vacuum state. These operators obey canonical commutation or

anti-commutation relations and, as they act at a particular position in space,

they are �eld operators. Hence theories based on such Lagrangians are called

\Quantum Field Theories".

To say that these theories are gauge symmetric is to say that the La-

grangians are invariant under local transformations of a characteristic sym-

metry group; Q.C.D. and the electroweak theories are invariant under local

transformations of the SU(3)C and the SU(2)L�U(1)Y groups, respectively.

For the Lagrangian to be invariant under a certain transformation, its con-

stituents must be covariant with respect to the same transformation. However,

Lagrangians typically contain not only the quantized �elds themselves, but also

derivatives of the �elds. Ordinary derivatives cannot be covariant with respect

8



1.2 Gauge Theories of Elementary Particle Physics

to a local transformation, and so must be replaced with a covariant form.

This \covariant derivative" requires the addition of one or more gauge �elds

to ensure covariance.

When the symmetries imposed on the Lagrangian belong to Lie groups (as

is the case in Q.C.D. and the electroweak force) an arbitrary local transforma-

tion, U(�(x�)), may be expressed in terms of the generators of the group[9]:

U(�(x�)) = eic�:�(x�): (1.1)

In this equation c is an overall scale term, �(x�) gives the extent of the trans-
formation at a position x�, and � are the generators of the group which obey

the group algebra de�ned by the structure constants, gijk:

[�i;�j] = gijk�k: (1.2)

Under such a transformation, the covariant derivative is given by

@� ! D� = @� + ic�:F�; (1.3)

where the F� are the gauge �elds necessary to restore covariance. These gauge

�elds form interaction terms with the fermionic �elds and are identi�ed as

the �elds of the force quanta (the gauge bosons) described in the previous

section. It can easily be seen from equation 1.3 that there must be one �eld

in the covariant derivative for each of the generators of the group; i.e., there

must be one gauge boson for each generator. Hence, there are eight gluons

as the SU(3)C symmetry of Q.C.D. has eight generators, and there are four

electroweak gauge bosons as the SU(2) group has three generators and the

U(1) group has one.

As the gauge �elds represent particles, just as the fermionic �elds do, there

must be terms in the Lagrangian corresponding to their free �elds. Covariant

derivatives must also be used for these terms, and as the gauge groups are

non-Abelian there will be terms in the Lagrangian which correspond to self-

interactions between the gauge bosons.

So, simply imposing a local symmetry upon the fermionic particles' �eld op-

erators leads elegantly to the emergence of gauge �eld operators corresponding

to the force quanta, which were introduced empirically in the previous section.

9
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1.3 The Electroweak Theory

The analysis described in this thesis investigates the interactions between

the electroweak gauge bosons. It is therefore necessary to describe the elec-

troweak theory in some more detail.

The Electroweak Theory is an SU(2)L�U(1)Y gauge symmetric �eld theory,

where the subscripts indicate that the SU(2)L �elds only couple to left-handed

fermions (and right-handed anti-fermions) and that the U(1)Y �eld couples to

the weak hypercharge (which is non-zero for all fermions and anti-fermions).

The four gauge �elds are the threeW� �elds of weak isospin, and the B� �eld

of the weak hypercharge, but these �elds cannot be simply identi�ed with the

W� and Z0 bosons and the photon; gauge symmetry requires that the particles

represented by such �elds must be massless, which is incompatible with the

limited range of the weak bosons. However, the �elds and physical, massive

gauge bosons may be connected via the Higgs Mechanism.

1.3.1 The Higgs Mechanism

The Higgs mechanism allows gauge symmetric �elds to acquire mass, and,

as such, is a vitally important part of the Standard Model. Its principal feature

is the existence of a scalar �eld which has a degenerate, non-zero vacuum

expectation value. This is normally illustrated with a \wine-bottle" potential,

as in �gure 1.1; the ground-state of such a potential is not at the origin of

the �1-�2 space, but lies in the minimum of the potential. From �gure 1.1

it may be seen that this ground-state is in�nitely degenerate|as a rotation

of the ground state in the complex �1-�2 space yields an equivalent ground-

state|and, crucially, it does not display the same symmetry properties as the

Lagrangian; hence, the symmetry is referred to as \hidden" or \spontaneously

broken".

The Higgs �eld of �gure 1.1 is a simple U(1) example; the Standard Model

10
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2

1

φ

φ

V

figure 1.1: A wine-bottle potential, cutaway to show its unstable minimum.

Higgs Field is an SU(2) doublet �eld:

� =
1p
2

 
�1 + i�2

�3 + i�4

!
: (1.4)

It is most convenient to impose a choice of gauge (called the \Unitarity Gauge")

on this �eld, such that

�U =
1p
2

 
0

f + �(x�)

!
: (1.5)

This confers the advantage that f may be interpreted as the constant vacuum

expectation value of the Higgs �eld and deviations from this vacuum state are

given by �(x�), which is interpreted as the �eld of the Higgs boson. It should be

11



chapter1 An Introduction To The Standard Model

noted that the physical content is unchanged by the choice of a speci�c gauge|

equation 1.5|over the general case|equation 1.4|but the interpretation is

much simpler.

With such a non-zero valued �eld permeating the vacuum, all particles

which interact with the Higgs �eld may e�ectively acquire a mass. In actuality,

the form of the Higgs �eld is such that the charged SU(2)L �elds, given by

W�� =
1p
2
(W 1� � iW 2�) (1.6)

W+� =
1p
2
(W 1� + iW 2�); (1.7)

acquire a mass, and the neutral SU(2)L and U(1)Y �elds mix to form two new

�elds,

Z� = cos �WkW
3� � sin �WkB

� (1.8)

A� = sin �WkW
3� + cos �WkB

�: (1.9)

Z� is the massive �eld of the Z0 boson and A� is the massless U(1)em �eld of

the photon. The weak mixing angle, �Wk, is de�ned by

cos �Wk =
gp

g2 + g02
(1.10)

sin �Wk =
g0p

g2 + g02
; (1.11)

where g and g0 are the coupling strengths of the SU(2)L and U(1)Y gauge �elds,

respectively.

In the Standard Model, all of the massive particles acquire their mass via

interactions with the Higgs �eld. However, it should be noted that, while

the masses of the gauge bosons are calculable from the electroweak quantum

numbers of the Higgs �eld and measured fundamental parameters, the masses

of the fundamental fermions cannot; the only way to determine the coupling

strengths of the fermions to the Higgs �eld is to measure their masses. The

fact that the masses of the fermions are entirely unconstrained theoretically is

evidence that the Standard Model must be incomplete.
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1.3 The Electroweak Theory

The SU(2)L�U(1)Y form for the gauge �elds has been dramatically veri�ed

by all experimental evidence so far and particularly by the extensive studies

of the Z0 boson at LEP.
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chapter 2

Trilinear Gauge Vertex

Interactions

The Electroweak theory is non-Abelian, implying that there must, in gen-

eral, be interactions between its gauge bosons. These self-interaction are fully

constrained in the Standard Model, but, prior to LEP-II, were relatively uncon-

strained experimentally[10, 11]. This thesis describes an attempt to measure

fundamental coupling parameters which govern a generalized Lagrangian de-

scribing three-way interactions between the gauge bosons; these parameters

are referred to as the \Triple Gauge Coupling" or T.G.C. parameters. The

measurement is performed by analysing qq0l�l �nal states (where the charged

lepton is an electron or muon), which principally arise fromW-pair production.

The �rst section of this chapter describes a generalized Electroweak Self-

Interaction Lagrangian. This most general form is exeperimentally constrained

by the data collected at LEP-I, and a parametrisation of this Lagrangian is

given which does not contradict the data gathered thus-far. Anomalous cou-

pling strengths will lead to violation of probability conservation (or \Unitar-

ity violation") at higher energies, and so the sensitivity of the Scale of New

Physics, �NP, to the measured T.G.C. parameters is discussed. The di�er-

ential cross-section derived from this parameterisation of the Lagrangian is

described in the next section (x2.2), showing how the distributions of the pro-

duction angle of the W�bosons and the decay angles of the fermions depend

on the T.G.C. parameters. With this in mind, the reasons for studying the

qq0e�e and qq0��� �nal states are discussed at the end of this section.
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2.1 The Electroweak Gauge Boson

Lagrangian

There are many possible self-interaction vertices for the electroweak gauge

bosons, but only two of these are trilinear (i.e., involving three gauge bosons),

shown in �gure 2.1.

To �rst order the trilinear gauge vertices (\T.G.V.s") are involved in two

classes of process at LEP-II: on-shell W-pair production (e+e� ! W+W� !
f 0f 00f 000f 0000) and t-channel single W production (e�e+ !We�e ! e�ef

0f 00, referred

to as the \We�e proccess"); these are shown in �gure 2.2. These two processes

have di�erent characteristics even though We�e events and W-pair events may

have the same �nal states, and the two processes are studied separately; only

W-pair production is considered as the signal process in this thesis.

The most general, lowest dimension Lorentz-invariant Lagrangian density

γ

W-

W+

Z0

W-

W+

figure 2.1: The two trilinear gauge boson vertices in the Standard Model Elec-

troweak theory.
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e-

e+

Z/γ
W-

W+

f′
f′′

f′′′
f′′′′

e-

e+

Z/γ

W+∗ W+

f′
f′′

e-

νe

figure 2.2: The processes involving the trilinear gauge boson vertices; W-pair

production and the We�e process.

describing the trilinear gauge vertices contains 14 independent parameters[12]:

LTGC =�ie[g1
A�(W
���W+

� �W+��W�
� ) + �
F��W

+�W��] (2.1)

�ie cot �Wk[g
1
ZZ�(W

���W+
� �W+��W�

� ) + �ZZ��W
+�W��]

+ie
�

M2

W

F ��W�
��W

+�
�

+ie cot �Wk

�Z
M2

W

Z��W�
��W

+�
�

+eg5Z�����((@
�W��)W+� �W��(@�W+�))A�

+e cot �Wkg
5
Z�����((@

�W��)W+� �W��(@�W+�))Z�

+ie

"
�̂
F̂��W

+�W�� +
�̂

M2

W

F̂ ��W+
��W

��
�

#

+ie cot �Wk

"
�̂ZẐ��W

+�W�� +
�̂Z
M2

W

Ẑ��W+
��W

��
�

#

+ie^̂�
(@
�A� + @�A�)W+

� W
�
�

+ie cot �Wk
^̂�Z(@

�Z� + @�Z�)W+
� W

�
� :

In this expression, the charge (C) and parity (P) conserving terms are displayed

in blue, the C and P violating, CP conserving terms are displayed in magenta

and the CP violating terms are displayed in red, and the following �eld tensors
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have been used:

W�
�� = @�W

�
� � @�W

�
� (2.2)

Z�� = @�Z� � @�Z�:

F̂�� � 1

2
�����F

�� (2.3)

Ẑ�� � 1

2
�����Z

��

The Standard Model values of these parameters are such that the La-

grangian respects the electroweak SU(2)L�U(1)Y symmetry and does not vio-

late Unitarity:

g1
 = g1Z = �
 = �Z = 1 (2.4)

�
 = �Z = g5
 = g5Z = �̂
 = �̂Z = ^̂�
 = ^̂�Z = 0: (2.5)

In fact, g1
 and g5
 are additionally constrained to these values by U(1)em

gauge invariance, a powerful enough constraint that they are often not consid-

ered as parameters in the relevant literature.

Hence, the Standard Model coupling strengths gives the following Standard

Model trilinear gauge vertex Lagrangian density:

LSM =� ie[A�(W
���W+

� �W+��W�
� ) + F��W

+�W��]

� ie cot �Wk[Z�(W
���W+

� �W+��W�
� ) + Z��W

+�W��]: (2.6)
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2.1 The Electroweak Gauge Boson Lagrangian

2.1.1 Explicit SU(2)L�U(1)Y invariance in the

General T.G.C. Lagrangian

It is not possible to measure each of the coupling parameters given in the

Lagrangian density of expression 2.1 with the limited statistics obtained at

LEP-II. However, it is not necessary as the data taken at LEP-I provides

strong constraints on the additional terms which are allowed. In particular,

the LEP-I data may be protected by embedding any anomalous terms in an

SU(2)L�U(1)Y gauge invariant structure[13].

The explicitly SU(2)L�U(1)Y gauge invariant terms may be elegantly ex-

pressed in terms of the unmixed �elds (the W 3B base):

LW =

�
1

6

�
w��:(w�� �w�

�) (2.7)

LW� = i
e

2 sin �Wk

w��(D��)
y� :(D��) (2.8)

LB� = i
e

2 cos �Wk

B��(D��)
y(D��): (2.9)

In these equations � is the scalar Higgs doublet, � represents the genera-

tors of the SU(2) group, w�� is the non-Abelian �eld tensor and D� is the

SU(2)L�U(1)Y covariant derivative, which are given by:

w�� = @�W� � @�W� � e

sin �Wk

W� �W� (2.10)

D� = @� + i
e

sin �Wk

�

2
W� + i

e

cos �Wk

B�Y: (2.11)

The SU(2)L�U(1)Y invariant T.G.C. Lagrangian density may now be writ-

ten as

LTGC = LSM + �WLW + �W�LW� + �B�LB�; (2.12)

where the � parameters|�W, �W� and �B�|are the triple gauge coupling

strengths to be measured. Upon returning to the mixed base, the � parameters

may be expressed in terms of the parameters in the more general Lagrangian
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density of equation 2.1:

�W� = �g1Z cos
2�Wk (2.13)

�B� = ��
 ��g1Z cos
2�Wk (2.14)

�W = � (2.15)

with the constraints

�
 = �Z � � (2.16)

��Z = ���
 tan 2�Wk +�g1Z; (2.17)

The \�" pre�x indicates deviations from predicted values, such that

�g1Z � (g1Z � 1) (2.18)

��
 � (�
 � 1) (2.19)

��Z � (�Z � 1): (2.20)

It can be seen by comparing these relations with the general T.G.C. Lagrangian

density that all the terms in this reduced Lagrangian density conserve both

charge and parity.

An anomalous value of any of these parameters would lead to a W-pair

cross-section which diverges with the energy scale of the interaction,
p
s;

unchecked this would lead to Unitarity Violation and so must be countered

by some hitherto unknown interaction.

It should be noted[14] that any of the terms in the general T.G.C. La-

grangian may be rendered SU(2)L�U(1)Y by the addition of higher dimension

terms, but they will be suppressed by factors of (E=�NP)
d�4, where d is the

dimension of the terms and E is the energy of the interaction[15]. The �-model

Lagrangians are all dimension 6, and the relations given in equations 2.13{2.15

are only valid in the approximation that contributions from terms of higher

dimension are neglible; but, with that caveat, the two parameter sets are equiv-

alent. These two sets of parameters represent the only SU(2)L�U(1)Y gauge

symmetric additions to the T.G.C. Lagrangian up to dimension 6[16, 17].
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These two sets of parameters are investigated in the analysis described

in this thesis. For the �rst two years of LEP-II all the LEP experiments

used the �-model parameterisation; during the third year (the 183GeV run)

a decision was taken that the �g1Z-��
-� parameter set should be used, to

facilitate comparison with the C.D.F. and D? experiments. Although the

two parameter sets are equivalent it is, in general, not possible to transform

one set of single-parameter measurements into another set which are a linear

combination of those parameters. When all three parameters in one set are

measured simultaneously it is possible to transform to the other set, but the

the values obtained from these 3-parameter �ts naturally have much larger

errors and, therefore, are not normally quoted.

Additional T.G.C. Models

Obviously, the parameter set of the general T.G.C. Lagrangian may be

reduced with other constraints. In particular, there exist fully simulated Monte

Carlo samples at a collision energy (
p
s) of 183GeV which were generated

with anomalous values of two di�erent parameters, ��HISZ
 and ��. The

��HISZ
 parameter is de�ned by[18, 19]

��HISZ
 = �g1Z 2 cos
2�Wk (2.21)

��Z = ��HISZ


(1� tan 2�Wk)

2
(2.22)

and the �� parameter by

�� = ��
 = ��Z (2.23)

�g1Z = 0: (2.24)

These parameterisations are not so interesting on the aesthetic grounds that

they introduce arbitrary constraints on the SU(2)L�U(1)Y gauge symmetry of

the T.G.C. Lagragian. For completeness, a measurement of these parameters

is presented along with the measurements of the other parameters.
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2.1.2 Limits on the Energy Scale for New

Physics

It is possible to get something of a quantitive hold on the Scale of New

Physics from a measurement of the Triple Gauge Couplings. This is because

of the previously mentioned fact that anomalous values of the couplings would

imply that there must be a new physics process, e�ective at some higher energy

such that Unitarity is not violated. The \Unitarity Limit", �U, is the maxi-

mum energy for such an interaction to become manifest, and, hence, gives an

upper limit on the Scale of New Physics, �NP[20]. The stronger the anomalous

couplings, the lower the Unitarity Limit must be; this is encapsulated in the

following expressions for the �-couplings[14]:

j�Wj ' 19

�
MW

�Lim

NP

�2

; j�W�j ' 15:5

�
MW

�Lim

NP

�2

; j�B�j ' 49

�
MW

�Lim

NP

�2

:

(2.25)

Hence, a measurement of the T.G.C. parameters is a genuine attempt to make

a quantitive evaluation of physics beyond the Standard Model.
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2.2 The T.G.C. Cross-section

2.2.1 The W-pair production Cross-section

The Lagrangian shown in equation 2.1 describes the most general W-pair

production process via an intermediate photon or Z0 boson. By incorporating

this into the Standard Model Lagrangian[13], a di�erential cross-section is ob-

tained which describes the complete W-pair production process (i.e., including

the t-channel diagram). It should be noted that this is not the complete cross-

section to produce an f 0f 00f 000f 0000 �nal state, as other diagrams also contribute

(those which do so for the signal are shown in chapter 4, x4.1.1); however, it
is the s-channel W-pair production diagrams which give most of the T.G.C.

dependence and, at this point, it is appropriate to neglect these extra diagrams.

This cross-section is a function of the angle at which the W bosons are

produced in the lab (cos �W), and of the helicities of both the initial state

electron-positron pair and the W-bosons. The helicities of the W� bosons|

denoted ��|may take values of 0;�1. If the W boson has a helicity of �1 it is
said to be transverse; if it has a helicity of 0 it is said to be longitudinal. Any

W-pair �nal state may be denoted as TT, LL or LT, in an obvious notation.

Any arbitrary electron or positron may have a helicity of �1
2
, but in the W-pair

production diagrams the incoming electron-positron pair must have opposite

helicities which means that the initial state may be speci�ed by a single index,

�.

The following expression shows the W-pair production di�erential cross-

section in terms of F
(�)
�1�2 , the amplitudes for producing a �+�� �nal helicity

state from an initial helicity state of �:

d�(e+e� !W+W�)

d cos �W
=

jp�j
16�s

p
s

X
�;�1;�2

jF (�)
�1�2

(s; cos �W)j2: (2.26)

where jp�j is the magnitude of the centre-of-mass momentum of the W+ or W�,
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given by

jp�j =
�
p
s

2
(2.27)

=

p
s� 4MW

2

2
: (2.28)

The helicity amplitudes are given explicitly by:

F (�)
�1�2

(s; cos �W) = �e
2�

2
s

�
C(�)(�; t)M (�)

��1�2
(s; cos �W)

+
7X

i=1

�
C
(
)
i (�; s) + C

(Z0)
i (�; s)

�
M

(
=Z0)
i;��1�2

(s; cos �W)

�
: (2.29)

This equation requires some explanation; the sum over i in the latter two

terms is actually over the trilinear gauge couplings in the general T.G.C. La-

grangian, equation 2.1. The terms of the form C(D)(�; s or t)M
(D)
��1�2

(s; cos �W)

arise from the Feynman diagrams for W-pair production, the superscript indi-

cating from which. The functions C(D)(�; s or t) carry the dependence on the

couplings, and hence, for the C
(
)
i (�; s) and C

(Z0)
i (�; s) terms, the dependence

on the anomalous couplings. The M
(�)
��1�2

(s; cos �W) and M
(
=Z0)
i;��1�2

(s; cos �W) give

the helicity composition and the production angle distributions of the W-

bosons for the di�erent couplings terms; the M
(D)
i;��1�2

(s; cos �W) are the same

for corresponding 
 and Z0 contributions. The values of the C(D)(�; s or t)

andM
(D)
i;��1�2

(s; cos �W) terms are well documented so that the di�erential cross-

section for any particular combination of values of the T.G.C.s may be calcu-

lated.

It is instructive to look at some of the C(D)(�; s or t) and M
(D)
��1�2

(s; cos �W)

terms; the Standard Model expressions are shown in table 2.1, and the expres-

sions with anomalous couplings allowed within a dimension-6 SU(2)L�U(1)Y
framework are shown in table 2.2.

In tables 2.1 and 2.2 the helicity state of �1 = �; �2 = 0, is given by changing

�2 for ��1 in the terms in the �nal rows. The vector and axial couplings, a
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e-

e+

γ
W-
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e-

e+

Z0

W-

W+

e-

e+

νe

W-

W+

C(D)(�; s or t) �2
s

2 cot �Wk

(s�M2
Z)
�

(a� 2b�)

2�� 1
4t sin 2�Wk

M
(D
)

�
� 1
� 2
(s
;c
os
�)

�1 = �1

�2 = �1

1
2e

2s� sin �W�

1
2e

2s� sin �W�

(� � cos �W)

�1 = �1

�2 = �1
0

1
2e

2s� sin �W�

(2�1�+ cos �W)

�1 = 0

�2 = 0

1
2e

2s� sin �W�

�
1 + s

2M2
W

� e2s2� sin �W
4M2

W

�
�
cos �W � �

�
1 +

2M2
W
s

��

�1 = 0

�2 = �1

e2
p
s3��

2
p
2MW

(�2 cos �W � 2�)

e2s�
2
p
2
(�2 cos �W � 2�)�

�
2MWp

s
�2 sin

2 �W
(�2 cos �W � 2�)

�

p
s

2MW
(cos �W(1 + �2)� 2�)

�

table 2.1: Terms carrying the couplings and angular dependence of the Standard

Model helicity amplitudes.
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C(
)(�; s)
��

s

�

s

C(Z)(�; s)
cot �Wk�g

1
Z(a� 2b�)

(s�M2
W)

(��
��g1
Z
)

tan �Wk

(a� 2b�)

(s�M2
W)

cot �Wk�Z(a� 2b�)
(s�M2

W)

M
(D
)

�
� 1
� 2
(s
;c
os
�)

�1 = �1

�2 = �1
1
2e

2s� sin �W 0
e2s2�� sin �W

2M2
W

�1 = �1

�2 = �1
0

�1 = 0

�2 = 0

1
2e

2s�� sin �W��
1 + s

2M2
W

� e2s2�� sin �W
2M2

W

0

�1 = 0

�2 = �1
e2
p
s3��

2
p
2MW

(�2 cos �W � 2�)

table 2.2: Terms carrying the couplings and angular dependence of the anomalous

coupling helicity amplitudes.
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and b, are given by

a =
4 sin 2�Wk � 1

2 sin 2�Wk

;

b =
�1

2 sin 2�Wk

;

where �Wk is the weak mixing angle.

Now, it can be seen that the cross-section is parabolic with each of the

anomalous coupling parameters: the C(D) terms depend linearly on the cou-

pling parameters (table 2.2); the helicity amplitudes, F (�)
�1�2 , in turn depend

linearly on the C(D) terms (equation 2.29); and the W-pair production cross-

section is proportional to the squared amplitude of the helicity amplitudes

(equation 2.26). Hence, the W-pair production cross-section varies quadrat-

ically with the anomalous couplings. This quadratic form is an important

property of the anomalous coupling cross-sections, utilised in many analyses.

As an example of the the importance of W-bosons' helicities in W-pair

production, it may be seen from table 2.1 that the helicity amplitude for the

case where the W-bosons have opposite helicities is given by

F
(�)
���� = C(�)(�; t)M

(�)
����� (s; cos �W)

=
2�� 1

4t sin 2�Wk

(cos �W � 2��)(
1

2
e2s� sin �): (2.30)

As this �nal state has a total angular momentum of 2, it cannot arise through

and intermediate photon or Z0 boson; therefore, the only diagram which leads

to this helicity state is the t-channel diagram. Note also that the C(�)(�; t)

term contains a factor of (2� � 1) ensuring that the neutrino exchange may

only occur for an initial-state electron with negative helicity.

Furthermore, it can also be seen that the only terms which contribute in

the limit of �W ! 0 are those describing an LT �nal helicity state, i.e., with

�� = 0 and j��j = 1. This is reasonably intuitive; the initial state has an

overall spin of 1 parallel to the beam-axis, so it is not possible to have a �nal

state with spin of 2 or 0 parallel to the beam-axis, which would occur for the

TT or LL �nal states respectively if �W was 0.
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2.2.2 The Decay Angle Cross-section

It is not possible to directly measure the W-pairs; only their decay fermions

are detected. Therefore, the relevant cross-section is not that of equation 2.26,

but that relating to the �nal-state fermions. The decay distributions of these

fermions are de�ned in the rest-frame of their parent particle, and are described

by the decay angles, ��and ��; these are, respectively, the polar and azimuthal

angles in the basis given by

ẑ =
p�CoMW�

jp�CoMW� j (2.31)

ŷ =
p�CoMe� � p�CoMW�

jp�CoMe� jjp�CoMW� j ; (2.32)

where p�CoMW� and p�CoMe� are the momenta in the detector frame of the W�boson

and the electron beam respectively. For the W�decay, the angles relate to the

decay fermion, and, conversely, for the W+decay they relate to the antifermion.

The angles and the basis in which they are de�ned are illustrated in �gure 2.3.

W
CoM

~

P*~f

Pe
CoM

φ*
θ*

ẑ x

P

^

^

~

-

-

y

figure 2.3: Schematic illustration of the decay angles, ��and ��, of a particle with

momentum p��f .

The production angle of the W boson, and the decay angles of the four-

fermions form a set commonly referred to as the \T.G.C. angles"; in terms of
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2.2 The T.G.C. Cross-section

these the di�erential cross-section is as follows:

d�(e�e+ !W+W� ! fW-fW-fW+fW+)

d cos �Wd cos ��1d�
�
1d cos �

�
2d�

�
2

=

Br(W� ! fW-fW-)(W
+ ! fW+fW+)

jp�j
16�s

p
s

�
3

8�

�2

�
X

���� 0��+�
0
+

F (�)
���+

(s; cos �W)F
(�)
� 0
�
� 0
+

(s; cos �W)D��� 0�
(��1; �

�
1)D�+� 0+

(��2; �
�
2):

(2.33)

In equation 2.33, Br(X ! Y ) denotes the branching ratio for the process

shown in parentheses (the actual branching ratios are given in x2.2.3), and
D�� 0(�

�; ��) gives the decay angle distribution for each helicity combination,

�� 0. However, unlike in the W-pair cross-section, these helicities refer to a

single W-boson. This is seen in the cross-section expression; the two indices

on the helicity amplitudes F
(�)
���+|corresponding to di�erent W-bosons|do

not relate to a single angular term, D�� 0(�
�; ��). This means that it is not

meaningful to consider any given 4-fermion �nal-state as having arisen from

a single TT, LT, or LL helicity state. As a corollary, it is not possible to

decompose this cross-section into three distinct cross-sections, d�TT , d�LT and

d�LL, unlike the case for the W-pair production cross-section. However, the

decay angle distributions obey the relationZ +1

�1

Z 2�

0

D�� 0(�
�; ��) d� d cos � = 2� 4

3��� 0 (2.34)

so that equation 2.26 is recovered upon integration of equation 2.33 over the

decay angles and summation over the di�erenct decay channels.

The distributions,D�� 0(�
�; ��) are central to the T.G.C. analyses as they are

intimately connected to the helicity amplitudes; anomalous coupling strengths

would change the values of the C(D) terms in the helicity amplitudes, which

would, in turn, alter the relative contributions of these decay distributions. It

is this change in the decay distributions and the production angle of the W

bosons which T.G.C. analyses attempt to measure.

The variation of the W production angle and the decay angles of the

fermions with T.G.C. strength values is shown in �gure 2.4. The distributions
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figure 2.4: Plots of the W� production angle and the decay angles taken from

simulated Monte Carlo events. As with all such plots in this thesis, the width of the

lines shows their statistical error; the distributions are not perfectly smooth due to

the �nite statistics of the Monte Carlo sample.
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shown in this �gure use events from the Excalibur Monte Carlo generator

(this and the grc4f generator, mentioned shortly, will be described in more

detail in Chapter 4,x4.2.1).
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2.2.3 Obtaining the T.G.C. Angles from

the Decay Fermions

At this stage it is appropriate to consider how the possible �nal states from

W-pair decays will be observed; this discussion is very general and neglects

considerations of detector acceptance and resolution and, hence, is valid for

any generic, multi-purpose detector.

Each W boson may decay either hadronically or leptonically. This gives

three decay channels for W-pair production: W+W� ! q0q00q000q0000, W+W� !
qq0l�l, & W+W� ! l�ll

0�l0. The branching ratios for these channels are re-

spectively 45.6%, 43.9% and 10.5%[14].

The production angle of the W�pair is conventionally de�ned for the

W�boson, and the decay angles are de�ned for the fermion from W� decays,

and for the antifermion from W+ decays. Ideally, it would be possible to know

the charges and 4-momenta of each of the fermions, so that the �ve T.G.C.

angles may be measured perfectly. Unfortunately, this is not possible in any

of the channels.

Hadronic W Boson Decays

A hadronically decaying W boson produces two quarks which are observed

as two jets of hadronic particles. The momentum of the jets will be well

measured, but the charge must be inferred using a jet charge technique[21];

such a technique would at best have limited success for the combined system|

where the overall charge must be �1|but for an individual jet|where the

overall charge must be �1
3
or �2

3
|it would be practically useless. This means

that the modulus of the W production angle and the decay angles may be

obtained very well, but the overall sign for the production angle would only be

poorly ascertained, and for the polar decay angle, ��, it would be essentially

unknown.
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2.2 The T.G.C. Cross-section

Leptonic W Boson Decays

There are two slightly di�erent situations for leptonic decays, depending

on whether the charged lepton is a light lepton (i.e., an electron or muon) or

a tau; the two cases will be described separately.

The former case is straight forward; there will be a single, well-measured

charged track and missing 4-momentum corresponding to that of the neutrino.

From the charge of the observed track, it should be possible to determine both

whether the charged lepton was a fermion or antifermion, and also the charge

of the parent W boson. This means that, unlike the hadronic case, the T.G.C.

angles will only have a single solution.

However, if there is initial or �nal state radiation in the event the assumed

4-momentum of the neutrino will, e�ectively, be the sum of the
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figure 2.5: The angle between the true

and calculated momenta of the neutrino

and W� boson.

4-momenta of the neutrino and pho-

ton; this implies that the inferred

direction of the combined charged

lepton-neutrino momentum will not

correspond precisely to that of the

parent W boson. The extent of

this e�ect is illustrated in �gure 2.5,

which were produced using simulated

events generated with the grc4f

Monte Carlo generator. The plot

shows the angle between the momen-

tum of the true neutrino and the

missing momentum, and also the an-

gle between the momenta of the true

and inferred lepton systems, which is,

e�ectively, an inherent �nite resolu-

tion for the W production angle.

As the charged lepton track will be well measured, there will be no problem

in knowing which particle is the fermion and which the antifermion; this means
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that, unlike in the hadronic case, there will be no ambiguity in the calculated

decay angles. However, as the decay angles are de�ned in the W boson's rest

frame they cannot be reconstructed perfectly because there will be a �nite

resolution on the 4-momentum of the W boson, due, again, to the uncertainty

in the 4-momentum of the neutrino.

When the W boson decays to a tau and tau neutrino the situation is more

complicated as taus are too short lived to be directly observed. In general, taus

decay to one or three charged particles and at least one neutrino. This extra

missing momentum means that the 4-momenta of the tau and tau-neutrino

can only be reconstructed comparitively poorly, so neither the W production

angle, nor the decay angles may be obtained as cleanly as fromW boson decays

to electrons or muons.

The Variable Set and Signal Process

For the analysis in this thesis, only qq0l�l �nal states where the charged

lepton is an electron or muon are considered as the signal. In this channel the

W production angle, cos �W, is best measured by calculating its modulus from

the hadronic system and then deducing which solution refers to the W�boson

from the charge of the observed lepton. Only the leptonic decay angles are

used, due to the ambiguity in the reconstructed hadronic decay angles. This

gives a three variable parameter space of cos �W, cos �
�
l and ��l .

Decay Angles in the Other Channels

The channel and variable set used in this analysis are the most sensitive to

the T.G.C. strengths; for completeness, the reasons for the lower sensitivities

in the other channels are outlined below.

In the W+W� ! q0q00q000q0000 channel, the decay angles of both pairs of

fermions have the reconstruction problems previously described. But, further-
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more, it is also di�cult to pair correctly the jets from a single W boson, and

then di�cult to determine the charge of that boson; this means that all of the

T.G.C. angles in the hadronic channel will have considerably worse resolutions

than those for the W+W� ! qq0l�l channel.

For the W+W� ! qq0��� channel the reconstruction of the W production

angle and the hadronic decay angles (which are not used in this analysis)

should be no worse than for the signal channel. However, as discussed above,

the leptonic decay angles will be signi�cantly degraded.

The W+W� ! l�ll
0�l0 channel also has problems in the lepton reconstruc-

tion, as well as having the lowest cross-section. Considering the simplest case

where neither charged lepton is a tau, there are always two neutrinos in the

�nal state, and their momenta cannot be calculated unambiguously; the com-

ponents of their momenta transverse to the plain of the charged leptons' mo-

menta must be equal and opposite (C.o.L.M.), but which neutrino has which

component cannot be determined. This results in a two-fold ambiguity in the

W production angle and in the azimuthal decay angle for each W boson. When

one or both of the charged leptons are taus, their momenta are less well known,

leading to an additional degradation in the reconstructed T.G.C. angles.

From this point onward, the terms qq0l�l, \lepton" and \neutrino" will only

refer to electrons, muons, and their associated neutrinos.
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chapter 3

The LEP Collider and OPAL

Detector

In the previous two chapters the motivation and framework for studying the

T.G.C. parameters were discussed. In the following two chapters the means

of analysing the events is described. This chapter details the LEP collider

and the OPAL detector, and the next describes the selection algorithm for

W+W� ! qq0l�l events.

3.1 The LEP Collider

The Large Electron-Positron[22] (LEP) collider is the largest synchrotron

accelerator in the world, and is situated underneath France and Switzerland at

CERN (La Centre Europ�eene pour la Recherche Nucl�eaire). It was designed

for the collision of electrons and positrons at centre-of-mass (
p
s) energies

around the rest-mass energy of the Z0 boson (91GeV), to investigate the neutral

current interactions of the electroweak force. It ran at these energies from

1989 until 1995, at which time it was upgraded[14] to reach energies at which

pairs of W� bosons are produced, to allow the investigation of the charged

current sector of the electroweak theory. In the �rst phase, it was desirable

to collide at energies very close to the Z0 boson mass, but in the latter phase

it is desirable to achieve the highest energy possible with the collider, rather

than simply running at the threshhold energy for production of W-pairs (i.e.,
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2MW ' 161GeV); this di�erence is because the cross-section for production of

pairs of W� bosons continues to rise up to roughly 200GeV.

The LEP ring is 26.7 km in circumference which runs under France and

Switzerland, between the Jura mountains and Geneva, 80{170m below the

surface. The plane of the ring is inclined to the horizontal at 1:4�. The ring was

designed to have the maximum possible radius of curvature, to minimize energy

losses from synchrotron radiation. LEP consists of eight arcs, and four straight

sections where the acceleration of the beams occurs and the experiments are

located. Each of the arcs contain 31 magnetic cells, with a single cell having

a length of 79.11m. The acclerating sections consist of copper cavities and

superconducting cavities which were installed for the LEP-II energy upgrade.

LEP is �lled with electrons and positrons which are injected after having

being passed through a series of CERN's older, smaller accelerators. The

electrons are produced by thermionic emission; some of these are then collided

with a tungsten target to produce the positrons. The remaining electrons and

the positrons are then passed into the Proton Synchrotron (PS) accelerator,

from there into the Super Proton Synchrotron (SPS) and then into LEP, having

reached energies of 22GeV. The arrangement of the three accelerators is shown

in �gure 3.1. To maintain the beams for as long as possible, it is necessary

to maintain a high vacuum in the tunnel; without beams present the pressure

is 10�12Torr and this is degraded to 10�9Torr with circulating beams (this is

mainly due to outgassing due to synchrotron radiation striking the walls of the

beampipe).
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figure 3.1: Schematic representation of the accelerators at CERN, showing how

the smaller, older accelerators are used to provide the electrons and positrons.
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3.2 The OPAL Detector

The electrons and positrons are brought into collision at points on the LEP

ring where the four LEP experiments|ALEPH, DELPHI, L3 and OPAL|are

situated.

Like the other LEP detectors, OPAL is a symmetric barrel detector[23]. A

schematic diagram of OPAL is shown in �gure 3.2. From this �gure, the OPAL

coordinate system can be seen; the z-axis is parallel to the beampipe, and is

positive in the direction of the electrons' momentum, and the positive x-axis

points to the centre of the LEP-ring. The origin is the nominal interaction

point.

In this �gure all the important features of OPAL can be seen. Roughly, it

may be thought of as having vertex and tracking subdetectors in the centre,

then the solenoid|to cause bending of the tracks in the tracking chambers|

then calorimeters and �nally the muon chambers. This is a simpli�cation,

not least because the arrangement in the 
at ends of the detector (called the

\endcaps") is di�erent from the central cylindrical section (the \barrel"). A

detailed cross-section of the OPAL detector is shown in �gure 3.3.

In the analysis presented in this thesis, both hadronic and leptonic W boson

decays are analysed. The hadronic decays give the production angle of the W�

bosons, and information from both decays are needed to reconstruct the decay

angles of the fermions. Hadronic W-boson decays are seen in the detector as

jets of particles, which are measured by the central tracking chambers (referred

to as CV, CJ and CZ) and by the calorimeters (EB and EE, and HB, HE

and HP). A single charged particle is seen from a leptonically decaying W

boson (excluding tau decays, which are not counted as part of the signal in

this thesis). In order to identify the particle and measure its momentum and

energy, the central tracking chambers and electromagnetic calorimeter and|

for muon decays|the Muon Chambers (MB and ME) are used. The Forward

Detectors and Silicon Microvertex subdetector are not used in this analysis,

although they are described brie
y for completeness.
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figure 3.2: A schematic representation of the OPAL detector.
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3.2 The OPAL Detector

3.2.1 Tracking Chambers

The tracking chambers are the innermost detectors, next to the beampipe.

They allow for the measurement of interaction and decay vertices, momentum

and charge of individual charged particles and their energy loss (dE
dx
). The

tracking chambers are comprised of the Silicon Microvertex Detector (SI), and

the central tracking chambers, Central Vertex (CV), Central Jet (CJ) and

Central Z (CZ).

SI|The Silicon Microvertex Subdetector

The SI detector[24] was installed in 1991 and upgraded in 1993. It was

designed to give good measurement of interaction and decay vertices. It com-

prises two cylinders of radii 61mm and 75mm, with 12 ladders of silicon wafers

on the inner cylinder and 15 on the outer. Each ladder has 5 wafers, each

of which are 6cm�3cm in surface area, with readouts parallel to the beam

axis every 50�m, and perpendicular to it every 100�m. The detector covers a

range of j cos �j < 0:83 and the resolution at the point of closest approach to

the interaction point is 17�m in r � �, and 21�m in z.

CV|The Central Vertex Chamber

As with all of the Central Tracking drift chambers, CV[25] consists of

chambers �lled with a 88:2% : 9:8% : 2:0% mixture of argon, methane and

isobutane through which run sense wires. The gas is at a pressure of 4 bar. A

charged particle passing through the chambers will ionize the gas; the resultant

electrons are accelerated toward the sense wire causing an avalanche e�ect and,

hence, a current which is detected by the sense wires.

The CV chamber was the predecessor to SI in that it was designed to

measure interaction vertex positions and gives a resolution of 55�m in r � �.

It has an inner radius of 8.8cm and an outer radius of 23.5cm. It consists of two
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chapter3 The LEP Collider and OPAL Detector

systems of drift chambers; the inner contains axial sense wires whilst the outer

chambers contain stereo sense wires, inclined at an angle of approximately

4 deg to the axial wires. The information from the inner and outer chambers

together give a resolution on the position in z of a charged track of 700�m.

CJ|The Central Jet Chamber

The Central Jet chamber[26] is one of the most important detectors in

OPAL. It measures the trajectory of charged particles and, hence, their charge

and momentum. Furthermore, the speci�c energy loss, dE
dx
, of a particle is

measured|aiding particle identi�cation|by summing the charge received by

the sense wires.

It is a cylindrical drift chamber, 4m long, consisting of 24 sectors sepa-

rated by cathode wires. In each of the sectors 159 axial anode sense wires

are arranged in radial planes. The trajectory of a particle is reconstructed

from individual hits measured by the sense wire. The r � � position of the

hits is given by the radial position of the relevant wire and drift time, and the

z-position is given by the di�erence between the signals at either end of the

wire.

The resolution in the position is 135�m for r � � and 6cm in z. The error

on the momentum is given by

�p
p2
� 2 : 10�3GeV�1: (3.1)

CZ|The Central Z Chamber

Outside of the CJ subdetector lie the 24 planar chambers which make

up the Central Z subdetector[27]. As their name suggests, these chambers are

intended to give a better measurement of a particles' position in the z-direction,

and, hence, its sense wires run perpendicular to the beam pipe.
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3.2 The OPAL Detector

3.2.2 Low-Angle Subdetectors

The low-angle detectors are located next to the beampipe, but further out

than the tracking chambers (much further out in the case of the Far Forward

Monitors). The principal purpose of these detectors is to measure the luminos-

ity that OPAL receives. This is done by identifying Bhabha events, for which

the cross-section is very well known. In order to achieve a good measurement

of the luminosity, the detectors must be at low enough angle that the statistics

are high, and the acceptance of the individual detectors must be well measured.

These subdetectors are also useful for the study of photon-photon interactions,

and some are used to veto background events in searches for exotic particles.

FD|The Forward Detector

The Forward Detector[28, 29] itself consists of four subdetectors: the For-

ward Calorimeter, the Gamma Catcher, the Tube Chambers and the Far For-

ward Monitors.

The Forward Calorimeter is the main component of the Forward Detec-

tor; it is a lead scintillator sampling calorimeter, which contains 24 radiation

lengths of material. The Gamma Catcher is a 7 radiation length lead scintil-

lator ring, which was designed to cover the acceptance gap between the elec-

tromagnetic calorimeter and the Forward Calorimeter. The Tube Chambers

consist of 3 layers of proportional tubes; two of which are mutually perpen-

dicular, with the third at 45 deg to these. The tube chambers give a spatial

resolution of 3mm. The Far Forward Monitors are pairs of lead scintillator

calorimeters, positioned either side of the beam pipe at a distance of 7.85m

from the interaction point.
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chapter3 The LEP Collider and OPAL Detector

SW|The Silicon Tungsten Subdetector

The Silicon Tungsten subdetector[30] was added to OPAL in 1993 to im-

prove the luminosity measurement. They are sampling calorimeters, consisting

of layers of tungsten with instrumented layers of silicon.

Apart from being used to measure the luminosity received by OPAL, none

of the low-angle subdetectors are directly used in this analysis.

3.2.3 The Solenoid and Time of Flight

Counters

The Solenoid

The central tracking chambers are surrounded by the pressure vessel and

solenoid. The purpose of the solenoid is simply to cause charged particles to

move in a helical path, which allows measurement of their charge and mo-

mentum. OPAL's magnetic �eld is such that positively charged particles curl

clockwise in OPAL's coordinate system and, conversely, negatively charged

particles curl anticlockwise.

The solenoid itself is water-cooled and self-supporting. It provides a �eld

of 0.435T.

TE & TB|Time-Of-Flight Counters

Immediately outside the solenoid are the Time-of-Flight Counters, which

measure the particles' 
ight time from the interaction point.

The TB subdetector consists of 160 trapezoidal scintillation counters at a

radius of 2.360m. It provides coverage in the barrel region of the detector, and

covers the range j cos �j < 0:82; its time resolution is approximately 300ps.

The timing information aids indenti�cation for particles with energy between
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3.2 The OPAL Detector

0.6 and 2.5 GeV, and also provides rejection of cosmic rays.

The TE[31] performs a similar function in the endcap region. It is made up

of tiles of scintillator with embedded wavelength shifting optical �bre which

reads out the signal to photomultiplier tubes. Installation of this subdetector

�rst began in 1996, and was continued in 1997 to take the coverage closer to the

beampipe, down to 43mrad. Its timing resolution is 3ns. This subdetector is

particularly useful for the searches for exotic particle, and somewhat supersedes

the Gamma Catcher (FE) subdetector in this respect.

3.2.4 The Calorimeters

The calorimeters give the most important energy measurement for most

particles. The calorimeters are arranged with the presampler and electromag-

netic calorimeter in front, with the hadron calorimeter behind. This is for the

simple reason that the hadronic particles tend to be more penetrating than the

electrons and photons, which the electromagnetic calorimeter was principally

designed to measure.

PE & PB|The Electromagnetic Presampler

The solenoid and the pressure vessel provide two radiation lengths, so that

electromagnetic showering will have begun prior to the calorimeters. Because

of this there is a presampler[32] to improve the resolutions of both the position

and the energy. The presamplers work on the principal that the number of

charged particles passing through the presampler is approximately equal to

the amount of energy deposited in the previously traversed material.

The barrel presampler comprises 16 chambers containing two layers of

streamer mode drift tubes. These chambers are positioned at a radius of

2.388m from the z-axis, and run a length of 6.623m, providing coverage over

the range j cos �j < 0:81. The endcap presampler is an arrangement of 32 thin
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multiwire chambers operated in high gain mode. This presampler covers the

range 0:83 < j cos �j < 0:95.

EE & EB|The Electromagnetic Calorimeters

Both the barrel and endcap electromagnetic calorimeters[33] consist of ar-

rays of lead glass blocks; relativistic particles passing through the blocks emit

�Cerenkov radiation which is collected by photomultiplier tubes at the end of

each block.

In the barrel region, there are 9440 blocks, each 37cm long (which gives

24.6 radiation lengths) and with a cross-section of approximately 10� 10cm.

They are positioned at a radius of 2.455m and are oriented so that they point

to a region between 55{158mm from the interaction point and 30mm from

the z-axis; this geometry was used to prevent neutral particles from evading

detection and gives coverage over j cos �j < 0:81. In test beam conditions

(i.e., with no material causing preshowers) the energy resolution of the barrel

calorimeter was found to be

�E
E

= 0:2% +
6:3%p
E
; (3.2)

with preshowering, this resolution degrades by a factor of roughly 2, but half

of this degradation is recovered by using the information from the presamplers.

The endcap calorimeter consists of 2264 blocks. In order for the subdetec-

tor to closely follow the domed shape of the pressure bell these blocks are of

varying lengths (38cm, 420cm and 520cm, providing a minimum of 20.5 radi-

ation lengths), and are aligned parallel to the z-axis. They provide coverage

in the range 0:83 < j cos �j < 0:95. The energy resolution is approximately 1%

in the energy region of 3{50GeV, which is the region relevant to the analysis

presented in this thesis.
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3.2 The OPAL Detector

HP, HE & HB|The Hadronic Calorimeters

The hadronic calorimeter[34, 35, 36] consists of three units; the barrel and

endcap calorimeters|as with the electromagnetic calorimeter|and also the

\hadron poletip" calorimeter, which extends the coverage in the range 0:91 <

j cos �j < 0:99, where the momentum resolution of the central detector grows

worse.

The hadron calorimeter incorporates the iron return yoke for the mag-

netic �eld, which provides 4 or more interaction lengths over 97% of the total

solid angle (the material traversed before reaching the hadron calorimeter pro-

vide another 2.2 interaction lengths). The calorimeters are planes of limited

streamer chambers (for the barrel and endcap regions) or which are separated

by 100mm thick layers of the iron yoke.

In the barrel region, there are 9 layers of detecting chambers separated by

8 layers of iron, which are located between radii of 3.39m and 4.39m; in the

endcap region there are 8 layers of chambers and 7 of iron; in the poletip region

there are 10 layers of chambers and 9 of iron. The iron layers are 100mm thick

in the barrel and endcap regions and 80mm thick for the poletip; the gaps

between the layers are 35mm, 25mm, and 10mm in the barrel, endcap, and

poletip regions respectively. The gaps are made much smaller in the poletip

region as the so as not to perturb OPAL's magnetic �eld.

The chambers for each of the regions are limited streamer tube chambers;

the barrel and endcap chambers are �lled with a 75%:25% mixture of isobutane

and argon and the poletip chambers are �lled with a 55%:45% mixture of CO2

and n-pentane. A particle passing through the a chamber ionizes the gas,

causing charge to be deposited on the surfaces of the chamber; the charge is

measured and read out by pads and strips which are located on the outer and

inner surfaces of the chambers respectively.

The energy resolution of the combined detector varies depending on the
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energy measured:

�E
E

=
100%p

E
for E < 15GeV (3.3)

�E
E

=
140%p

E
for E ' 50GeV: (3.4)

3.2.5 The Outer Muon Detectors

ME & MB|The Muon Chambers

The Muon Chambers are OPAL's outermost detectors and were principally

designed, unsurprisingly, to detect muons. Any particle reaching them will

have traversed roughly 1.3m of iron. This means that the probability of a

pion|the particle which most closely resembles a muon in the detector|not

having interacted before reaching the muon chambers is less than 0.1%.

In the barrel region[37] there are 110 drift chambers, which give coverage

ranging from j cos �j < 0:68 for four layers of chambers to j cos �j < 0:72 for

only one layer. This di�erence is due to the structural support for the detector.

The chambers themselves are 1.2m wide and 900mm deep, and have a length

of 10.4m, 8.4m or 6.0m. Each chamber consists of two cells, �lled with a

90%:10% mixture of argon and ethane. An anode wire runs through each cell

for the entire length of the chamber. Opposite the wire are readout pads,

which measure the z-position to 2mm; the drift time gives the � position to

1.5mm.

The endcap muon subdetector[38] is made up of four eight quadrant cham-

bers and four patch chambers, as can be seen in �gure 3.2. Each chamber

consists of two layers of limited streamer tubes, aligned perpendicular to the

beam axis with one layer vertical and the other horizontal. The chambers

are �lled with a 75%:25% mixture of argon and isobutane. The signal from

the tubes is read out by strips of aluminium which are attached to the tubes

perpendicular to the anode wire on one side and parallel to it on the other.
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3.2 The OPAL Detector

The coverage of the endcap muon chambers is � 0:67 < j cos �j <� 0:985, and

the spatial resolution is 3mm and 1mm respectively for the strips parallel and

perpendicular to the anode wire.

3.2.6 The Trigger

LEP typically provides a crossing rate of 45kHz; the vast majority of these

crossings do not produce interesting events, and so should not be read out. The

trigger[39, 40] provides a fast evaluation of an event, to determine whether it

should be read out, and the data stored. The trigger will select an event

either based on a single parameter|such as track multiplicity or transverse

momentum|or else on a combination of the information from di�erent sub-

detectors in a single solid angle region. The 45kHz crossing rate is reduced to

a rate of roughly 10Hz for events to be passed to the online data acquisition

system.

3.2.7 Data Acquisition

When the trigger selects an event the information from all of the sub-

detectors is read out individually, combined and then passed to a �lter[41].

Typically, 15{35% of all events selected by the trigger will be rejected by the

�lter. Assuming the event is not rejected, the information is then passed to the

ROPE[42] (Reconstruction of OPAL Events) farm of HP UNIX workstations,

which reconstructs the events using calibration constants from the individual

subdetectors. After this reconstruction, the information is written to optical

disk as a Data Summary Table (DST). Finally, this data is stored on tape and

disk at the CERN's Meyrin site for o�ine analysis.
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chapter 4

Event Reconstruction and

Data Selection

This chapter details the selection procedure applied to the events from

the OPAL detector, which gives the data sample to be analysed. In order

to describe the selection procedure it is �rst necessary to describe the di�er-

ent signal and background processes. The selection procedures used and their

performances are slightly di�erent for the 1997 & 1998 data sets, which were

produced with di�erent centre of mass energies; the di�erences in the proce-

dures are small, and are detailed where relevant. The performances of the

selections are summarised at the end of the chapter.

The details of the Monte Carlo samples used are given in Appendix A.

4.1 The Signal and Background

Processes

4.1.1 The Signal Processes

The Principal Signal: W+W�
! qq0l�l

As mentioned in chapter 2, the main signal process|shown in �gure 4.1|

is W-pair production where one W-boson decays leptonically and the other

hadronically. The two quarks each produce a high-multiplicity shower of par-

53



chapter4 Reconstruction and Selection

e-

e+

γ W-

W+

l-

νl

q
q´

e-

e+

Z W-

W+

l-

νl

q
q´

e-

e+

νe

W-

W+

l-

νl

q
q´

figure 4.1: Feynman diagrams of the W-pair production leading to a qq0l�l �nal

state

ticles; the charged lepton will either be an electron or muon and, therefore,

long lived; the neutrino, of course, is not directly observed but its presence is

inferred through its missing 4-momentum.

Distributions of the fermions' energies from generator level Monte Carlo

events are shown in �gure 4.2. (Unless otherwise stated, all �gures of
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figure 4.2: Energies of the fermions

fromW+W� ! qq0l�l decays.

event distributions in this section

show the generator level quantities

from events generated at
p
s =

183GeV). As the decay fermions

are all e�ectively massless, their en-

ergy spectra have similar means and

limits. Distributions of their ener-

gies are roughly centred on a value

of half EBeam, the beam energy, al-

though there is a slight systematic

shift downward due to initial state ra-

ditaion (ISR); the spread in energy is

due to the width and boost of the W

bosons. The peaking in the energy

spectra of the lepton and neutrino is

due to forward peaking in cos ��l (de�ned in chapter 2), which leads to the

charged lepton being preferentially boosted. This e�ect is not seen in the jet

distributions as it is not possible to tell the fermion jet from the anti-fermion
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jet.

The decay fermions from an individual W are reasonably well-separated,

as shown in �gure 4.3. And, in general, so are the fermions from di�erent Ws.

Figure 4.3 shows the angular separation between the closest two fermions from

di�erent W bosons.

0

0.25

0.5

0.75

1

1.25

1.5

1.75

2

2.25

0 0.5 1 1.5 2 2.5 3
θff´

P
ro

ba
bi

lit
y 

D
en

si
ty

–

θlν

    -θqq´

0

0.2

0.4

0.6

0.8

1

0 0.5 1 1.5 2 2.5 3
θql

P
ro

ba
bi

lit
y 

D
en

si
ty

figure 4.3: The angular separation of fermions fromW+W� ! qq0l�l decays. The

�rst plot shows that between the fermions from a single W boson; and the second,

that between the two closest decay fermions from di�erent W bosons.

To summarise, the general W+W� ! qq0l�l event shape has two high-

multiplicity jets, an isolated charged lepton and missing 4-momentum.

Non-WW signal processes

As noted in chapter 1.2, the same qq0l�l �nal state may also occur via

diagrams other than the W pair production diagrams. As these diagrams

lead to an identical �nal state, they will interfere with the W-pair production

diagrams, and it is, therefore, appropriate to think of them as part of the

signal.
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Including the W-pair production diagrams, there are 20 leading order di-

agrams which give rise to a qq0e�e �nal state and 10 to a qq0��� (or qq0��� )

�nal state; they are often referred to as \CC20" and \CC10", respectively,

where the pre�x, CC, indicates that they involve charged currents. The CC10

diagrams may be regarded as being a subset of the CC20 diagrams, and, sim-

ilarly, the W-pair production diagrams form a subset of them, referred to as

\CC3". Representations of all the diagrams are shown in �gure 4.4. The 10

extra qq0e�e diagrams arise through quasi-t-channel processes, and so may be

thought of as being due to the colliding beams comprising electrons.

The We�e diagram, introduced in chapter 2, is the �nal diagram in �gure

4.4. As previously mentioned, these diagrams contain the trilinear gauge ver-

tices (although in practise it is only the diagram with the WW
 vertex which

contributes at LEP2 energies). In addition to this, the interference terms be-

tween the TGC-dependent diagrams and any other diagram will also depend on

the coupling strengths. It is, therefore, important to consider these diagrams

and their interferences when attempting to measure the T.G.C. strengths.
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figure 4.4: Pseudo-Feynman diagrams of the leading order charged current pro-

cesses which give rise to a qq0l�l �nal state. The number of true diagrams represented

is given by the number underneath. For any multi-diagram representation, the ex-

tra diagrams are obtained through interchange of quark/antiquark pairs (denoted

by q=q0 and q0=q) or neutral current particles (denoted by Z0=
).
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4.1.2 Background processes

Given the nature of the signal events, contamination in the data sample

must be anticipated from all high-multiplicity processes. Broadly, there are two

main types: those which genuinely resemble the signal �nal state, and those

that are generally disimilar from the signal, but still contaminate the sample

due to a high production rate. In the �rst class are misidenti�ed qq0l�l events

and the neutral-current 4-fermion processes, and in the second are two-photon

processes and fermion-pair production via Z0=
 exchange.

Misidentified charged current events

The majority of events in this category are from W+W� ! qq0��� usually

with the � decaying leptonically. In addition to this, there is also a small

accepted cross-section for cross-contamination, where true qq0e�e events are

accepted as qq0��� and vice versa. This latter case is negligible compared to

the contribution from W+W� ! qq0��� events.

Neutral current four-fermion production

Neutral current diagrams, shown in �gure 4.5, give rise to fff 0f 0 �nal states.

There are 48 diagrams which contribute to the e�e+qq �nal state, and, of those,

24 may give rise to a qq���+ or qq���+ �nal state. The full set of NC diagrams

is shown in �gure 4.5. The 3rd diagram represents the production of pairs of

Z0 bosons which only becomes signi�cant with
p
s above �183GeV. This is

regarded as an important background process, as it is almost indistinguishable

from qq0l�l if one of the leptons is not detected. The 5th diagram is the

purely electrodynamic two-photon process; this is only a small contribution

to the total two-photon cross-section, as it does not contain the hard QCD

subprocess which is crucial for correct modelling of two-photon interactions.
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The 2-photon background
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figure 4.6: The 2-photon

interaction.

The 2-photon process is shown in �gure 4.6.

There are two main types of 2-photon event: \un-

tagged", where both beam electrons are lost down

the beam lines, and \tagged", where one of the

beam electrons (the \tag") is detected. Only the

tagged events give any contribution to the back-

ground as the tag may resemble the electron in

qq0e�e events. Generally, the invariant mass of the

hadronic system in these events is very low com-

pared with that of the signal but the process has a

very high cross-section, so unusual events may be

accepted. This is probably the least understood of

all the W+W� ! qq0l�l background processes, as the events which resem-

ble the signal process are not well modelled at present. Fortunately, it is a

relatively small background, and does not contribute a large systematic error.

The Z0=
 background

e+/-

e-/+

Z

γ

q

q

figure 4.7: Radiative ff

production.

The Z0=
 background (shown in �gure 4.7), is,

in general, dissimilar from the signal process. How-

ever, its cross-section is approximately 25 times

larger than the signal's, and so atypical event

shapes may contribute to the accepted background.

Frequently the photon is radiated with such an en-

ergy that the Z0 is on-shell. This means that the

jets produced will be boosted and will also have a

similar invariant mass to jets from W-decay. If, in

addition, a track from one of the jets resembles a

lepton candidate the event will look reasonably sim-

60



4.1 The Signal and Background Processes

ilar to the signal process. Alternatively, the initial state photon may convert

to an electron-positron pair, one of which may resemble a lepton candidate.
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4.2 The Monte Carlo Samples

The expected accepted levels of signal and background are evaluated using

Monte Carlo generated events which have been processed by Gopal[43], the

OPAL detector simulation package which is based on Geant[44]. Several

di�erent Monte Carlo generators are used, as appropriate to the process being

evaluated. Apart from the Herwig [45] generated samples, all the samples

have jet fragmentation by Jetset [46]; the Herwig samples use the Herwig

fragmentation routines.

4.2.1 The four-fermion signal and

background processes

The grc4f [47] generator is used to generate samples of the Standard Model

CC3 process and of the full four-fermion processes; Excalibur [48] is used to

generate similar samples, but with anomalous coupling strengths. Both can

generate events using all of the CC20 and NC48 diagrams or a subset of them.

In practise, the QED 2-photon diagram is omitted as its behaviour is better

modelled by dedicated 2-photon generators. This means that its interference

terms with the other NC48 diagrams are neglected, but, from phase-space

considerations, this is expected to be a small e�ect; it should certainly be small

compared with the uncertainty associated with the total 2-photon process.

It is standard for (at least) two separate 4-fermion samples to be generated,

one including e�e+ff �nal states, and the other with all other diagrams. This

is because the e�e+ff �nal states have a large cross-section compared with the

other 4-fermion diagrams due to the t-channel events with soft photons. It

should be noted that the two categories used for event generation are not the

same as the CC and NC classes of the 4-fermion processes. For the evaluation

of the selection at
p
s = 183GeV two samples of e�e+qq and e�e+���+ events
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4.2 The Monte Carlo Samples

were used; for that at
p
s = 189GeV, two samples with combined e�e+qq and

e�e+���+ �nal states but separated into s-channel and t-channel production

diagrams were used. The 189GeV samples neglects some interference e�ects

between the two channels, but this is expected to be insigni�cant compared

with the statistical error.

In addition to the four-fermion generators, others such as KoralW [49]

and Pythia (see next section) are also used to generate CC3 events. These

are used principally for tuning and testing the selection algorithm and for the

evaluation of systematic errors in the modelling of the signal event shape.

4.2.2 Other background processes

The Z0=
 ! qq background is simulated by the Pythia [50, 51] and Her-

wig generators. Pythia is a widely-used generator which was designed to

simulate collisions betweeen e+e�, pp and ep particles to produce multiparti-

cle �nal-states.

Modelling of the 2-photon background requires dedicated generators, be-

cause, as alluded to previously, the full 2-photon process involves QCD interac-

tions of low-virtuality photons and is not well understood, particularly in the

regions of phase-space from where the accepted events originate. Unlike the

other processes studied it is not well modelled by applying hadronization to

�nal-state fermions. The background samples used were generated by Phojet

[52] and Herwig.
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4.3 Selecting the Data Sample |

The WW and WV utility

packages

The WW package[53] consists of a set of utility routines which perform a

wide variety of tasks, principally for study of W-pair production events. Using

its routines, individual tracks and clusters are selected and associated to form

events which are then categorized using relative likelihood functions.

The WV package[54] is complimentary to WW, and oriented speci�cally for

studies of the triple gauge vertex couplings. WV routines perform kinematic

�ts on selected events and calculate the T.G.C. angular variables.

4.3.1 Event reconstruction

The �rst stage in the reconstruction is to combine the information from

OPAL's subdetectors into an event. The data from OPAL are stored as clusters

from the calorimeters and individual hits which form tracks in the jet chambers.

Quality cuts are performed on these raw data to ensure that only well-measured

data are analysed.

4.3.2 The Likelihood Event Selection

The selection[56] for W+W� ! qq0e�e and W+W� ! qq0��� events is

performed in four steps:

� Identi�cation of a lepton candidate.

� Loose preselection cuts.

� Application of a likelihood function on 10 variables.
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4.3 The WW and WV utility packages

� Event categoriztion.

These form the WW selection routine which is developed by the OPAL W

mass and W-pair cross-section groups.

The ideal event selection for a T.G.C. analysis di�ers from that for the anal-

yses of the W-mass and W-pair cross-section in two main respects: i) the cross-

section measurement only uses the number of events selected, and, therefore,

does not require accurate measurements of the event kinematics; T.G.C. stud-

ies need events with the correct lepton candidate and well-measured hadronic

jets; ii) the mass analyses tend to avoid using any cuts which are correlated

with the mass of the reconstructed W particles as this would introduce a bias

into the measured value; TGC studies should not be sensitive to such a bias,

and are free to improve the data sample through the use of mass-based cuts.

Therefore, both to improve the quality of the signal events in the data sample

and to reject more of the background, additional hard cuts are applied for

T.G.C. studies (these are described in x4.3.3).

Identification of the lepton candidates

Two lepton candidates are selected for each event, one as the best electron

candidate and one as the best muon, no matter how improbable they each

are. The selection of these candidates does not require explicit lepton iden-

ti�cation, but instead uses a multivariate likelihood function. The likelihood

function is based upon direct comparison with Monte Carlo-generated, high

statistics histograms; two sets of histograms are used|one for each 
avour of

lepton candidate. The variables used in the likelihood function are as follows:

the energy loss of the track through the tracking chambers (dE
dx
); the energy

deposited in the electromagnetic calorimeter; the number of hits in the hadron

calorimeter; and the number of hits in the muon chambers.

A likelihood is calculated for each track in the event by multiplying the

probabilities for each variable, obtained from the reference histograms. This is

performed for both sets of reference histograms giving Le, the likelihood that
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the track arose from an e�, and L�, the likelihood that it arose from a ��.

The two tracks with the highest values of Le and L� are taken as the electron

and muon candidates respectively. No events are rejected at this stage.

Preselection Cuts

The preselection is comprised of a set of loose cuts, which are designed

to eliminate events which are clearly not W+W� ! qq0l�l. It succeeds in

removing almost all 2-photon events from the sample and most Z0=
 ! qq

events.

The preselection is comprised of the following cuts. Unless stated, the

preselection cuts are the same for the 183GeV and189GeV selections.

� General cuts:

� NCT > 7|the number of tracks in the central tracking chambers.

� NEC > 5|the number of ECAL clusters.

� 0:3 < Rvis < 1:2|the fractional visible energy in the event.

� Elepton > 10GeV|the energy of the candidate lepton. This is cal-

culated using the electromagnetic calorimeter energy for electrons

and using the track momentum for the muons.

� Le > 10�9|the selection likelihood for the electron candidate.

Or

L� > 10�8 at
p
s = 183GeV, L� > 10�9 at

p
s = 189GeV|the se-

lection likelihood for the muon candidate.

� Cuts to remove Z0=
 ! qq events:

� E
 < ((
p
s � MZ0) � 10 (' 88GeV))|energy of most energetic

isolated photon. Note that the quantity (
p
s�MZ0) is equal to the

energy of a single initial state photon such that the collision energy

of the event is that of the mass of an on-shell Z0 boson.
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4.3 The WW and WV utility packages

� EFD < 40GeV at
p
s = 183GeV, EFD < ((

p
s � MZ0) � 10GeV)

at
p
s = 189GeV|the energy in the calorimeters of the low angle

subdetectors. The cut at
p
s = 189GeV is essentially the same as

the previous E
 cut, but speci�c to the Forward Detectors, which

are otherwise generally not used in the analysis.

� cos �LpMis < 0:9|the cosine of the angle between the lepton track

and the direction of the missing momentum.

� P (
p
s0) < 0:01; the probability obtained in a kinematic �t to �ndp

s0. This cut is only applied if the lepton candidate appears to

have originated from conversion of a photon, and the kinematic �t

converged.

� Cuts to remove Z0=
 ! qq events, applied only in the qq0e�e channel

if the energy of the electron candidate is within 12GeV of (
p
s �MZ0),

in order to exclude events where an initial state photon converts to an

electron-positron pair:

� The event is rejected if the track of the lepton candidate and an

oppositely charged track appear to have originated from conversion

of a photon.

� 5 < dE
dx

< 15keV cm�1; the energy loss of the particle in the tracking

chambers. The event will also be rejected if dE
dx

is not well-measured.

� jp�ej > 10; the scalar momentum of the electron. This cut is only

applied if the electron is within � 32� of the beampipe.

� The following cut is intended to remove tagged two-photon events:

� ps0 > 50GeV at 183GeV,
p
s0 > 60GeV for the qq0e�e selection

and
p
s0 > 90GeV for the qq0��� selection at 189GeV.

p
s0 is the

estimated invariant mass of the inicident electron-positron system

(i.e., omitting any clusters or tracks assumed to be due to initial

state photons).
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� The following cut in intended to remove tagged two-photon events in the

qq0e�e channel:

� cos �mis 7 �0:975; the cosine of the polar angle of the missing

momentum. This cut is intended to reject 2-photon events where

the missing momentum is actually due to the antitag; hence the

cut value is positive or negative depending on whether the lepton

candidate is selected as a positron or electron respectively.

The preselection is approximately 90% e�cient for the signal events. Plots of

some of the preselection variables showing the cut values are given in �gure

4.8.
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figure 4.8: Distributions of some of the variables used in the preselection of the

qq0l�l selection algorithm of the WW package. The points are the 183GeV data, the

hatched histogram is the simulated W-pair signal (increased fourfold for clarity),

and the open histogram is the sum of the simulated signal and background from

Z0=
 ! qq and four-fermion processes. The preselection cuts are indicated by

arrows pointing to the x-axis.
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Relative Likelihood Selection

The main likelihood selection uses the following variables:

� Rvis;

� cos �lmis;

� cos �mis;

� ps0;

� P (
p
s0) < 0:01;

� Le or L�;

� cos �Minlq |the smaller of the angles between the lepton candidate and

each of the two jets.

� cos �Minqmis|the smaller of the angles between the missing momentum and

each of the two jets.

Some examples of the simulated distributions of these variables are shown in

�gure 4.9; the di�erence in the distributions of Rvis and cos �lmis after the

preselection cuts may be seen by comparison with �gure 4.8. Likelihoods are

formed from these variables in the same way as for the identi�cation of the

lepton candidates. Three likelihoods are calculated for each event; Lqq
0e�e and

Lqq
0��� the likelihood that it is a W+W� ! qq0e�e or W

+W� ! qq0��� event,

and Lqq, that of it being a Z0=
 ! qq event. Z0=
 ! qq events are singled out

as they form the largest background contribution (excluding W+W� ! qq0��� ,

adressed in the Event Categorisation). The relative likelihood (for the qq0e�e

selection in this case) is then

Lqq0e�e =
Lqq

0e�e

Lqq
0e�e + f � Lqq

;

where f is the estimated ratio of preselected background to signal cross-section,

evaluated using simulated event samples. This relative likelihood has little
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figure 4.9: Distributions of some of the variables used in the relative likelihood

function of the qq0l�l selection algorithm of the WW package. The points are the

183GeV data, the hatched histogram is the simulated W-pair signal, and the open

histogram is the sum of the simulated signal and background from Z0=
 ! qq and

four-fermion processes.

meaning, but is chosen simply as it is a good discriminator in such algo-

rithms where it is assumed that there are two possible outcomes, each with a

known probability. Any events with Lqq0e�e >0.5 or Lqq0��� >0.5 are selected as

qq0e�eor qq
0���respectively. If two (or more) relative likelihoods give a value of
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greater than 0.5, new likelihoods are calculated using a subset of the original

variables to discrimate between the two cases.

Plots of the relative likelihood distribution for qq0e�eand qq0���events are

given in �gure 4.10

The only di�erence between this section of the selection for the 183GeV

and 189GeV data samples is the distributions used to form the likelihoods; the

same variables are used.

Event Categorisation

The relative likelihood selected sample will also select many qq0��� events

so new relative likelihoods, corresponding to di�erent � decay modes, are cal-

culated for each event. The same variables as in the �rst relative likelihood

selections are used. The expressions used are exactly analogous to the previous

expression; for any particular decay mode there is a relative likelihood function

such as

Lqq0��� =
Lqq

0���

Lqq
0��� + f 0 � Lqq

0l�l
;

Any event with Lqq0��� > 0.5 in any mode is reclassi�ed as a qq0��� event, and

is removed from the qq0e�e or qq
0��� event sample.
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figure 4.10: Distribution of the relative likelihood for the selection of qq0e�eand

qq0���events. The unhatched histogram shows the relative likelihood obtained from

CC3 signal events; the singly hatched histogram shows that from qq0��� events; and

the doubly hatched histogram shows that from the other background processes.
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Examples of Events Selected by the WW Likelihood

Selection

Figures 4.12 and 4.11 show two events selected by the likelihood selection,

displayed using Grope [57], the graphical tool for displaying information from

OPAL's subdetectors. The �rst of these events is selected as a qq0��� event atp
s = 183GeV and the other was selected as a qq0e�e event at

p
s = 189GeV.

The qq0��� event is viewed from the side of the detector so that hits in the

endcap subdetectors are visible, whilst the qq0e�e is viewed from one end of

the detector. In these plots, the orange arrow represents the direction of the

missing momentum; the other coloured lines in the central region represent

the tracks left by charged particles in the tracking chamber; the yellow and

pink blocks represent the energy deposited in the electromagnetic and hadronic

calorimeters respectively; and the red arrow represents hits in the muon cham-

bers.
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figure 4.11: An event selected as qq0��� at
p
s = 183GeV, displayed using Grope.
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Y

X
Z

figure 4.12: An event selected as qq0e�e at
p
s = 189GeV, displayed using Grope.
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4.3.3 Kinematic Fitting.

As previously noted, TGC studies can use cuts which make use of the

known W-mass to reduce the level of background accepted. Kinematic �ts

are performed[54] to provide this extra background rejection and also to give

improved values of the event kinematics. In any given event the measured

quantities|the 4-momenta of the charged lepon and the jets|have an asso-

ciated error due to the detector resolution. In addition to this there are four

unmeasured quantities: the 4-momentum of the neutrino. Using kinematic

constraints, the measured quantities may be �tted within their errors to cal-

culate the most likely 4-momenta for each of the four fermions. The kinematic

�ts are performed by the WV package, which also calculates the T.G.C. angles,

used in the analysis of the next chapter.

The simplest �t uses �ve constraints: four from conservation of energy and

momentum and the last from the masslessness of the neutrino. This gives

one over-constraint, and so this �t is termed the \1c �t". In addition to

these �ve constraints, it is possible to include an additional contribution from

the invariant mass of the charged lepton-neutrino system and another from

that of the dijet system. The correct form with which to �t these masses

is a Breit-Wigner with a central value of the world-average value of the W

mass. However, this is di�cult to incorporate into a kinematic �t, and so

it is approximated by a gaussian distribution; the width and central value

of this gaussian is altered at each iteration of the �t so that the mass value

given by the last iteration has the same probability as that given by the|

correct|Breit-Wigner distribution. The additional two mass constraints give

seven constraints overall, and so this is a triply over-constrained (3c) �t. The

acceptance of signal and rejection of background was studied by the author[55]

using
p
s = 172GeV simulated data, which contributed to the inclusion of an

additional cut on the sample such that any event which does not pass one of

the �ts at the 99.9% level is rejected.

As is illustrated in �gure 4.13, the 3c-�t gives the best measurement of

the kinematic variables, and the 1c-�t gives a small improvement over the
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raw measured quantities. shows distributions of the energy resolution for the

charged lepton in selected W+W� ! qq0l�l events and of the resolution of the

cosine of the W production angle (which is the same as the direction in the

detector frame of the hadronic system).
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figure 4.13: Distributions of the resolution of the energy of charged leptons from

W+W� ! qq0l�l events.
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4.3.4 The Effect of the Selection on

Kinematic Variables

The plots in 4.14 show the e�ect of the selection algorithm on the lepton

energy, EL, and the cosine of the W production angle, cos �W. Three distribu-

tions are shown in each plot; the �rst shows the generator level quantites; the

second shows the same quantities but only for those events that were selected;

the third shows the reconstructed quantities for events that were selected. The

second plots allow the e�ect of the selection algorithm on the distributions to

be|somewhat|separated from that of the detector resolution. Both the ac-

ceptance and the detector resolution tend to soften the distributions. As it is

precisely the shape of the distributions of cos �Wand other derived variables

which are measured in T.G.C. studies, it is obvious that neglecting such e�ects

could lead to a biased measurement.
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figure 4.14: Distributions of the lepton energy, EL, and the cosine of the W

production angle, cos �W, for all W+W� ! qq0l�l events showing generator level

quantities, for selected events showing the generator level quantities, and for selected

events showing the reconstructed quantities.
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4.4 The Performance of the

Selection Algorithm

4.4.1 The Selected Data Sample

The run in 1997 was at a centre of mass energy of 183GeV, and the inte-

grated luminosity was 57.0pb�1; 111 events were selected as qq0e�e, and 114 as

qq0���. In 1998 the centre of mass energy was 189GeV and the integrated lu-

minosity was 183.1pb�1; 360 events were selected as qq0e�e, and 387 as qq
0���.

The distributions in the angular variable phase-space (described in x2.2.3) of
the event sample are shown in �gure 4.15, with distributions from Standard

Model Monte Carlo W-pair events.

The number of events selected may be compared with the predictions ob-

tained from Monte Carlo samples, given in the following section.

4.4.2 Expected signal and background

cross-sections

The expected accepted signal and background levels are found by perform-

ing the selection algorithms on fully simulated Monte Carlo samples; the results

for the 183GeV and 189GeV selections are shown in tables 4.1 and 4.2 respec-

tively. At both energies the grc4f generator was used for the CC3 samples;

the other generators used were as previously described.

The error on the predicted numbers and cross-sections in these tables is

calculated from the Binomial standard deviation of the number of accepted
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shown for comparison.
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events:

��AccMC =
q
NTot

MC p
Acc(1� pAcc)� LD

LMC

=

s
NTot

MC

NAcc

MC

NTot

MC

(1� NAcc

MC

NTot

MC

)� LD

LMC

=

s
NAcc

MC

�
1� NAcc

MC

NTot

MC

�
� LD

LMC

and

��AccMC =

s
NAcc

MC

�
1� NAcc

MC

NTot

MC

�
1

LMC

:

��AccMC is the error on the accepted cross-section, ��AccMC is the error on the

predicted number of accepted events for a luminosity of LD, and NAcc

MC is the

number of Monte Carlo events accepted from a sample of NTot

MC events, cor-

responding to a luminosity of LMC. These errors are not gaussian for small

NAcc

MC , as in, for example, the 2-photon sample where only 8 events in the sim-

ulated sample were accepted. However, as the absolute errors due to these

small numbers happen to be reasonably small compared with the absolute er-

rors due to the larger numbers, the overall errors on the accepted background

cross-section, on the e�ciency and on the purity are una�ected.

From tables 4.1 & 4.2 it may be seen that the largest background pro-

cess is, unsurprisingly, W+W� ! qq0��� , and the next largest are \llqq(CC3

removed)" and Z0=
 ! qq. The \llqq(CC3 removed)" cross-section is cal-

culated by subtracting the accepted W+W� ! qq0l�l cross-section from the

accepted cross-section for 4-fermion events without �nal state e�e+pairs; as

these numbers are both large compared with the di�erence between them (i.e.,
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4.4 The Performance of the Selection Algorithm

as the qq0l�l cross-section is dominated by the CC3 process) the calculated

background cross-section has a suitably large error; when this contribution is

calculated as negative, it is omitted from the purity calculation.

4.4.3 Efficiency and Purity

In the discussion of the �rst section of this chapter, it was seen that the

di�erence between signal and background processes was not unequivocal; there

are the inseparable, interfering charge current processes which must, literally,

be signal because their �nal state is indistinguishable from that of W-pair de-

cay; conversely, there are misidenti�ed W+W� ! qq0��� events which arise

from a �nal state and yet are more often considered as signal than the in-

terfering charge current processes. Both have some sensitivity to the TGC

strengths. It is not unambiguous what may be de�ned as the e�ciency and

purity.

However, as the e�ciency and purity are properties of the selection al-

gorithm which is tuned on CC3 events, the e�ciency and purity are de�ned

as

EW+W�!qq0l�l =
�AccW+W�!qq0l�l

�TotW+W�!qq0l�l

PW+W�!qq0l�l =
�AccW+W�!qq0l�l

�Acc

where �AccW+W�!qq0l�l
is the accepted W+W� ! qq0l�l cross-section from a total

cross-section of �TotW+W�!qq0l�l
, and �Acc is the total cross-section for events

selected by the algorithm.

The e�ciencies are obtained by using the selection algorithm on large sam-

ples of fully simulated CC3 events generated with grc4f, and are as follows:
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At
p
s = 183GeV:

EW+W�!qq0e�e = 85:6� 0:3%

EW+W�!qq0��� = 88:6� 0:3%:

And at
p
s = 189GeV:

EW+W�!qq0e�e = 82:4� 0:3%

EW+W�!qq0��� = 83:6� 0:3%:

The accepted cross-sections for the signal and total background are ob-

tained as in tables 4.1 & 4.2:

At
p
s = 183GeV:

�SigW+W�!qq0e�e
= 1876� 7fb

�BGW+W�!qq0e�e = 201� 27fb

�SigW+W�!qq0��� = 1905� 6fb

�BGW+W�!qq0��� = 176� 27fb

which gives purities of

PW+W�!qq0e�e = 90:3� 2:5%

PW+W�!qq0��� = 91:6� 2:5%:
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4.4 The Performance of the Selection Algorithm

and at
p
s = 189GeV:

�SigW+W�!qq0e�e
= 1970� 8fb

�BGW+W�!qq0e�e = 185� 19fb

�SigW+W�!qq0���
= 2008� 8fb

�BGW+W�!qq0��� = 144� 20fb

which gives purities of

PW+W�!qq0e�e = 91:4� 1:7%

PW+W�!qq0��� = 93:3� 1:9%:

These are quoted only to provide information about the performance of the

selection procedure; the e�ciency and purity do not directly enter the analysis.
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chapter 5

The Near Neighbour Maximum

Likelihood Analysis

There are several extant methods for measuring the Triple Gauge Cou-

plings, each with their own strengths and weaknesses. The Near Neighbour

Maximum Likelihood (N.N.M.L.) method used in this thesis and described in

this chapter was developed to utilise OPAL's detector-simulated Monte Carlo

samples, and thereby automatically incorporate the e�ects of detector resolu-

tion and acceptance.

At its simplest, the method performs a single-parameter �t using reference

samples of a single process (described in section x5.2). This bare method

is su�ciently 
exible that it may be naturally extended to incorporate any

number of accepted processes (section x5.4), and to �t to an arbitrary number
of TGC parameters (section x5.5).

5.1 Introduction to the N.N.M.L.

Method

The N.N.M.L. analysis essentially consists of three stages:

i.) Di�erential cross-sections are evaluated at several T.G.C. values for each

data point in the sample to be analyzed. This is achieved using a Near

Neighbour weighting method on large Monte Carlo reference samples,

each generated with a di�erent T.G.C. strength.
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chapter5 The N.N.M.L. Analysis

ii.) The di�erential cross-sections for a given data point are �t to a quadratic

function (given explicity in in equation 5.19 following from the form of

the cross-section given in x2.2.1), to give the di�erential cross-sections

as functions of the T.G.C. parameter. Hence, the probability density

function is obtained.

iii.) A maximum likelihood �t is performed on the probability density func-

tions to determine the T.G.C. strength which makes the test sample most

probable.

The Near Neighbour weighting method is used in the �rst stage. It is a gen-

eral method of measuring a probability density (or, equivalently, a di�erential

cross-section) from a distribution of discrete points. The principal of such a

weighting technique is simple, but the mathematical framework to describe it

in its general form may seem somewhat laborious. For this reason, it is worth

describing a prototypical N.N.M.L. method so that the formal derivation may

be presented within some practical contexty.

A reference sample is distributed in a phase-space consisting of the variables

in which the di�erential cross-section is desired (in the case of this analysis,

cos �W, cos �
�
l and ��l , as described in x2.2.3, and illustrated in �gures 2.4 &

4.15). Small volumes are constructed within this phase-space at the positions

of each event in the data sample; the measured di�erential cross-section at

each point is proportional to the number of reference events which fall within

that volume. This relationship is simply expressed as

d� =
NV

LV (5.1)

where V is the elemental volume, NV is the number of events within that

volume, and L is the luminosity of the reference sample. This procedure is the

simplest form of the Near Neighbour weighting method.

This cross-section measurement is repeated for several reference samples,

each generated with a di�erent T.G.C. strength. This gives several discrete

ySee also, for example, A General Method of Estimating Physical Parameters from a

Distribution with Acceptance and Smearing E�ects [58] for a similar method.
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5.1 Introduction to the N.N.M.L. Method

values of the di�erential cross-section for each data point, which are then

�tted to a quadratic function to obtain the di�erential cross-section|and,

hence, the probability density|as a function of the T.G.C. parameter. The

probability density functions are then used in a maximum likelihood �t to

measure the T.G.C. strength of the sample. This prototypical method is shown

schematically in �gure 5.1.

As outlined, this method is similar to a binned maximum likelihood

method; the principal di�erence is that the reference samples are measured

only in the vicinity of the test data points which means that the whole phase

space need not be populated as fully as would be required for the traditional

binning method.

The description of the mathematical formalism will show that the method

may be generalized so that the hard-edged bins are replaced by weighting

functions, and the prototypical method emerges as one particular instance of

the general method. The development of non-binned �tting methods might in

itself be considered as a good motivation to investigate the general method.

It ought to be stressed that the mathematical detail described below is

principally included to justify the extension to the use of general weighting

functions.
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α

dσ

α 

-ln
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)

φ*
l

cos θ *
l
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θ W
-
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NV
i

idσ

ρ (α)i

figure 5.1: Schematic representation of the prototypical N.N.M.L. analysis

method. The blue points represent the simulated reference sample events, and the

red points represent those from the data sample to be analyzed; the purple circle

represents the spherical volume centred on the data point.
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5.2 The Single-Parameter N.N.M.L.

Method

5.2.1 Measuring the Differential

Cross-section from a Monte Carlo

Sample

The method of extracting the di�erential cross-section from a Monte Carlo

reference sample is developed from the following identity for the Dirac delta

function in terms of the di�erential cross-section, d�(x�), at a point, x�, in an

in�nite, n-dimensional parameter-space:

d�(x�) =
Z
V1

�(x�0 � x�)d�(x�0) dnx0: (5.2)

This does not seem very useful, as the di�erential cross-section function on

the right-hand side is identical to that on the left; however, the simultaneous

replacement of the right-hand term by a known reference distribution, and of

the Dirac delta function by a true, analytic function means that equation 5.2

becomes an expression for a measured di�erential cross-section.

Upon substituting for the delta function with a limiting function with an

inherent length scale, r0,

�(x�0 � x�) = lim
r0!0

�(x�0 � x�; r0); (5.3)

equation 5.2 becomes

d�(x�) = lim
r0!0

Z
V1

�(x�0 � x�; r0)d�(x�0) dnx0: (5.4)

�(x�0�x�; r0) is a kernel of an integral equation, and may be one of a number
of functions[59]; for example:
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� The \Tophat" kernel

�(x�; r0) =

8>>>><
>>>>:

0; �r0 < jx�j�
1

Vn(r0)

�
; �r0 � jx�j � r0

0; jx�j < r0

(5.5)

� The \Gaussian" kernel

�(x�; r0) =
�

1

r0
p
2�

�n

exp

��x�2
2r20

�
(5.6)

� The \Cauchy" kernel

�(x�; r0) =
�

1

r0 �

�n
1

1 +
x�2
r20

; (5.7)

where Vn(r0) is the volume of a hypersphere of radius r0 in an n-dimensionsional

space. The form of these functions are shown in �gure 5.2.

0
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Tophat Kernel

0

2

4
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0 0.5 1

Gaussian KernelGaussian Kernel

0
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6

0 0.5 1

Cauchy KernelCauchy Kernel

figure 5.2: Illustrations of three di�erent kernels.

The reference distribution is taken from large Monte Carlo reference sam-

ples. The probability density of an in�nitely large reference sample is given
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5.2 The Single-Parameter N.N.M.L. Method

by

�(x�) = lim
N!1

1

N

NX
j=1

�(x�� x�j); (5.8)

so that the di�erential cross-section is given by

d�(x�) = lim
N!1

�

N

NX
j=1

�(x�� x�j) (5.9)

= lim
N!1

1

L
NX
j=1

�(x�� x�j) (5.10)

where the x�j are the positions of the N individual points in the reference

sample, and L is the luminosity of the reference sample.

So the idealized expression for a di�erential cross-section measured from

an in�nite simulated sample is then

d�(x�) =
Z
VK

lim
r0!0

�(x�0 � x�; r0) lim
N!1

1

L

0
@ NX

j=1

�(x�0 � x�j)

1
A dnx0

= lim
r0!0

lim
N!1

1

L
NX
j=1

�Z
VK

�(x�0 � x�; r0)�(x�0 � x�j)d
nx0
�

= lim
r0!0

lim
N!1

1

L
NX
j=1

�(x�j � x�; r0): (5.11)

Obviously, in�nitely large reference samples are impossible. The realistic

case where N is �nite necessitates the simultaneous removal of the limit of

in�nitessimal r0, so that equation 5.11 becomes an approximation to the true

di�erential cross-section:

d�r0(x�) =
1

L
NX
j=1

�(x�j � x�; r0): (5.12)

' d�(x�)

This is the de�ning equation for the Near Neighbour method, whereby a dif-

ferential cross-section is measured from a simulated reference sample. Using
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the Tophat kernel the original, binned, form is recovered in terms of Nr0 , the

number of events within a volume of radius r0:

d�r0(x�) =
1

L
NX
j=1

�
1

Vn(r0)

�
; �r0 � jx�j � r0 (5.13)

=
Nr0

LVn(r0) ; (5.14)

which is exactly the form given in equation 5.1.

The derivation so far has been based on a reference sample distributed

in an in�nite phase-space, but T.G.C. studies tend to use angular variables

which have de�nite limits on their values, which in turn means that the space

is �nite. As described in chapter 2, x2.2.3, this analysis uses a phase-space of
cos �W, cos �

�
l and ��l ; each of these variable is scaled and shifted so that their

range runs from 0 to 1. To take the �nite phase-space into account it is not

necessary to modify equation 5.12, only to use modi�ed kernels. The kernels

of equations 5.5{5.7 are normalised such that their integral over all space is

equal to unity, as in the Dirac delta function; the modi�ed kernels must have

this same normalisation, but in a �nite space of volume VK:

�(x�; r0) =

8>>>><
>>>>:

0; �r0 < jx�j�
1

V 0n(x�;r0)
�
; �r0 � jx�j � r0

0; jx�j < r0

(5.15)

�(x�; r0) =

�Z
VK

exp

��x�02
2r20

�
dnx0

��1
exp

��x�2
2r20

�
(5.16)

�(x�; r0) =

0
@Z

VK

dnx0

1 +
x�02
r20

1
A
�1

1

1 +
x�2
r20

: (5.17)

V 0
n(x�; r0) is the same as the previously de�ned Vn(r0) except that it may be

cut-o� if it is within r0 of a phase-space boundary.

Using equation 5.12, the probability density at any position may be eval-

uated at any value of the T.G.C. parameters for which there exists a Monte
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5.2 The Single-Parameter N.N.M.L. Method

Carlo reference sample. The value obtained is approximate because the �nite

statistics of the reference sample compel r0 to be �nite; in the limit of in�nite

statistics r0 may become in�nitessimal and the measurement would become

exact; it is the number of events in the reference sample, N, which determines

the size of r0 and, therefore, the accuracy of the calculated probability den-

sity. There is no obvious reason to have the same value of r0 for di�erent data

events, so that, for example, a data event in a region of high statistics may

have a lower value of r0 than one in a sparse region. The di�erent methods of

choosing a value for r0 to use are investigated later.

The important thing to note about the expression for d��0r0 (x�) is that

it automatically contains all experimental e�ects contained in the reference

sample|e.g., resolution, acceptance, jet reconstruction etc. etc.|which may

be di�cult to incorporate in other T.G.C. analyses.

5.2.2 Extrapolating the Probability

Density as a Function of the T.G.C.

Strength

A maximum likelihood �t requires a continuous probability density which

varies as a function of the �t-parameter, in this case, the T.G.C. strength, �;

equation 5.12 only evaluates the di�erential cross-section at discrete values of

the coupling strength, but these may be used to �nd the probability density

function.

Almost by de�nition, the reference probability density is given by

��(x�) =
d��(x�)
��

(5.18)

where d�(x�; �) and �(�) are, respectively, the di�erential and total cross-

sections for the reference process with a parameter value of �.

As mentioned in Chapter 1.2, the Lagrangian for the reference process

(whether it involves only the CC3 diagrams or the full set of CC20) depends
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chapter5 The N.N.M.L. Analysis

on the triple gauge coupling parameters linearly, and so the cross-section (dif-

ferential or total) must depend on them quadratically. In the W-model, for

example, the elemental cross-section is

d�(x�; �W) = d�SM-SM(x�) + �Wd�
SM-W(x�) + �2Wd�

W-W(x�); (5.19)

assuming all the other T.G.C.s in the Lagrangian are zero. To explain the

notation, d�SM-SM(x�) is the Standard Model di�erential cross-section; d�SM-W(x�)
is the di�erential cross-section term arising from the W-model term in the

Lagrangian, LW, multiplied with that of the Standard Model; and d�W-W(x�)
is that arising solely from the W-model Lagrangian terms. It should be noted

that equation 5.19 is valid for both the CC3 W-pair production cross-section

and for the full CC20 cross-section, and that, obviously, it holds for any of the

T.G.C. parameters.

The equation describing any arbitrary parabola has three parameters, and

so a minimum of three points on that parabola are needed to constrain it ex-

actly; if more than three points are used the parabola is overconstrained and a

weighted least squares �t may be performed. (It should be noted that it is not

obvious for all choices of kernel what the error on the value given by equation

5.12 should be; rather than interrupt the derivation of the method, this shall

be discussed when considering the choice of kernel in section x5.3). So, by

evaluating equation 5.12 at any single point from three or more reference sam-

ples generated with di�erent T.G.C. strengths, and �tting a parabola to these

discrete values, the di�erential cross-section at that point may be obtained as

a function of the coupling strength.

Upon integrating equation 5.19 over any arbitrary volume, V, it is seen

that the integrated cross-section, �V(�W), shows the same quadratic behaviour

independent of the size or shape of V:

�V(x�; �W) =

Z
V

d�(x�; �W)

=

Z
V

d�SM-SM(x�) + �W

Z
V

d�SM-W(x�) + �2W

Z
V

d�W-W(x�)(5.20)
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5.2 The Single-Parameter N.N.M.L. Method

The extension to the total cross-section is therefore

�(�W) = �SM-SM + �W�
SM-W + �2W�

W-W: (5.21)

The parabolic behaviour of the cross-section with the �W� parameter (de-

�ned in x2.1.1 of chapter 2) is illustrated in the plots in �gure 5.3. The top

left-hand plot shows the discrete values of the total cross-sections|and asso-

ciated error|overlaid with the �tted parabola; the other plots show the same

but for the di�erential cross-section at �ve arbitrary points in phase-space,

measured using equation 5.12 with the Gaussian kernel.

Now the probability density function at a given point is simply given by

the quotient of the di�erential cross-section parabola at that point and the

total cross-section parabola:

�r0(x�; �) =
d�(x�; �)
�(�)

: (5.22)

5.2.3 Maximum Likelihood Fitting of the

Data Sample

Using the expression in 5.22 the probability density is evaluated for each

of the NData data points. The negative log likelihood (N.L.L.) may then be

formed as

L(�) � � lnL(�) (5.23)

=

NDataX
i=1

� ln �r0(x�i; �): (5.24)

Equation 5.23 de�nes L(�) as the negative logarithm of L(�), the product of

the individual probability densities. The minimum of this expression occurs at

the value of � which makes the data sample most likely to have occurred, which

is the best estimate of the true value of � which may be obtained using only

the distribution of the data events. As already seen, the total cross-section|

and, therefore, the total event rate|is also dependent on the T.G.C.s and so
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figure 5.3: Discrete values (with error) of the total and di�erential cross-sections

at �ve values of the �W� parameter, overlaid with the �tted parabola.

it is appropriate to perform an extended maximum likelihood �t according to

the following expression:

LE(�) � � ln

 "
NDataY
i=1

�r0(x�; �)
#
P (NData;�(�))

!
(5.25)

� L(�) + �(�)� NData ln�(�); (5.26)
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5.2 The Single-Parameter N.N.M.L. Method

where �(�) is the mean expected number of data events for a T.G.C. value of

�, and P (NData;�(�)) is the standard Poisson probability:

P (NData;�(�)) = e��(�)
�(�)NData

NData!
: (5.27)

(Equation 5.25 de�nes the negative extended log likelihood (N.E.L.L.); the

expression labelled 5.26 is not an equality because a lnNData! term is omitted

as it doesn't depend on the �t parameter, �, and therefore cannot e�ect the

�t results. It is this second expression which is used in the extended likelihood

�ts). The N.E.L.L. should give the best estimate of � in the simplest case

where there is no accepted background and only one T.G.C. is allowed to vary.

Unless stated otherwise, all quoted �t results are found using the extended log

likelihood �t.

The maximum likelihood �ts are performed by theMinuit [60, 61] function

minimization package.
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5.3 Configuration and

Performance of the N.N.M.L.

It is worth considering now how the simple single-parameter �t is used in

practise at this point, so that the extensions of the method may build on this.

The principal choice to make is which kernel should be used in equation 5.12,

and, subsequently, how the value of the length scale, r0, should be chosen.

However, prior to a comparison of the performance of the kernels, the error

on the value of the di�erential cross-section from equation 5.12|deferred from

x5.2.2|must be discussed.

5.3.1 The Statistical Error in the

Parabolic Fit

When using the Tophat kernel the weight obtained for each data event from

any reference sample is simply the number of reference events which fall within

some arbitrary spherical volume, multiplied by an appropriate scale factor; in

this respect, it has similarities with a normal histogramming method. In par-

ticular, the error on the measured di�erential cross-section is easily obtained;

from equations 5.15 and 5.12, the di�erential cross-section measured from a

MC reference sample using the Tophat kernel is given by:

d��1(x�) =
1

L
NX
j=1

�(x�� x�j; r0) (5.28)

=
Nr0

LV 0
n(r0)

(5.29)

where Nr0 is the number of reference points within a distance of r0 of the data

point at position x�. Hence, the error on the di�erential cross-section is then

�d��1(x�) =

p
Nr0

LV 0
n(r0)

; (5.30)
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5.3 Configuration and Performance of the N.N.M.L.

assuming that there are su�cient reference points within the volume so that

the Poisson standard deviation,
p
N , is a good approximation to the Gaussian

standard deviation. In the case of the Gaussian and Cauchy kernels there is

no de�nite volume de�ned by r0, and so it is harder to get a handle on the

error on the measured di�erential cross-sections.

As has been stated previously, when measuring the di�erential cross-section

it is important to choose as small a value of r0 as is practicable, which is

determined by the population of the reference samples. Hence, the error on

the di�erential cross-section measured from a reference sample should re
ect

the population of that reference sample, as is the case in the Tophat kernel.

But, for a general kernel, there is no simple and obvious form for the error.

However, assuming that both the measured di�erential cross-section and its

error should be approximately independent of the choice of kernel, it is possible

to obtain a tentative expression for the the error using an arbitrary kernel:

d�gk(x�) ' d�tk(x�) (5.31)

�d�gk(x�) ' �d�tk(x�)

=

q
NrTK0

LV 0
n(r

TK

0 )

=

s
d�tk(x�)
LV 0

n(r
TK

0 )

'
s

d�gk(x�)
LV 0

n(r
TK

0 )
: (5.32)

Hence, it is asserted that the error on the di�erential cross-section varies as

the square root of the di�erential cross-section itself. Unfortunately, there is

no easy way to relate the Tophat kernel length scale, rTK0 , to that of another

kernel, rGK0 , and so it is not possible to evaluate the last expression exactly.

But, so long as the same value of r0 is used for any single data event, this will

not a�ect the results of the parabolic �t, as it will scale the error on each of

the points on the �t equally.

The e�ectiveness of expression 5.32 is tested by plotting the values of �2
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obtained from parabolic �ts to the di�erential cross-sections obtained with

di�erent kernels. As rTK0 is not known, neither is V 0
n(r

TK

0 ); the normalisations

given in equations 5.15 and 5.17 are used on the grounds that they should

be of the right order of magnitude. Figure 5.4 shows the plots comparing

the �2 values obtained with the Tophat, Gaussian and Cauchy kernels. Each

plot shows �2 values from 5000 Standard Model events �tted against �W(�
�) model reference samples; each plot shows results obtained using the �ve

183GeV samples, and also using the seven 189GeV samples.

It can be seen from the plots that the shapes of the �2 values obtained with

the Gaussin and Cauchy kernels have the correct distributions[62], although

the errors for both are overestimated (but, as noted above, this makes no

di�erence to the �tted paraboli). It is worth noting that the �2 plots were made

using a global value of r0, but demonstrates that the error estimation would

be reasonable even if di�erent values of r0 were used for individual events.

Examples of the paraboli obtained at di�erent data points using individual

values of r0 were previously shown in �gure 5.3, further demonstrating that

the error estimation seems reasonable.
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figure 5.4: �2 distributions, comparing the values obtained using the Gaussian

and Cauchy kernels with an approximate error and those obtained using the Tophat

kernel with a Poisson error.
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5.3.2 Comparing the Different Kernels

The studies to determine the most e�ective kernel are performed using

simulated data samples of Monte Carlo events (details of all the Monte Carlo

samples used in the analysis presented in this thesis are given in Appendix A).

The samples are taken at random from a large Monte Carlo sample using a

\quick and dirty" random number generator[63]. In this way, any internal or-

dering in the parent sample will be removed from the subsample; furthermore,

this procedure allows for a subsample from a given �le to be completely and

unambiguously speci�ed by its required size and the number upon which the

random selection is seeded.

In order to evaluate the di�erent kernels, it is necessary to compare their

�tted results. Unfortunately there is no obvious correspondence between the

values of r0 for each kernel; i.e., what is the best value of r0 for the Tophat

kernel need not be the best value for the Gaussian or Cauchy kernels. Therefore

it is necessary to investigate the behaviour with changing r0 independently for

each kernel, and only then compare the best results.

The only parameter when using the Tophat kernel is the length scale de�n-

ing the volume. Appropriate values of r0 are limited by the statistics in the ref-

erence samples; there is a trade o� between having large statistical 
uctuations

when r0 is small|possibly resulting in an unphysical zero cross-section|and

losing sensitivity to the shape of the distribution as r0 becomes large. To �nd

the best balance between these, the values of r0 are de�ned in terms of the

population of the reference samples in the vicinity of the data points. This

is achieved by the requirement that for each di�erent reference sample there

must be a certain number, NRP=DP , of reference events within the test volume

for each data event. This de�nes a value, rmin0 , for each data point for any given

value of NRP=DP .

For the Gaussian and Cauchy kernels, it is less obvious how to relate the

size of r0 to the local population in the reference samples. However, the value

of rmin0 (x�Datai ), de�ned for use with the Tophat kernel, does give a measure of the

population in the vicinity of a data point at position x�Datai , so that a population-
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based value of r0 may be obtained as a product of rmin0 and a scale factor, fr0.

This means that there is an additional|although not independent|degree of

freedom, fr0, which must be investigated.

The simplest use of the value of r0 is to have a single value for all the data

events; but, as previously mentioned, there is nothing to say that the data

events should not have di�erent values of r0. When using a single global value

the largest value of rmin0 out of all the data events is taken, thereby ensuring

that a di�erential cross-section of zero may never occur; when using individual

r0 s, each event point takes its own value of rmin0 .

It is important to remember that the value of r0 is always constant for any

particular data event; i.e., the value of r0 does not change for each di�erent

reference sample (although this may be a viable extension).

Figure 5.5 shows the results and standard deviation obtained by �tting

�fty data-sample sized samples|consisting of fully reconstructed simulated

Standard Model events|to the �-parameters. There is a lot of information in

this plot; for the Tophat Kernel (the top four pairs of points in each column)

only NRP=DP , the population in the elemental volume, is varied to vary the

value of r0; for the Gaussian and Cauchy kernels (the rest of the points), the

population and scale factor, fr0 , are each varied independently. Furthermore,

for each value of r0 both global values (the open points), and individual values

(the �lled points) are tested.

It can be seen from �gure 5.5 that both the Tophat and Gaussian kernels

are capable of giving reasonable results; the Cauchy kernel seems biased in all

cases. That the Cauchy kernel gives the worst performance is not surprising

when considering its form; its tails are very much more pronounced than the

other kernels, and so events which are further from the test point will get

higher weighting than with the other kernels. Comparing the best �t results

for individual and global r0 values, there is little to choose between them.

Individual values are used, simply for the aesthetic reason that otherwise the

data point which �ts least well with the reference samples dictates the length

scale for all the other data points.

106



5.3 Configuration and Performance of the N.N.M.L.

Again, there is little di�erence between the best results from the Gaus-

sian and Tophat kernels; the Gaussian kernel is used for the measurements

presented in this thesis for two reasons: �rstly, it should never measure a

null di�erential cross-section from a �nite sample, which can happen with the

Tophat kernel (this will become more signi�cant when very low statistics sam-

ples are used in the background evaluation); secondly, all things being equal, it

is the more interesting method as it is an alternative to the traditional binned

�ts which feature at some point in most of the other OPAL T.G.C. analyses.
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figure 5.5: Average �t results and their standard deviations obtained by �tting 50

simulated Standard Model data samples to the �-parameters, using di�erent kernels

with di�erent methods of choosing the length scale, r0; the open points are those

using a single, global value of r0, whereas the �lled points are those using indiviual

values for each data point. Note the di�erent scales for the di�erent parameters.

The dashed line gives the true T.G.C. value of the samples.
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5.3.3 Optimization of r0

Having chosen the kernel and method for selecting the length scale, the

actual values of the population measure, NRP=DP , and the scale value, fr0, are

investigated more fully in order to, somewhat, optimize their values. At bothp
s = 183GeV and

p
s = 189GeV �fty data-sample sized simulated samples

were �tted using di�erent values of NRP=DP and fr0 . The average �tted values

and average errors are shown in �gure 5.6 and 5.7.

The parameters which give the worst �t results are �B� at 183GeVand ��


at 189GeV, which is expected as they have the lowest variation of cross-section

with T.G.C. strength; the other parameters give good results for most combi-

nations of NRP=DP and fr0 tested. In �gures 5.6 and 5.7 the boxes highlighted

in yellow indicate that average �tted values and errors are acceptable; out of

these the combinations

NRP=DP = 40

fr0 = 0:5

at
p
s = 183GeV and

NRP=DP = 60

fr0 = 0:5

at
p
s = 189GeV were chosen for use in the analysis of this thesis. For these

values of NRP=DP & fr0 the average �tted values from �gure 5.6 & 5.7 and

associated standard deviations are as follow:

�W = �0:002� 0:022 ��W = 0:155

�W� = �0:011� 0:011 ��W�
= 0:079

�B� = �0:245� 0:072 ��B� = 0:505
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figure 5.6: Mean and standard deviation of �tted values of �fty Standard Model

Monte Carlo samples at 183GeV using the Gaussian kernel with various values of

NRP=DP and fr0 . The average �t errors of the �fty �tted values are given by the error

bars; a thicker line extending beyond the error bars indicates that the average errors

do not contain 68% or more of the �tted values, and the extent of the thicker lines

indicates how much the errors must be scaled such that they do. The acceptable

combinations of NRP=DP and fr0are highlighted. The dashed line gives the true

T.G.C. value of the samples.
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figure 5.7: Mean and standard deviation of �tted values of �fty Monte Carlo

samples at 189GeV using the Gaussian kernel with various values of NRP=DP and

fr0 . See �gure 5.6 for a description of the information contained in the plot.
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at
p
s = 183GeV, and

� = 0:019� 0:011 �� = 0:074

�g1Z = �0:023� 0:010 ��g1
Z
= 0:068

��
 = 0:264� 0:041 ���
 = 0:287:

at
p
s = 189GeV.

5.3.4 N.N.M.L. Fitting to Different Values

of the T.G.C. Parameters

To test the method over a range of T.G.C. strengths, �ts are performed of

large simulated test samples (i.e., approximately ten times the data sample at

each energy) which were generated with anomalous coupling strengths. The

simulated samples are taken from the reference sample which would be used

for �tting the data sample. To avoid correlations, the events used in the test

sample at one value are also omitted from the reference samples for all other

values. This means that the reference samples used are smaller than those

actually used in the analysis, and the �tted results will, therefore, have a

larger associated error.

Figure 5.8 shows graphs of the �tted results for the main parameter sets

used at
p
s = 183GeV and

p
s = 189GeV (i.e., the �-parameters and the

�-�g1Z-��
 set, respectively). In this �gure the solid line gives the weighted

least squares �t to these points, so that the equation of the line is

�Fit = ��True + � (5.33)

where � gives the slope of the line, and, therefore, gives the response of the

method, and � gives the extent of any overall bias; the dashed line indicates

where this line would lie if the method were perfect.
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figure 5.8: Bias plots of the main parameters at
p
s = 183GeV and

p
s = 189GeV.

The solid line shows the weighted least squares �t to the �tted values, and the dashed

line shows the line which would be given by a perfect �t.
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chapter5 The N.N.M.L. Analysis

The �B� and ��
 parameters again give the worst �ts; all the other pa-

rameters have a good response over the range of values and show no bias.

In addition to the main parameter sets OPAL has reference samples atp
s = 183GeV for three other parameters: �g1Z, �� and ��HISZ
 . Similar plots

for these parameters are shown in �gure 5.9. Fits to these parameters, again,

show a good response and no bias.
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5.4 Incorporating All Accepted

Processes

The main reference samples, in general, will not contain every type of pro-

cess which may be accepted; for example, the 4-fermion Excalibur samples

used by OPAL do not contain Z0=
, 

 or any events with an electron-positron

pair in the �nal state. If ignored entirely this will introduce a bias into the �t-

ted T.G.C. strength, due to both the accepted cross-section being larger than

expected, and also due to the assumed shape of the di�erential cross-section

being incorrect.

5.4.1 Correcting the Total Cross-section

For the simplest case where the extra accepted events do not a�ect the

shape of the angular distribution the extra accepted events e�ectively scale the

total cross-section. This cannot a�ect the results of the ordinary log likelihood

�t, as this does not make use of the rate information. It will, however, e�ect

the results from the extended �t. To compensate for this e�ect it is only

necessary to add the expected number of events from the additional processes

to that from the main reference process, so that the extended log likelihood

now becomes

LE(�) � L(�) + �Inc(�)� NData ln�Inc(�); (5.34)

where

�Inc =

All processesX
�i: (5.35)

It is assumed that the processes other than that of the main reference pro-

cess have no T.G.C. dependence, which is true for OPAL's 4-fermion samples.
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5.4.2 Incorporating The Inclusive

Differential Cross-Section

To properly incorporate all accepted processes it is necessary to take ac-

count of their positions in the phase-space. The method can be extended in a

coherent way simply by adding a contribution to the di�erential cross-section

which must be evaluated from reference samples describing the additional pro-

cesses.

Considering, for ease of description, a single additional process, the dif-

ferential cross-section distribution may again be de�ned as in equation 5.10.

Then the inclusive di�erential cross-section reference distribution, incorporat-

ing the main reference sample, d�0, and that of the additional process, d�X, is

given by

d�Inc = d�0 + d�X (5.36)

=
1

L0

N0X
j=1

�(x�� x�0j) +
1

LX

NXX
j=1

�(x�� x�Xj ) (5.37)

This di�erential cross-section may then be used in equation 5.12 to give

the measured inclusive di�erential cross-section, now generalised to many pro-

cesses:

d�Incr0 (x�) =
All processesX 1

Li

NiX
j=1

�(x�ij � x�; r0) (5.38)

The inclusive total cross-section is simply the sum of the cross-sections

from each of the relevant processes,

�Inc =

All processesX
�i: (5.39)

The inclusive cross-section will also follow a quadratic form, with the addi-

tional processes simply contributing a constant term, and so the cross-section

functions and the log-likelihoods may be formed as before.

Figure 5.10 shows the result of �tting �fty data-sample sized samples of

simulated Standard Model events to the �-parameters using the N.N.M.L. in
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figure 5.10: Plot showing the central value and associated error from �fty sim-

ulated samples, �tted using di�erent cross-sections obtained from di�erent combi-

nations of samples; �4f(x) indicates the standard 4-fermion reference samples; �O

indicates an additional total cross-section (no shape information) for other processes;

�I(x) indicates the total inclusive cross-section, such that �I(x) = �4f(x) + �O(x).

The dashed line gives the true T.G.C. value of the samples.
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di�erent analysis modes. Each point in the plot shows the central value and

associated error of the �t results from �fty 57pb�1 Standard Model samples.

Two types of simulated sample are used; 4-fermion samples, taken from the

normal reference samples, and inclusive samples where these 4-fermion events

are supplemented by events arising from other processes. For each model,

the topmost point shows the result of �tting 4-fermion test samples against

4-fermion reference samples; for the second point, inclusive test samples were

�tted against 4-fermion reference samples, which shows the bias that the addi-

tional accepted events would contribute; the third point �ts inclusive samples

against 4-fermion samples but uses the correct number of expected events in

the extended log likelihood; and the fourth point shows the results of �tting

inclusive samples against inclusive reference samples.

In all cases, �tting using the inclusive sample signi�cantly corrects the bias

introduced by the other accepted events.
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5.5 The Multi-Parameter N.N.M.L.

Method

The single parameter �ts �x all other T.G.C. parameters to their Standard

Model values, but there is no reason for the anomalous couplings to be manifest

in this way. In particular, it would be ideal to simultaneously measure the three

independent parameters which conserve the SU(2)L�U(1)Y symmetry of the

Lagrangian; i.e., the �-parameters or the equivalent �-�g1Z-��
 set.

5.5.1 The Multi-Parameter Likelihood

Function

The Near Neighbour method of measuring the di�erential cross-section

from a reference sample is identical for the multi-parameter �ts to that for

the single-parameter �ts; the di�erence lies in the function to which these

measured cross-sections are �t.

The single-parameter di�erential cross-section given in equation 5.19 may

be simply extended to give that as a function of three T.G.C. parameters

(shown here for the �-parameters):

d�(x�; �W; �W�; �B�) = d�SM-SM(x�)

+�2Wd�
W-W(x�) +�Wd�

SM-W(x�)

+�2W�d�
W�-W�(x�) +�W�d�

SM-W�(x�)

+�2B�d�
B�-B�(x�) +�B�d�

SM-B�(x�)

+�W�W�d�
W-W�(x�)

+�W��B�d�
W�-B�(x�)

+�B��Wd�
B�-W(x�):

(5.40)

Equation 5.40 describes a hyperparabola in the phase-space of the three T.G.C.
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parameters. The last three terms give the correlations between the T.G.C. pa-

rameters, whereas all the other terms describing the hyperparabola are the

same as in the single parameter �ts. Therefore, in addition to those required

to measure the single parameter cross-section, it is necessary to use a mini-

mum of three extra reference samples|one for each unique pairing of T.G.C.

parameters|in order to evaluate these correlation terms.

As with the single parameter case, the probability density simply follows

from the di�erential cross-section:

�r0(x�; �W; �W�; �B�) =
d�(x�; �W; �W�; �B�)

�(�W; �W�; �B�)
: (5.41)

Hence the negative log likelihood is given by

L(�W; �W�; �B�) =

NDataX
i=1

� ln �r0(x�i; �W; �W�; �B�) (5.42)

and the negative extended log likelihood by

LE(�W; �W�; �B�) = L(�W; �W�; �B�) + N(�W; �W�; �B�)

� NData lnN(�W; �W�; �B�):
(5.43)

To be explicit, the expected number of events, N(�W; �W�; �B�), is given by:

N(�W; �W�; �B�) = LData �(�W; �W�; �B�)

= LData(�SM-SM

+ �2W�
W-W + �W�

SM-W

+ �2W��
W�-W� + �W��

SM-W�

+ �2B��
B�-B� + �B��

SM-B�

+ �W�W��
W-W�

+ �W��B��
W�-B�

+ �B��W�
B�-W):

(5.44)

The multi-parameter �ts may incorporate any additional processes in ex-

actly the same way described for the single-parameter �t.
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5.5.2 Measuring the Hyperparabola

Parameters

As with the single parameter �t, for each data point several di�erential

cross-sections are measured from the reference samples; these are then used

in a weighted least squares �t[62], but, in this case, to the multi-parameter

di�erential cross-section of equation 5.40. The same is done for the total cross-

sections of the reference samples, and then the method procedes as before,

using the Minuit package to �nd the best values of the T.G.C. parameters.

However, the hyperparabola parameters are constrained in that, physically,

the cross-section function must be positive de�nite for all values of the T.G.C.

parameters. Because the measured cross-sections have an associated error,

the conditions for this to be true[64] are not always satis�ed. Using a simple

unconstrained �t, these events must be discarded, and, as such events are liable

to be clustered in regions of phase-space, this will inevitably lead to a bias

(which will be illustrated in the following section). Distributions of the events

which fail the �t for both the data sample and a Standard Model Monte Carlo

sample are shown in �gure 5.11. The number of events which give unphysical

cross-section decreases as the value of the length scale, r0, increases, which

indicates that the e�ect is indeed due to the error on the measured di�erential

cross-sections; the proportion of events which are discarded varies roughly

between 15{30% for reasonable values of r0 (again, \reasonable values" are

discussed and evaluated in the following section).

Attempts were made to recover these events using the Minuit package

with appropriate constraints on the hyperparabola parameters. Unfortunately,

the constraints used were too stringent and led to larger biases than simply

discarding the events, and so this approach was not pursued. However, this

could well be a fruitful area for further study.
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figure 5.11: Plot showing the distributions of the events which fail the multi-

parameter �t, for the data sample and for a Standard Model 4-fermion Monte Carlo

sample.
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5.5.3 Performance and Optimization of the

Multi-Parameter Fits

The necessary correlation reference samples|i.e., with two non-zero T.G.C.

parameters|are only available at
p
s = 189GeV, so that the multi-parameter

�ts are only performed on the 1998 data set and only for the �-�g1Z-��


parameter set.

When evaluating the performance of the triple-parameter N.N.M.L. it is

necessary, once again, to look at a range of values of the length scale, r0. Due

to time constraints and the added complexity of comparing results from three

parameters simultaneously, the method of choosing r0 was not investigated as

thoroughly as with the single parameter �ts; a single sample, approximately

10 times the data sample and comprised of simulated Standard Model events,

was analyzed using several values of the population measure, NRP=DP , but with

no scale factor, fr0 , applied.

Figure 5.12 shows several plots of the 95% con�dence level limit (C.L.L.)

contours from the negative extended log likelihood obtained using di�erent

values of NRP=DP . In each of these plots, the contour is shown for two of

the parameters, whilst the other is at its �tted value; the �tted value of the

displayed parameters is indicated on each of the plots. From these, a value of

NRP=DP = 100 is chosen for the multi-parameter analysis.

It should be noted that, in all cases, the 95% C.L.L. contours for the

� � �g1Z parameters exclude the Standard Model value, although all of the

single parameter values are consistent with the Standard Model values within

this limit. In this respect, the multi-parameter �ts could well be improved,

particularly for the �g1Z parameter. This may be due to the discarded events

leading to a bias; the simplest way to improve the performance of this �t would

probably be to include more reference �les with correlated T.G.C. parameter

values, rather than the minimum of three which are available at present. In

addition, further work may be done to recover the discarded events using a

constrained �t to the hyperparabola parameters.
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figure 5.12: 95% C.L.L. contours for the �-�g1Z-��
 parameters from the analysis

of a large Standard Model sample of events at
p
s = 189GeV. Each row of plots

shows the �t results using a di�erent value of NRP=DP . For each plot, the contour

and �tted values for two parameters are displayed whilst the third is at its �tted

value. The Standard Model position is indicated by the dotted lines.
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5.6 Incoporating a Systematic

Error in the Analysis

Any experimental measurement will have an associated systematic error.

This means that the true probability distribution is not that given by the

likelihood functions, but instead by the convolution of the likelihood functions

with the additional probability function of the systematic uncertainty[62]. It

is this convolved probability which should then be used in the negative log

likelihood �ts.

With such a complicated analysis as that described in this chapter there

will probably be many sources of systematic uncertainty (these are described in

chapter 7), so that the systematic probability function should be approximately

Gaussian, by the Central Limit Theorem[62].

Therefore, the likelihood function of equation 5.24 will become

LS(�) � � ln

�Z 1

�1

d�0L(�0) exp

��(�� �0)2

2"2�

��
(5.45)

where "� is the total systematic error.

It is these functions which should be used in the negative log likelihood �t to

�nd the measured T.G.C. parameters. The �t function (i.e., L(�) in equation

5.45) is too complicated for these integral to be performed analytically, and so

it must be solved using numerical computational techniques[63].

In addition to the systematic uncertainty from the negative log likelihood

function, there will also be a systematic uncertainty in the expected total cross-

section, and, hence, the expected number of accepted events. This means that

the negative extended log likelihood function will become

LS
E(�) � � ln

�Z 1

�1

d�0L(�0) exp

��(�� �0)2

2"2�

�

�
Z 1

0

dN0DataP (N
0
Data;�) exp

��(NData � N0
Data

)2

2"2N

��
;

where "N is the error on the accepted number of events. The Poisson prob-

ability function for the total number of accepted events may be very well
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approximated by a Gaussian, so that the second integral in equation 5.46 may

be performed analytically, using the identity

Z 1

�1

dx0
1p
2�a

exp

��x02
a

�
1p
2�b

exp

��(x� x0)2

b

�
=

1p
2�(a+ b)

exp

� �x2
a + b

�
: (5.46)

This expression is not exactly appropriate, as the integral runs from �1 to1
whereas the Gaussian approximation to the Poisson distribution has a lower

limit of zero; but the width of the distribution and the statistical error on the

number of events are su�ciently small in comparison to the position of the

peak of the distribution that the di�erence will not be appreciable. Hence the

complete negative extended log likelihood function to be minimized is

LS
E(�) � � ln

�Z 1

�1

d�0L(�0) exp

��(�� �0)2

2"2�

�
exp

��(NData � �(�))2

2(�(�)� "2�)

��
:

(5.47)

This function gives the best measurement of the T.G.C. parameters incor-

porating all the available information.
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chapter 6

The Measurement of the

T.G.C.s

To recap from chapter 2, the principal measurements of this thesis involve

the two, equivalent sets of SU(2) � U(1) invariant triple gauge coupling pa-

rameters:

� �W, �W� and �B�,

� �, �g1Z and ��
 .

Additionally there are simulated samples generated with a nominal collision

energy of 183GeV for the following parameters:

� �g1Z
y, ��HISZ
 , ��.

As the �-parameters and the �-�g1Z-��
 parameters are the main focus of this

analysis, the log-likelihood plots for their measurements are grouped together;

the log-likelihood plots for the additional parameters are then displayed sub-

sequently.

Triple-parameter �ts are presented for the 1998 data sample, with 95%

C.L.L. contours to illustrate the correlations between the parameters.

yAlthough �g1Z appears in sets of parameters at both energies, it is not considered one

of the main samples at
p
s = 183GeV because the complete set of SU(2)L�U(1)Y invariant

parameters are not covered without the � and ��
 parameters.
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6.1 Measured Values of the T.G.C.

Parameters

As detailed in chapter 4, x4.4.2, the selected data sample obtained by OPAL
in 1997, when LEP ran at a collision energy of 183GeVand OPAL received

57.0fb�1, comprises 247 events. The expected number of accepted events ac-

cording to the Standard Model is 238.2. That selected in 1998, when LEP ran

at 189GeVand OPAL received 183.1fb�1, comprises 747 events. The expected

number at this energy according to the Standard Model is 806.3.

The �nal �tted values of the �-parameters at
p
s = 183GeV are

�W = 0:012+0:343�0:240 � 0:056

�W� = 0:039+0:144�0:128 � 0:022

�B� = �0:423+0:493�0:345 � 0:470

and those for the �-�g1Z-��
 parameters at
p
s = 189GeV are

� = �0:059+0:086�0:081 � 0:061

�g1Z = �0:010+0:076�0:073 � 0:054

��
 = 0:211+0:314�0:251 � 0:210:

The values of the additional parameters measured at
p
s = 183GeV are

�g1Z = 0:101+0:252�0:233 � 0:061

��HISZ
 = �0:102+0:220�0:201 � 0:054

�� = �0:117+0:191�0:175 � 0:210:

The measured values are taken from the log-likelihood curves shown in section

x6.2.4, generated with the full single parameter N.N.M.L. analysis incorporat-

ing the systematic error (the evaluation and inclusion of the systematic error

are described in the following chapter). The �rst error on the values is sta-

tistical and is taken from the log-likelihood curves shown in x6.2.3 which are
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6.1 Measured Values of the T.G.C. Parameters

from the full N.N.M.L. �t without including the systematic error. The second

error is the systematic uncertainty on the �tted values.

The 95% C.L.L. obtained from the full N.N.M.L. �t with systematic error

for the �-parameters at
p
s = 183GeV are

�0:415 < �W < 0:726

�0:202 < �W� < 0:340

�1:135 < �B� < 2:011

and those for the �-�g1Z-��
 parameters at
p
s = 189GeV are

�0:216 < � < 0:116

�0:150 < �g1Z < 0:143

�0:247 < ��
 < 0:859:

For the other parameters measured at
p
s = 183GeV the limits are

�0:316 < �g1Z < 0:568

�0:484 < ��HISZ
 < 0:355

�0:449 < �� < 0:280:
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6.2 Log-Likelihood Curves and

Fitted Values From Different

Analysis Modes

Various di�erent analysis modes were described in chapter 5. Several sets

of log-likelihood curves are presented in this section, in order to illustrate the

e�ect of using the inclusive cross-section|as described in x5.4 of chapter 5|
and also the e�ect on the curves of the systematic uncertainty. In all the

plots, the dashed line gives the log-likelihood curve from the �t to the angular

distribution of the data, the dotted curve gives the log-likelihood curve from

the �t to the total cross-section, and the solid line gives their sum, the extended

log-likelihood curve.

In addition to results from the single-parameter �ts, 95% C.L.L. contours

from the triple-parameter �ts of the 1998 data sample are also shown. Due

to time constraints, the systematic uncertainties were not incorporated in the

multi-parameter �ts, and so the �tted parameter values are not quoted. The

plots are included to show the correlations between the di�erent parameters

and are shown for the full, inclusive cross-section �t (x6.2.3).

6.2.1 The Basic N.N.M.L. Fit

The simplest measurement of the T.G.C.s uses the method and con�gura-

tion described in x5.2 of chapter 5. The main features are as follows:

� A gaussian kernel

� Individual values of r0 for each data event, depending on the population

of the reference samples in the vicinity.

� The value of r0 for any given data point is calculated by �nding the
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minimum radius to contain 40 reference events for the 183GeV data and

60 for the 189GeV data, and then scaling this radius by 0.5.

� No process other than those in the main reference samples is included in

the analysis.

The log-likelihood curves for this simplest measurement are shown in �gures

6.1 and 6.2. In the 1997 data there are two minima to the total cross-section

log-likelihood curve, because there are more events in the data sample than

the minimum expected number; conversely, there is a single minimum in that

for the 1998 data because there are fewer than the minimum expected.
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figure 6.1: Log-likelihood curves for the main T.G.C. parameters measured using

the basic N.N.M.L. �t to the 183GeV and 189GeV data. The dotted line gives the

negative log likelihood curve from the total cross-section analysis, the dashed line

gives that from the angular distribution analysis, and the solid line is their sum

which is the negative extended log likelihood curve.
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figure 6.2: Log-likelihood curves for additional T.G.C. parameters measured using

the basic N.N.M.L. on the 183GeV data.

135



chapter6 The Measurement of the T.G.C.s

6.2.2 Incorporating the Expected

Background Level

The �rst level of sophistication is to account for the expected level of back-

ground in the extended log-likelihood �t, as described in section x5.4.1. Only
the results of the extended log-likelihood �t are altered, and the modi�ed log-

likelihood curves are shown in �gures 6.3 and 6.4. It can be seen from these

�gures that the local maximum in the log-likelihood curves of the total-cross

section is less pronounced, which is simply due to the minimum expected num-

ber of events having increased.

6.2.3 The Measurement Using the Inclusive

Cross-Section

Fully incorporating all accepted processes, as described in x5.4 of chapter

5, gives the log-likelihood curves shown in �gures 6.5 and 6.6. Now the log-

likelihood curves from the angular distribution �t have changed; the shape

is roughly the same for all parameters, but for those parameters which have

a local maximum in their curves|�W & �B�|the height of the maximum

has decreased, and for the others, where the curve is roughly parabolic, the

width of the curves has increased slightly. This indicates that neglecting the

additional accepted processes would lead to an underestimated statistical error,

and possibly a biased measurement.

Simultaneous Fits to the �-�g1Z-��
 Parameters

Figure 6.7 shows the 95% C.L.L. contours for the �-�g1Z-��
 parameter

set as measured from the 1998 data set using the multi-parameter negative

extended log likelihood �t. The �tted values are indicated on the plots.
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figure 6.3: Log-likelihood curves for the main T.G.C. parameters measured using

the basic N.N.M.L. �t incorporating the expected total cross-section.
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figure 6.4: Log-likelihood curves for the additional T.G.C. parameters measured

using the basic N.N.M.L. �t incorporating the expected total cross-section.
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figure 6.5: Log-likelihood curves for the main T.G.C. parameters measured using

the inclusive cross-section N.N.M.L..
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figure 6.6: Log-likelihood curves for additional T.G.C. parameters measured using

the inclusive cross-section N.N.M.L..
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6.2.4 Incorporating the Systematic Error

The systematic errors are incorporated in the �t as described in chapter

5, x5.6; the evaluation of the systematic errors are described in the following

chapter. The resultant log-likelihood curves are shown in �gures 6.8 and 6.9.

The positions of the minima for these curves are taken as the �nal measured

values of the T.G.C. parameters, quoted at the beginning of this chapter.

The inclusion of the systematic uncertainty in the total cross-section has no

noticeable e�ect, as it is so much smaller than the Poisson standard deviation

on the number of events in the data sample; the e�ect of including that for

the angular distribution �t is noticable, and tends to soften the shape of the

curves, as would be expected.
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figure 6.8: Log-likelihoods curves for the main T.G.C. parameters measured using

the inclusive N.N.M.L. incorporating the expected systematic error.
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figure 6.9: Log-likelihoods curves for additional T.G.C. parameters measured us-

ing the inclusive N.N.M.L. incorporating the expected systematic error.
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6.3 Measured Limit on the Scale of

New Physics

A measured anomalous coupling implies the existence of some new physics

process, as described by the relations given in x2.1.2. Using these relations,

the measured values of the T.G.C. parameters give a range of values on the

Upper Limit on the Scale of New Physics of 1{4TeV. However, these Upper

Limits would only be signi�cant if the Standard Model parameter values had

been excluded; within the 1 sigma variation of the measured T.G.C. parameter

values, no limit on �NP may be imposed.
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chapter 7

Evaluation of the Systematic

Error

The �nal results given in the previous chapter included the total systematic

error witout any reference to their source or evaluation. This chapter describes

the evaluation of that systematic error. As the analyses are almost identical

at the two di�erent energies, there are only minor di�erence in the sources of

systematic error. The sources of error which e�ect the event rate are detailed

in section x7.1 and those which e�ect the distributions in x7.2.

7.1 Systematic Error on the Total

Cross-Section

There are several sources of uncertainty in the expected accepted cross-

section. The uncertainties in the total cross-section are given in table 7.1,

and the di�erent contributions are described in the following sections. The

resulting change in the �tted T.G.C. values (denoted as \��") due to the

inclusion of the rate systematics alone are given as the last entries in the table

for information; they are not used directly in the analysis. The systematic

errors due to the uncertainty in the total cross-section turn out to be negligible

in comparison with those due to uncertainties in the angular distributions.
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7.1 Systematic Error on the Total Cross-Section

7.1.1 Electroweak Modelling

The main reference four-fermion samples used in the analysis were gener-

ated using the Excalibur generator, but other Monte Carlo generators pre-

dict a slightly di�ererent accepted cross-section. The only other four-fermion

generator used to produce fully simulated data samples|and, hence, suitable

for comparison|is grc4f. The breakdown of the total four-fermion cross-

sections for the Excalibur and grc4f generators are given in table 7.2, as

are the di�erence between their predicted cross-sections and the resulting un-

certainty in the predicted number of accepted events. There are no fully sim-

ulated grc4f samples generated with anomalous T.G.C. parameters so the

systematic errors are evaluated at the Standard Model values.
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7.1 Systematic Error on the Total Cross-Section

7.1.2 Selection Algorithm Acceptance

The expected accepted cross-section is calculated from Monte Carlo sam-

ples, and, therefore, has an associated error due to the �nite statistics; this is

e�ectively an uncertainty in the acceptance of the selection algorithm. This

error has two main contributions: from the main 4-fermion reference samples,

and from the samples for the other accepted processes. The errors from these

sources are added in quadrature, and they are given in table 7.3.

Main Reference Samples

The total expected cross-section for the main reference samples is calcu-

lated as a function of the T.G.C. parameters from the Monte Carlo reference

samples. The total number of accepted events in any given reference sample

has an associated error, which, for simplicity, is taken as the Poisson standard

deviation. Three parameters describe a cross-section parabola and so the er-

ror on the total cross-section is evaluated from these cross-section parameters

and their covariance matrix, which themselves are found using the Minuit

package. For each T.G.C. parameter, the error is calculated at its �tted value.

Reference Samples for Additional Accepted

Processes

The additional reference samples, which are independent of the T.G.C.

parameters, also have an associated error. Again, this is taken as the Poisson

standard deviation on the total number of accepted events for each sample.
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7.1 Systematic Error on the Total Cross-Section

7.1.3 The Dependence of the Cross-section

on Kinematic Parameters

The cross-section for W-pair production depends on many input parame-

ters, apart from the T.G.C. strengths. Most of these are very well-measured,

and do not lead to an appreciable uncertainty in the expected cross-section, but

both the W boson mass and the collision energy will do so. The resultant un-

certainty is evaluated by direct evaluation of the W+W� ! qq0l�l cross-section

using the Gentle cross-section calculator with di�erent input parameters, cor-

responding to the uncertainties on these quantities. The errors are calculated

at the �tted values of each of the T.G.C. parameters.

The full 4-fermion cross-section could be calculated using the Excalibur

Monte Carlo generator, but this would not be appropriate unless acceptance

cuts could be applied; when only considering the CC3 cross-section this should

be less important.

The errors due to the uncertainty on the mass of the W-boson and the

beam energy are given in table 7.4.

The Mass of the W� boson

The Excalibur Monte Carlo reference samples were generated using a

W boson mass of 80.33GeV, but the current measured value from Fermilab

is 80:45 � 0:06GeV[65]. It is possible to evaluate a systematic shift due to

this e�ect rather than a symmetric error, but the best method to do this is

somewhat ambiguous because the extent of the change in the cross-section is

dependent on the T.G.C. strength; fortuntately, the error due to this uncer-

tainty is small, and any bias in the �tted T.G.C. value is absolutely negligible

compared with their errors.
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Beam Energy

The Monte Carlo reference samples were generated with the nominal beam

energies of 183GeV and 189GeV. The actual beam energy is not constant

across a single run, and also has an associated error. The average beam energy

is

EBeam = 91:480� 0:167� 0:025GeV

for the 1997 run[66, 67], and

EBeam = 94:348� 0:144� 0:020GeV

for the 1998 run[68, 69]. The �rst error is the standard deviation of the beam

energies for the runs and the second is the error on the measurement of the

beam energy; only the latter is taken as a systematic uncertainty.

p
s

(in GeV)

T.G.C.

Parameter

Uncertainty (in pb)

MW EBeam Total

183GeV

�W 0.0024 0.0012 0.003

�W� 0.0025 0.0012 0.003

�B� 0.0084 0.0014 0.009

�g1Z 0.0031 0.0012 0.003

��HISZ
 0.0029 0.0013 0.003

�� 0.0030 0.0013 0.003

189GeV

� 0.0027 0.0006 0.003

�g1Z 0.0030 0.0006 0.003

��
 0.0039 0.0006 0.004

table 7.4: Uncertainties in the W+W� ! qq0l�l cross-section due to the mass of

the W� boson and the beam energy.
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7.1 Systematic Error on the Total Cross-Section

7.1.4 Detector Simulation

There is an error in the measured cross-section which is due to the accep-

tance uncertainty from the imperfect simulation of the OPAL detector[70, 71].

Firstly, there are known to be tracking losses in the OPAL detector which are

not simulated by theGopal package. Secondly, there is a discrepancy between

the acceptance of faked W+W� ! qq0l�l events from real data and Monte

Carlo events; the faked events are constructed by combining real LEP-I mul-

tihadronic events and hemispheres from lepton pair events. The WW package

selection function is tested on the faked and Monte Carlo events and the dif-

ference between the measured acceptance is assigned as the systematic error.

The errors are shown in table 7.5.

p
s

(in GeV)

Uncertainty

(in pb)

Tracking

Losses

Data/MC

Discrepancy
Total

183GeV 0.0123 0.0170 0.0210

183GeV 0.0099 0.0163 0.0191

table 7.5: Uncertainty in the measured cross-section due to the imperfect detector

simulation.
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7.2 Uncertainties in the Decay

Distributions

The e�ect of the uncertainties in the decay angle distributions of the �nal

state fermions has a much larger e�ect than the uncertainty in the total cross-

section. The total systematic errors on the �tted T.G.C. parameters from the

analysis are given in table 7.6, and the evalutation of the di�erent contributions

are explained in the subsequent sections.

7.2.1 Finite Monte Carlo Statistics

The analysis method, obviously, is heavily dependent on the size of the

reference �les. The statistics directly e�ect the �tted paraboli, used to �nd

the probability density functions, but this error does not propagate through to

the �nal error on the �tted value. Hence, an estimation of the contribution to

the error from the limited statistics of the reference samples must be included

in the total error.

If the analysis of a particular parameter were repeated an arbitrary number

of times, but with di�erent reference samples, there will be a �nite standard

deviation on the distribution of the �tted results; it is assumed that this stan-

dard deviation will vary in inverse proportion to the root of the size of the

reference samples.

Obviously, extra sets of reference samples do not exist and so this spread in

the �tted value cannot be directly measured. However, it may be inferred by

splitting the existing reference samples into smaller subsamples, and repeating

the analysis with these subsamples. From the standard deviation found using

these smaller samples, the standard deviation for the full samples may be

inferred.

Each of the reference samples are split into four subsamples, so that each of
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chapter7 Evaluation of the Systematic Error

the subsamples from a single reference sample are of equal size. The analysis is

repeated for each set of subsamples, and the standard deviations are calculated.

The true standard deviation, �MCStats, is then assumed to be given by

�MCStats =
�SubSamplep

4
:

Where �SubSample is the standard deviation of the �tted results from the four

sets of subsamples. By splitting each of the main samples into equal sized

subsamples,the di�erence in absolute size of the samples becomes irrelevant.

This method is not watertight; for one thing, four subsamples will only give

a relatively poor measure of the standard deviation. Secondly, the analysis

parameters (r0 and NRP=DP) are not optimized for these smaller samples. This

should not matter too much, as only their relative spread|not the central

values themselves|are important. The uncertainties as measured using this

method are given in table 7.7.

p
s

(in GeV)

T.G.C.

Parameter

Error

183GeV

�W 0.012

�W� 0.0048

�B� 0.037

�g1Z 0.015

��HISZ
 0.0030

�� 0.014

189GeV

� 0.0041

�g1Z 0.0072

��
 0.029

table 7.7: Estimation of the error due to the �nite statistics of the Monte Carlo

Reference Samples.
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7.2 Uncertainties in the Decay Distributions

7.2.2 The Background Estimation

Each of the samples used in the background estimation are considerably

smaller than those used as the main reference samples; this makes the relative

error due to statistical 
uctuations comparitively large. In order to estimate

the resulting error, shown in table 7.8, the overall background cross-sections

are, in turn, increased and decreased by a factor corresponding to the Poisson

standard deviation. The �ts to the data samples are performed using these

modi�ed background samples, and the largest deviation from the central value

is taken as the systematic error.

In addition to this, the two-photon background is known to be somewhat

poorly modelled (as mentioned in section x4.1.2) and so, in addition to the

previous evaluation, this background is doubled and removed in the �t; again,

the largest deviation is taken as the error.

p
s

(in GeV)

T.G.C.

Parameter

Uncertainty

All background 2-photon Total

183GeV

�W 0.010 0.0050 0.012

�W� 0.0053 0.0038 0.0065

�B� 0.0035 0.0054 0.0064

�g1Z 0.0071 0.0091 0.012

��HISZ
 0.0057 0.0035 0.0067

�� 0.0052 0.0037 0.0064

189GeV

� 0.0021 0.0008 0.0022

�g1Z 0.0031 0.0018 0.0036

��
 0.014 0.020 0.025

table 7.8: Uncertainty in the �tted values of the T.G.C. parameters due to the

statistical error of the non-T.G.C. dependent Monte Carlo reference samples.
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7.2.3 Monte Carlo Modelling

All the T.G.C.-dependent samples used in the analysis were generated with

the Excalibur Monte Carlo generator. No Monte Carlo generator could give

a perfect simulation of the data events collected by OPAL, and there are a

number of uncertainties which may e�ect the reference samples.

Most obviously, there is an uncertainty in how well the generator describes

the fundamental interactions. In order to obtain a measure of the uncertainty

in the modelling of the physical interaction by this generator, �ts to Standard

Model Excalibur test samples are compared to �ts to Standard Model grc4f

test samples. The systematic error is taken as the di�erence between the two

�t results.

In addition to this, the way that the quarks fragment into jets of particles

is not very well understood. Dedicated programs simulate the fragmentation

of a quark into a jet, and of these Jetset is the most commonly used. In order

to see the e�ect that the uncertainty in the fragmentation model may have,

�ts are compared to two samples which have identical events at the generator

level but have had the quarks hadronized by Jetset and by Herwig [72].

Again, the error is taken as the di�erence between these �tted results.

The errors from these two sources are shown in table 7.9.

7.2.4 Detector Simulation

The imperfect modelling of the detector a�ects the acceptance e�ciency of

the detector as a function of the detector polar angle. This has the largest

e�ect on the electron candidate in W+W� ! qq0e�e events. The most

problematic region for the electrons is in the overlap of the Electromagnetic

Barrel and Endcap Calorimeters, the \Transition Region"; this lies between

0:72 < j cos �Detj < 0:82 Additionally, there are discrepancies in the 1998 run

between the Monte Carlo and Data acceptance of electrons in the forward

calorimeter, where 0:90 < j cos �Detj < 0:95. For simplicity, the errors due
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7.2 Uncertainties in the Decay Distributions

p
s

(in GeV)

T.G.C.

Parameter

Uncertainty

Electroweak

Modelling

Fragmentation

Modelling
Total

183GeV

�W 0.045 0.028 0.053

�W� 0.014 0.011 0.017

�B� 0.401 0.239 0.467

�g1Z 0.010 0.020 0.023

��HISZ
 0.019 0.022 0.028

�� 0.0078 0.031 0.032

189GeV

� 0.058 0.011 0.059

�g1Z 0.050 0.011 0.051

��
 0.118 0.164 0.203

table 7.9: Uncertainty in the �tted T.G.C. parameters due to Monte Carlo mod-

elling.

to these acceptance uncertainties are evaluated by performing the T.G.C. �ts

on reduced data samples which have these events removed; for the 1998 data

samples two reduced data samples are formed, one with the Transistion Region

events removed, and the other with the Forward Detector events removed. The

error is taken as the di�erence between the �tted values from these samples

and the full event samples. The errors are given in table 7.10
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p
s

(in GeV)

T.G.C.

Parameter

Uncertainty

Electromagnetic

Calorimeter

Forward

Detector
Total

183GeV

�W 0.005 - 0.005

�W� 0.003 - 0.003

�B� 0.020 - 0.020

�g1Z 0.003 - 0.003

��HISZ
 0.011 - 0.011

�� 0.003 - 0.003

189GeV

� 0.020 0.018 0.027

�g1Z 0.010 0.008 0.013

��
 0.083 0.042 0.093

table 7.10: Uncertainties in the �tted T.G.C. parameters due to the imperfect

detector simulation.
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7.2 Uncertainties in the Decay Distributions

7.2.5 Jet Reconstruction

In addition to the uncertainty in the modelling of the jet fragmentaion,

there is also an uncertainty in their reconstruction. This is evaluated[73] by

studying antiparallel jets at LEP1 and comparing the collected data with the

Monte Carlo events. This yields uncertainties of 10% for the jet energy resolu-

tion, 0.5% for the overall jet energy, 10% for the resolution of the jet angles in

the lab-frame, cos�Jet and �Jet, and �0.01 for the absolute error on cos�Jet.

In order to quantify the systematic error due to these uncertainties, a large

Standard Model Excalibur test sample is modi�ed as follows to give six new

samples:

� EJet smeared by 10%

� EJet scaled by 0.5%

� cos�Jet smeared by 10%

� cos�Jet shifted by 0.010

� jcos�Jetj shifted by 0.009

� �Jet smeared by 10%

Each of these six samples and the original, unaltered sample were �t to the

T.G.C. parameters; the total systematic error is taken as the shifts in the �tted

results added in quadrature. The errors are given in table 7.11.

The measured direction of the hadronic system is very important in this

analysis, as it gives the W boson decay angle (cos �W). The resolution on

cos �W may be inferred directly by studying radiative fermion-pair production

events. By selecting events with an identi�ed initial state photon a sample

of jet pairs with similar acolinearities to those in W-pair production events is

obtained. As it is known that the hadronic system and the photon must be

antiparallel, the resolution on the measured direction of the hadronic system

may be taken as their acolinearity. Such studies yield a very conservative
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7.2 Uncertainties in the Decay Distributions

error on the W boson decay angle of 0.01, which is in good agreement with

the suggested error on the individual jets, given above, and so no additional

systematic error need be assigned.
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chapter 8

Conclusion

In this thesis a new analysis method|the Near Neighbour Maximum

Likelihood|was used to measure the Triple Gauge Couplings from data col-

lected by the OPAL detector at collision energies of 183GeV and 189GeV.

To conclude this thesis, the performance and possible improvements of the

N.N.M.L. are reviewed, and �nally the implications of the measured results

and their consistency with the published measurements from the OPAL ex-

periment are discussed.

8.1 Review of the N.N.M.L. Method

8.1.1 Possible Modifications of the

Method

The Near Neighbour method for measuring a di�erential cross-section or

probability density from a set of discrete points has been shown to be a viable

method by the tests of the analysis, described in chapter 5. However, there

are many modi�cations which could be made, both for use in T.G.C. studies,

or else for application in other analyses.

For the general Near Neighbour weighting method:

{ The length scale, r0, need not be the same for each variable in the

phase space, so that the weighting function would have a hyper-
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ellipsoidal symmetry, rather than hyper-spheroidal as it does as

used in the analysis presented in this thesis. This would allow the

relative sensitivities of the di�erent variables to be utilised.

{ Alternative kernels could be investigated, although it is unlikely

that a dramatic improvement would result.

For T.G.C. analyses in particular:

{ For any given data event the length scale, r0, could be allowed to

vary for di�erent reference samples. When using the tophat kernel

this would be akin to measuring the volume which contains a given

number of reference events, rather than measuring the number of

data events within a speci�ed volume. Developing this method

for other kernels would be harder, particularly if the error on the

measured di�erential cross-section is to be used.

{ An increased phase space may be used, including, for example, the

decay angles of the hadronic system.

{ The method could easily be applied to the other decay channels. If it

were, it might be useful to investigate the use of other variables other

than the traditional angular variables, because of the ambiguities

in their reconstruction in the W+W� ! l�ll
0�l0 and W+W� !

q0q00q000q0000channels.

{ For the multi-parameter �ts, more e�ort should be devoted to recov-

ering those events which give non-physical cross-section functions.

A procedure based around the Minuit package would probably be

most succesful for this, although additional reference samples would

probably also be useful.

Of these possible modi�cations, the variable-dependent r0 might be the most

useful extension of the general method.
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8.1 Review of the N.N.M.L. Method

8.1.2 The Performance of the N.N.M.L.

The analysis appears to work least well for the �B� and ��
 parameters;

this is seen both in the tests of the analysis (chapter 5) and also in the errors

on the measurement of the data (chapters 6 & 7). The reason for this is almost

certainly that the cross-section is much less sensistive to anomalous values of

these parameters than of the others.

The large statistical error on these parameters is to be expected, as the

measurement of a weaker parameter will always have a larger statistical error.

However, the systematic error on the �tted values of these two parameters is

much more signi�cant than it is for any of the other parameters measured.

Again, this is probably due to the statistical 
uctuations within the test sam-

ple and reference samples having a much larger e�ect than with the more

sensitive parameters. If this is the case, a better measure of these two param-

eters might be achieved if the reference samples were generated with a larger

range of coupling strengths (so that samples with coupling strengths of, say,

�4;�2;�1; 0; 1; 2; 4 were used in the �t rather than samples with strengths of

�2;�1;�1
2
; 0; 1

2
; 1; 2). This should not degrade the statistical error, and might

reduce the systematic error. If the N.N.M.L. method were to be more fully

investigated|as opposed to being developed expressly to be used in an anal-

ysis, as in this thesis|it might be useful to compare, for example, �ts using

the three samples generated with �g1Z equal to �1
2
; 0 and + 1

2
to �ts with the

samples generated with ��
 equal to �2; 0 and + 2; this would give some

indication whether the comparitively poorer measurement of the �B� & ��


parameters was simply due to the weaker cross-sectional dependence.

8.1.3 Comparison With Other Methods

The N.N.M.L. analysis was included in the OPAL analysis of the 1998

data set[74] as a consistency check of the main analysis which is based on an

\Optimal Observables" method; to be consistent with the other analyses in
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the paper, events selected as W+W� ! qq0��� had to be included in the data

sample and Monte Carlo reference samples. Figure 8.1 shows the likelihood

curve from the Optimal Observables (O.O.) method, the Binned Maximum

Likelihood (B.M.L.) method (both performed by other members of the OPAL

T.G.C. group) and the N.N.M.L. method; as can be seen, the N.N.M.L. is in

good agreement with the other methods although the error is slightly bigger.
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figure 8.1: Likelihood curves for the �-�g1Z-��
 parameter set obtained using

three di�erent analyses on the 1998 data set of events selected as W+W� !
qq0e�e or W+W� ! qq0��� or W+W� ! qq0��� , as published by the OPAL

Collaboration[74].
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8.2 Discussion of the Measurements

No anomalous coupling strengths between the electroweak gauge bosons

were detected in the analysis of the 1997 and 1998 data sets of events selected

as W+W� ! qq0e�e or W+W� ! qq0���. Table 8.2 shows the published

p
s

(in GeV)

T.G.C.

Parameter

N.N.M.L.

Measurements

Published

OPAL

Measurements

183GeV

�W 0:012+0:343�0:240 � 0:056 �0:14��0:15� 0:04

�W� 0:039+0:144�0:128 � 0:022 �0 :06+0 :12
�0 :10 � 0 :11

�B� �0:423+0:493�0:345 � 0:470 0 :04+0 :61
�0 :45 � 0 :18

�g1Z 0:101+0:252�0:233 � 0:061 �0:01� 0:14� 0:043

��HISZ
 �0:102+0:220�0:201 � 0:054 �0 :13+0 :18
�0 :16 � 0 :17

�� �0:117+0:191�0:175 � 0:210 �0 :13+0 :17
�0 :16 � 0 :17

189GeV

� �0:059+0:086�0:081 � 0:061 �0:143+0:097�0:093 � 0:036

�g1Z �0:010+0:076�0:073 � 0:054 �0:032+0:091�0:085 � 0:038

��
 0:211+0:314�0:251 � 0:210 �0:12+0:36�0:27 � 0:143

table 8.1: The measured T.G.C. parameter values from the OPAL experiment

using events selected as W+W� ! qq0e�e or W+W� ! qq0��� or W+W� !
qq0��� , and those from the N.N.M.L. analysis using only those events selected as

W+W� ! qq0e�e or W+W� ! qq0���. The numbers in italics were obtained

with a preliminary analysis[75] using a binned maximum likelihood analysis on an

incomplete data set; the other results from OPAL[76, 74] were obtained using an

Optimal Observable analysis.

measurements of the T.G.C. parameters from the OPAL experiment obtained
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using the O.O. or B.M.L. analyses on the 1997 and 1998 data sets of events

selected as W+W� ! qq0e�e or W+W� ! qq0��� or W+W� ! qq0��� .

Unlike the case for the likelihood curves shown in �gure 8.1, the measured

values and errors for each parameter shown in table 8.2 are not expected to

be the same, as the data sample is di�erent (some of the OPAL measurements

were preliminary, and did not use the complete data set; these are indicated

in the table). The measurements obtained using the N.N.M.L. are consistent

with the OPAL measurements, although with larger errors.

In addition, table 8.2 gives the 95%C.L.L. from the analysis presented in

this thesis, and also the comibined limits from the OPAL experiment[74] and

those from the D? [77] experiment for the �-�g1Z-��
 parameter set.

Parameter
N.N.M.L.

Limits

Published

OPAL

Limits

Published

D?

Limits

Published

CDF

Limits

� -0.216, 0.116 -0.25, 0.04 -0.18, 0.19 -0.81, 0.84

�g1Z -0.150, 0.143 -0.14, 0.14 -0.67, 0.56 |

��
 -0.247, 0.859 -0.36, 0.83 -0.18, 0.36 |

table 8.2: 95% C.L.L. on the �-�g1Z-��
 parameters from the
p
s = 189GeV

N.N.M.L. analysis compared with the published limits from the OPAL[74] and D?

[77] experiments. Additionally, limits from the CDF experiment[10] are given for

the � parameter.

At the experimental precision reached to date, there is no evidence of

anomalous trilinear couplings between the electroweak bosons. Naturally, this

means that no limit can be imposed upon the Scale of New Physics.
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appendix A

Monte Carlo Samples

Tables A.1 & A.2 give the details of the Monte Carlo samples at
p
s =

183GeV &
p
s = 189GeV respectively used in the analysis presented in this

thesis.

A.1 Monte Carlo Samples at
p
s = 183GeV

Simulated

Process
Generator

Run

Number

NAccepted
NSample

Luminosity

(in fb�1)

4-fermiona

Standard Model
Excalibur 7330

21299

100000
5231

4-fermion

�W= -2
Excalibur 7334

11526

50000
1376

4-fermion

�W= -1
Excalibur 7832

11224

50000
2114

aThroughout this table samples labelled\4-fermion" contain no e+e� pairs.

table A.1: Monte Carlo Reference samples at
p
s = 183GeV. NAccepted is the

number of events accepted by the Selection algorithm|described in Chapter 4|

and NSample is the number of events processed.
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Table A.1 continued : : :

Simulated

Process
Generator

Run

Number

NAccepted
NSample

Luminosity

(in fb�1)

4-fermion

�W= +1
Excalibur 7831

10699

49500
2177

4-fermion

�W= +2
Excalibur 7333

11381

50000
1447

4-fermion

�W�= -2
Excalibur 7332

12012

50000
962

4-fermion

�W�= -1
Excalibur 7828

11704

50000
1814

4-fermion

�W�= +1
Excalibur 7827

10697

50000
1878

4-fermion

�W�= +2
Excalibur 7331

11347

50000
1000

4-fermion

�B�= -2
Excalibur 7830

10828

48500
2367

4-fermion

�B�= -1
Excalibur 7336

11341

50000
2058

4-fermion

�B�= +1
Excalibur 7829

9706

47500
2342

4-fermion

�B�= +2
Excalibur 7335

9804

50000
2089

4-fermion

�g1Z= -2
Excalibur 7826

11990

50000
1250

4-fermion

�g1Z= -1
Excalibur 7825

11146

49500
2024

4-fermion

�g1Z= +1
Excalibur 7824

11021

50000
2090

4-fermion

�g1Z= +2
Excalibur 7823

11378

49500
1276
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A.1 Monte Carlo Samples at
p
s = 183GeV

Table A.1 continued : : :

Simulated

Process
Generator

Run

Number

NAccepted
NSample

Luminosity

(in fb�1)

4-fermion

��HISZ
 = -2
Excalibur 7835

11046

50000
2278

4-fermion

��HISZ
 = -1
Excalibur 7836

11443

50000
1682

4-fermion

��HISZ
 = +1
Excalibur 7834

10203

50000
2342

4-fermion

��HISZ
 = +2
Excalibur 7833

10144

50000
1753

4-fermion

��= -2
Excalibur 7839

11111

50000
2213

4-fermion

��= -1
Excalibur 7840

11727

50000
1549

4-fermion

��= +1
Excalibur 7838

10234

50000
2293

4-fermion

��= +2
Excalibur 7837

10367

50000
1627

e�e+qq grc4f 7055
248

133677
5000

e�e+���+ grc4f 7054
1

9378
5000

Z0=
 ! qq Pythia 5050
249

396019
4654

Tagged

Two-photon
Herwig 1126

5

168177
501
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Table A.1 continued : : :

Simulated

Process
Generator

Run

Number

NAccepted
NSample

Luminosity

(in fb�1)

l��ll
0+�l0& lll0l0

Standard Model
grc4f 7349

7

15090
5000

qq0l�l& qqll

Standard Model
grc4f 8056

20206

40566
5000

q0q00q000q0000& qqq0q0

Standard Model
grc4f 7051

46

39312
5000

e�e+ !W+W�

Jetset

fragmentation

grc4f 8437
19882

77701
5000

e�e+ !W+W�

Herwig

fragmentation

grc4f 8441
19924

77701
5000
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A.2 Monte Carlo Samples at
p
s = 189GeV

Simulated

Process
Generator

Run

Number

NAccepted
NSample

Luminosity

(in fb�1)

T.G.C.-dependent

4-fermion

Standard Model

Excalibur 8100
107203

460000
25260

T.G.C.-dependent

4-fermion

�=-2

Excalibur 8262
24326

100000
2432

T.G.C.-dependent

4-fermion

�=-1

Excalibur 8110
24137

100000
4112

T.G.C.-dependent

4-fermion

�=-0.5

Excalibur 8261
16841

71500
3577

T.G.C.-dependent

4-fermion

�=+0.5

Excalibur 8260
23239

100000
5235

T.G.C.-dependent

4-fermion

�=+1

Excalibur 8109
23579

100000
4396

T.G.C.-dependent

4-fermion

�=+2

Excalibur 8259
24312

100000
2634

table A.2: Monte Carlo Reference samples at
p
s = 189GeV. The format is the

same as that for table A.1
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Table A.2 continued : : :

Simulated

Process
Generator

Run

Number

NAccepted
NSample

Luminosity

(in fb�1)

T.G.C.-dependent

4-fermion

�g1Z=-2

Excalibur 8258
24983

100000
2232

T.G.C.-dependent

4-fermion

�g1Z=-1

Excalibur 8108
24314

100000
3962

T.G.C.-dependent

4-fermion

�g1Z=-0.5

Excalibur 8257
23476

100000
4954

T.G.C.-dependent

4-fermion

�g1Z=+0.5

Excalibur 8256
23205

100000
5160

T.G.C.-dependent

4-fermion

�g1Z=+1

Excalibur 8107
24004

100000
4222

T.G.C.-dependent

4-fermion

�g1Z=+2

Excalibur 8255
24527

100000
2401

T.G.C.-dependent

4-fermion

��
=-2

Excalibur 8254
24297

100000
3998

T.G.C.-dependent

4-fermion

��
=-1

Excalibur 8106
24366

100000
4981

T.G.C.-dependent

4-fermion

��
=-0.5

Excalibur 8253
23900

100000
5344
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p
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Table A.2 continued : : :

Simulated

Process
Generator

Run

Number

NAccepted
NSample

Luminosity

(in fb�1)

T.G.C.-dependent

4-fermion

��
=+0.5

Excalibur 8252
22927

100000
5425

T.G.C.-dependent

4-fermion

��
=+1

Excalibur 8105
22205

100000
5137

T.G.C.-dependent

4-fermion

��
=+2

Excalibur 8251
20978

100000
4210

T.G.C.-dependent

4-fermion

� = +1, �g1Z = +1

Excalibur 8113
24464

100000
2971

T.G.C.-dependent

4-fermion

�g1Z = +0.537,

��
 = +1

Excalibur 8111
22199

100000
5015

T.G.C.-dependent

4-fermion

��
 = +1, � = +1

Excalibur 8112
22610

100000
4110

T.G.C.-independent

4-fermion

(no e+e�)

Excalibur 8101
504

52300
25250

e�e+ff

(s-channel)
grc4f 8230

230

41402
25000

e�e+ff

(t-channel)
grc4f 8231

86

150000
5000
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Table A.2 continued : : :

Simulated

Process
Generator

Run

Number

NAccepted
NSample

Luminosity

(in fb�1)

Z0=
 ! qq Pythia 5078
209

175000
5066

Tagged

Two-photon
Herwig 1049

5

150000
497

l��ll
0+�l0 & lll0l0

Standard Model
grc4f 7844

7

15354
4842

qq0l�l & qqll

Standard Model
grc4f 8055

21023

43396
5000

q0q00q000q0000 &

qqq0q0

Standard Model

grc4f 7846
31

42088
5000

e�e+ !W+W�

Jetset

fragmentation

grc4f 8438
21021

82190
5000

e�e+ !W+W�

Herwig

fragmentation

grc4f 8442
9792

38286
2311
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