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We give a short review of QCD sum rule results for B and D mesons and ΛQ and
ΣQ baryons. We focus mainly on recent developments concerning semileptonic
B → π and D → π transitions, pion couplings to heavy hadrons, decay constants
and estimates of the b quark mass from a baryonic sum rule, and the extraction of
the pion distribution amplitude from CLEO data.

1 Introduction

The accurate study of B meson decays is a main source of information for
understanding CP violation and the physics of heavy quarks. In particular,
experiments at B factories will allow measurements of B decay properties with
good precision 1. On the theoretical side, the method of QCD sum rules2 re-
mains one of the main tools in applying Quantum Chromodynamics to hadron
physics. Since its birth in 1979, the sum rule method has become more and
more advanced not only technically, but also conceptually. In this talk, we
give a short review of QCD sum rule results for B and D mesons and ΛQ and
ΣQ baryons. We focus mainly on recent developments concerning semileptonic
B → π and D → π transitions3, including a new approach4, which will be dis-
cussed in detail, and new results on the f0 form factor 5. Furthermore we will
address pion couplings to B and D mesons and to ΛQ and ΣQ baryons, meson
decay constants and corresponding matrix element for baryons, an estimate of
the b quark mass from a baryonic sum rule, and finally a recent extraction of
the pion distribution amplitude from CLEO data6.

aTalk given by O.Yakovlev at the 4th Workshop on Continuous Advances in QCD, Min-
neapolis, May 12-14, 2000
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2 Pion distribution amplitude from CLEO data

We start with the pion distribution amplitudes, which serve as input in the
QCD sum rule method and allow the calculation of heavy-to-light form fac-
tors (e.g., f+

B→π and f+
D→π) and hadronic coupling constants (e.g., gB∗Bπ and

gD∗Dπ). Recently, the CLEO collaboration has measured the γγ∗ → π0 form
factor. In this experiment 8 b, one of the photons is nearly on-shell and the
other one is highly off-shell, with a virtuality in the range 1.5 GeV2 – 9.2 GeV2.
The possibility of extracting the twist-2 pion distribution amplitude from the
CLEO data has been studied in the papers 6,7. There, the light-cone sum rule
(LCSR) method has been used to calculate the relevant form factor and to
compare the calculation with the measurement of γγ∗ → π0.

In order to sketch the basic idea we begin with the correlator of two vector
currents jµ = (2

3 ūγµu− 1
3 d̄γµd):

∫
d4xe−iq1x〈π0(0)|T {jµ(x)jν(0)}|0〉 = iεµναβqα

1 qβ
2 Fπγ∗γ∗(s1, s2), (1)

where q1, q2 are the momenta of the photons, and s1 = q2
1 , s2 = q2

2 are the vir-
tualities. In the CLEO data, one of the virtualities is small, i.e. s2 → 0. Since
a straightforward OPE calculation is impossible, we have to use analyticity
and duality arguments. One can write the form factor as a dispersion relation
in s2:

Fπγ∗γ∗(s1, s2) =
√

2 fρ F ρπ(s1)
m2

ρ − s2
+

∞∫
s0

ds
ρh(s1, s)
s− s2

. (2)

For the physical ground states ρ and ω we take mρ ' mω; 1
3 〈π0(p)|jµ|ω(q2)〉 '

〈π0(p)|jµ|ρ0(q2)〉 = 1
mρ

εµναβ eν qα
1 qβ

2 F ρπ(s1); 3 〈ω|jν |0〉 ' 〈ρ0|jν |0〉 = fρ√
2

mρ e∗ν ,
eν being the polarization vector of the ρ meson and fρ being the decay con-
stant. The spectral density of the higher energy states ρh(s1, s) is derived
from the expression for F πγ∗γ∗

QCD (s1, s) calculated in QCD, assuming semi-local
quark-hadron duality for s > s0. Equating the dispersion relation (2) with the
QCD expression at large s2, and performing a Borel transformation in s2, one
gets the LCSR:

√
2 fρ F ρπ(s1) =

1
π

s0∫
0

ds Im Fπγ∗γ∗
QCD (s1, s) e

m2
ρ−s

M2 , (3)

bThere also exist older results from the CELLO collaboration 9.
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Figure 1: Left: The form factor Q2 F γγ∗π(Q2) with different distribution amplitudes:
Braun-Filyanov (dashed lines), Chernyak-Zhitnitsky (dotted lines) and ϕπ extracted from
CLEO data. Right: Ranges of the coefficients a2 and a4 suggested by CLEO data in
comparison to the Chernyak-Zhitnitsky model (square) and the asymptotic distribution am-
plitude (circle).

where M is the Borel parameter. Substituting (3) into (2) and taking s2 → 0
one finally obtains

F πγγ∗(s1) =
1

π m2
ρ

s0∫
0

ds Im Fπγ∗γ∗
QCD (s1, s) e

m2
ρ−s

M2 +
1
π

∞∫
s0

ds

s
Im Fπγ∗γ∗

QCD (s1, s).

(4)
This expression is the basic sum rule used for the numerical analysis. The
calculation of the spectral density of the twist-2 operator including the O(αS)
radiative correction gives 6

1
π Ims2F

πγ∗γ∗(s1, s2) =
2
√

2fπs2s1

(s2 − s1)
3

(
1 +

αs(µ)CF

12π
· (5)

·
(
− 15 + π2 − 3 log2(−s2

s1
)
)

+ a2(µ)A2(s2, s1) + a4(µ)A4(s2, s1)
)
.

As usual, the distribution amplitude of twist 2 is expanded in Gegenbauer poly-
nomials, keeping only the first three terms: ϕπ = 6 u(1−u)

(
1 + a2C

3/2
2 + a4C

3/2
4

)
.

The coefficients A2,4 in (5) are too complicated to be given here. They can be
found in 6.

We then combined the twist-2 contribution at NLO with the higher twist
contributions up to twist 4, calculated in 7, and analyzed the LCSR for the
form factor of the process γγ∗ → π0 numerically. Details of the analysis are
given in 6. The coefficients a2 and a4 of the twist-2 distribution amplitude can
be determined by comparing the sum rule (4) with CLEO data8. We find that
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the deviation of the pion distribution amplitude from the asymptotic form is
small. More definitely, putting a4 = 0, we get6

a2(µ) = 0.12± 0.03 at µ = 2.4 GeV. (6)

This result agrees well with a recent analysis of the electromagnetic pion form
factor 13. Fig. 1 shows the form factor Q2 F γγ∗π(Q2) calculated with dif-
ferent distribution amplitudes: Braun-Filyanov11 (dashed lines), Chernyak-
Zhitnitsky12 (dotted lines) and (6). In principle, one can also extract the coef-
ficient a4. Unfortunately, the present data is not good enough to fix the values
of a2 and a4 simultaneously. The ranges of a2 and a4 favored by CLEO data
are shown in Fig. 1. Obviously, these are in qualitative agreement with (6)
and also with the results derived in 14,15,16,13, where it has also been claimed
that the pion distribution amplitude is very close to the asymptotic form.

3 Coupling constants gB∗Bπ and gD∗Dπ

The hadronic B∗Bπ coupling is defined by the on-shell matrix element

〈B̄∗0(p) π−(q) | B−(p + q)〉 = −gB∗Bπ(q · ε) , (7)

where the meson four-momenta are given in brackets and εµ is the polarization
vector of the B∗. An analogous definition holds for the D∗Dπ coupling. These
couplings play an important role in B and D physics. For example, they
determine the magnitude of the weak B → π and D → π form factors at zero
pion recoil. Moreover, the coupling constant gD∗Dπ is directly related to the
decay width of D∗ → Dπ. The decay B∗ → Bπ is kinematically forbidden.
Theoretically, the B∗Bπ and D∗Dπ couplings have been studied using a variety
of methodsc. Among these, QCD light-cone sum rules (LCSR) have proved
particularly powerful. The LCSR calculations of gB∗Bπ and gD∗Dπ including
perturbative QCD effects in LO and NLO were reported in 17,18. The final
LCSR reads

fBfB∗gB∗Bπ =
m2

bfπ

m2
BmB∗

e
m2

B
+m2

B∗
2M2

[
M2

(
e−

m2
b

M2 − e−
sB
0

M2

)
ϕπ(1/2, µ)

+
αsCF

4π

2sB
0∫

2m2
b

f

(
s

m2
b

− 2
)

e−
s

2M2 ds + F (3,4)(M2, m2
b , s

B
0 , µ)

]
(8)

cAn overview is given, e.g., in Tab. 1 of ref. 17.
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LCSR fBfB�gB�B� 0.80�0:23 GeV
2

2SR fB 180�30 MeV

LCSR
2SR

fB�gB�B� 4.44�0:97 GeV

2SR fB� 195�35 MeV

LCSR
2SR

gB�B� 22 � 7

LCSR fDfD�gD�D� 0.54�0:15 GeV
2

2SR fD 190�20 MeV

LCSR
2SR

fD�gD�D� 2.84�0:55 GeV

2SR fD� 270�35 MeV

LCSR
2SR

gD�D� 10.5 � 3

Figure 2: Left table: Sum rule predictions for B and B∗ mesons. Right table: Sum rule
predictions for D and D∗ mesons.

with

f(x) =
π2

4
+ 3 ln

(x

2

)
ln

(
1 +

x

2

)
− 3(3x3 + 22x2 + 40x + 24)

2(2 + x)3
ln

(x

2

)
+6Li2

(
−x

2

)
− 3Li2(−x)− 3Li2(−x− 1)− 3 ln(1 + x) ln(2 + x)

−3(3x2 + 20x + 20)
4(2 + x)2

+
6x(1 + x) ln(1 + x)

(2 + x)3
. (9)

In (8), we have added the contributions F (3,4) from the pion distribution am-
plitudes of twist 3 and 4, which can be found in 17. For the b-quark mass
and the corresponding continuum threshold we use mb = 4.7 ± 0.1 GeV and
sB
0 = 35∓ 2GeV2 respectively. The running coupling constant is taken in the

two-loop approximation with Nf = 4 and Λ(4)

MS
= 315 MeV corresponding

to αs(mZ) = 0.118 20. In the charm case, the corresponding parameters are
given by mc = 1.3 ± 0.1 GeV, sD

0 = 6 GeV2, and Λ(3)

MS
= 380 MeV d. Finally,

for the pion distribution amplitude ϕπ(u, µ) at u = 0.5 and µ = 2.4 GeV we
have ϕπ(1/2, µ) = 1.23 6. The decay constants and resulting coupling con-
stants are summarized in the two tables in Fig. 2. We will make use of them
in the next section. Here we just mention that from gD∗Dπ given in Table 2
one obtains Γ(D∗+ → D0π+) = 23 ± 13keV. The current experimental limit

dThe meson masses are (in GeV) mB = 5.279, mB∗ = 5.325, mD = 1.87, mD∗ = 2.01, and
fπ = 132 MeV.
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20 Γ(D∗+ → D0π+) < 89 keV is still too high to challenge the theoretical
prediction.

4 The scalar form factor f0

In general, the hadronic matrix element of the B → π transition is determined
by two independent form factors, f+ and f−:

〈π(q)|ūγµb|B(p + q)〉 = 2f+(p2)qµ +
(
f+(p2) + f−(p2)

)
pµ, (10)

where (p + q) and q denote the initial and final state four-momenta and ūγµb
is the relevant weak current. The form factor f0 is usually defined through the
matrix element

pµ〈π(q)|ūγµb|B(p + q)〉 = f0(p2)(m2
B −m2

π), (11)

yielding together with (10) f0 = f+ + p2

m2
B
−m2

π
f−. In order to determine f0

from sum rules it is advantageous to consider f+ and f+ + f−. The sum rule
for f+ has been analysed in 3,19. The sum rule for the sum of form factors is
given by

f+ + f− = − mbfπ

π m2
B fB

s0∫
m2

b

ds

1∫
0

du exp
(
−s−m2

B

M2

)
ϕπ(u) Im T̃QCD, (12)

where M again denotes the Borel mass. The expression of the hard amplitude
T̃QCD(p2, s, u, µ) in LO and NLO can be found in 28 and in5, respectively. The
leading twist-2 contribution to the imaginary part of the hard amplitude is
given by 5

1
π

ImT̃QCD(s1, s2, u, µ) =
(CF αs(µ)

2π

)
Θ(s2 −m2

b)
mb

s2 − s1{
Θ(u− u0)

[
− (1− u)(u− u0)(s2 − s1)2

2uρ2
− 1

u(1− u)

(
m2

ρ
− 1

) ]
(13)

+ δ(u− u0)
1
2u

[
(s1 −m2

b)
2

s2
1

ln
(

1− s1

m2
b

)
+

m2
b

s1
− 1

]
− 1

1− u

(
1− m2

b

s2

) }

with u0 = m2
b−s1

s2−s1
. In Fig. 3, the form factor f0

Bπ is plotted together with the
UKQCD lattice results 21. We see that the radiative contributions improve the
agreement between the lattice and the LCSR calculations. Also shown in Fig.
3 are the LCSR results for the form factor f0

Dπ. We note that f0
Dπ(0) = 0.66.
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Figure 3: Left: NLO LCSR prediction for f0
Bπ (solid squares) and fit to the later and the

PCAC constraint shown by the empty square (dashed line). Also shown are the LO LCSR
result (solid line) and the UKQCD lattice data (empty circles). Right: Light-cone sum rule
results for the form factor f0

Dπ in NLO (solid line) and LO (dashed line).

5 New method of calculating f+

In this section we review a new method suggested in4 for calculating heavy-to-
light form factors. The method is based on first principles. It is an extension
of LCSR, but it has a much wider range of applicability, including the inter-
mediate momentum region, where most of the lattice results are located, and
even the region near zero recoil. The main idea is to use the operator prod-
uct expansion with a combination of double and single dispersion relations.
The resulting new sum rule has a term which corresponds to the ground-state,
as well as contributions which account for all possible physical intermediate
states. We start from the usual correlation function

Fµ(p, q) = i

∫
dxeip·x〈π(q)|T {ū(x)γµb(x), mbb̄(0)iγ5d(0)}|0〉

= F (p2, (p + q)2)qµ + F̃ (p2, (p + q)2)pµ, (14)

focusing on the invariant amplitude F (p2, (p + q)2). In the following, we use
the definitions

σ(p2, s2) =
1
π

Ims2 F (p2, s2), ρ(s1, s2) =
1
π2

Ims1 Ims2 F (s1, s2). (15)

The standard sum rule for the form factor f+(p2) is obtained by writing a
single dispersion relation for F (p2, (p + q)2) in the (p + q)2-channel, inserting
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the hadronic representation for σ(p2, s2) and Borelizing in (p + q)2:

B(p+q)2F = B(p+q)2


2m2

BfBf+(p2)
m2

B − (p + q)2
+

∫
s2>s0

ds2
σhadr(p2, s2)
s2 − (p + q)2


 . (16)

Note that any subtraction terms which might appear vanish after Borelization.
Similarly, the standard light-cone sum rule for the coupling gB∗Bπ is obtained
from a double dispersion relation:

Bp2B(p+q)2F = Bp2B(p+q)2

(
m2

BmB∗fBfB∗gB∗Bπ

(p2 −m2
B∗)((p + q)2 −m2

B)

+
∫
Σ

ds1ds2
ρhadr(s1, s2)

(s1 − p2)(s2 − (p + q)2)


 , (17)

where Σ denotes the integration region defined by s1 > s0, s2 > m2
b and

s1 > m2
b , s2 > s0.

In contrast to the above procedure we suggest to use a dispersion relation
for σ(p2, s2)/(p2)l in the p2-channel (with l being an integer):

σ(p2, s2) = − 1
(l− 1)!

(
p2

)l dl−1

dsl−1
1

σ(s1, s2)
s1 − p2

∣∣∣∣
s1=0

+
∫

s1>m2
b

ds1
(p2)l

sl
1

ρ(s1, s2)
s1 − p2

,(18)

and to replace σ(p2, s2) in (16) by the r.h.s of (18) e. Then, writing a double
dispersion relation for F (p2, (p+q)2)/(p2)l and comparing it with the previous
result, we obtain the sum rule

f+(p2) =
1
2

(p2)l

(m2
B∗)l

fB∗gB∗Bπ

mB∗
(
1− p2

m2
B∗

) − 1
(l − 1)!

(
p2

)l dl−1

dsl−1
1

f+(s1)
s1 − p2

∣∣∣∣
s1=0

+
1

2m2
BfB

∫
Σ′

ds1ds2
(p2)l

sl
1

ρ(s1, s2)
s1 − p2

e−
s2−m2

B
M2 , (19)

where the integration region Σ′ is defined by s1 > s0 and m2
b < s2 < s0. This

sum rule is valid in the whole kinematical range of p2. As input we need the
first (l − 1) terms of the Taylor expansion of f+(p2) around p2 = 0. These

eBy choosing l large enough the dispersion relation (18) will be convergent.
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Figure 4: Left: The LCSR prediction for the B → π form factor at l = 0, 1, 2, 3 in comparison
to lattice results. The lattice results come from FNAL (full circles), UKQCD (triangles),
APE (full square), JLQCD (open circles), and ELC (semi-full circle). Right: The LCSR
prediction on the form factor f+

Bπ (circles) in comparison to the constraint (dashed) derived
by Boyd and Rothstein.

parameters can be obtained numerically from the standard sum rule for f+(p2):

f+(p2) =
1

2m2
BfB

s0∫
m2

b

σQCD(p2, s2)e−
s2−m2

B
M2 (20)

following from (16). We further need the residue at the pole p2 = m2
B∗ , which

can be obtained from the sum rule (17), as discussed in the previous section
(see (8)).

The case l = 0 has a very transparent physical meaning. The first term
represents the contribution of the ground state resonance with mass mB∗ , while
the second term corresponds to the contributions of all other physical states
in this channel. As shown explicitly in4 for twist 2, 3 and 4, the last term is of
O(αs) only. This provides an explanation of the empirical fact that the single
pole model describes many form factors quite well. In addition, we are now
able to quantify the deviation from the pole model, in a model-independent
way, applying QCD and light-cone OPE. It should be noted that the parameter
l plays a similar role as the Borel parameter M2. There is a lower limit on
l such that the dispersion relation (18) converges. Going to higher values of
l will improve the convergence of the dispersion relations and will suppress
higher resonances in the B∗-channel. But there is also an upper limit on l.
The higher the value of l, the more derivatives of f+(p2) at p2 = 0 enter. At
some point, one starts probing the region p2 > m2

b −2χmb, where the standard
sum rule (20) breaks down. Details on the numerical analysis of the new sum
rule can be found in 4. This analysis nicely supports the qualitative results
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obtained in 3. Using the convenient parameterization27

f+
Bπ(p2) =

f+
Bπ(0)

(1− p2/m2
B∗)(1 − αBπp2/m2

B∗)
, (21)

and f+
Bπ(0) = 0.28±0.053,19, we get αBπ = 0.4±0.04 in remarkable agreement

with αBπ = 0.32±0.21
0.07 derived in 3. Fig. 4 shows a comparison of (21) with

recent lattice results 21,22,23,24,25. The agreement within uncertainties is very
satisfactory. Finally, the LCSR prediction also obeys the constraints derived
from sum rules for the inclusive semileptonic decay width in the heavy quark
limit 26. This is also demonstrated in Fig. 4.

The above results on f+
Bπ can be used to calculate the width of the semilep-

tonic decay B → πl̄νl with l = e, µ. For the integrated width, one obtains3

Γ =
G2|Vub|2

24π3

∫
dp2(E2

π −m2
π)3/2

[
f+

Bπ(p2)
]2

= (7.3± 2.5) |Vub|2 ps−1 . (22)

Experimentally, combining the branching ratio BR(B0 → π−l+νl) = (1.8 ±
0.6) · 10−4 with the B0 lifetime τB0 = 1.54 ± 0.03 ps 20, one gets Γ(B0 →
π−l+νl) = (1.17±0.39)·10−4 ps−1 . From that and (22) one can then determine
the quark mixing parameter |Vub|. The result is

|Vub| = (4.0± 0.7± 0.7) · 10−3 (23)

with the experimental error and theoretical uncertainty given in this order.
For the D → π transition and using (21) analogously one obtains 3 αDπ =
0.01+0.11

−0.07 and f+
Dπ(0) = 0.65±0.11, which nicely agrees with lattice estimates,

for example, the world average 22 f+
Dπ(0) = 0.65 ± 0.10 , or the most recent

APE result 24, f+
Dπ(0) = 0.64± 0.05+.00

−.07. For more details one should consult3.

6 Heavy baryons

The study of heavy baryons such as Λb, Λc and Σb, Σc, is more complicated.
Two and three point QCD sum rules have been investigated in31,33,34,32,30, and
have been applied to the heavy-to-light baryon transitions41,42,40. However, we
are not aware of applications of LCSR to heavy-to-light baryon transitions. In
the following we collect the results available at present (see also 30). One has
estimated the binding energies, Λ̄ = M −mQ, of the ground state baryons and
the residues of the baryonic currents, 〈B|JB|0〉 = FBuB, at NLO. The results
are31,32,33,34

Λ̄(ΛQ) = 0.77± 0.05GeV and |FΛQ | = 0.027± 0.001GeV3, (24)

Λ̄(ΣQ) = 0.94± 0.05GeV and |FΣQ | = 0.038± 0.003GeV3. (25)
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Using the experimental value for the mass of the Λb baryon, m(Λb) = 5.642±
0.05 GeV 20 one finds for the pole mass of the b quark: mb = 4.88± 0.1, and
for the related MS mass: m̄(m̄) = 4.25 ± 0.1GeV. These values are in good
agreement with the mass estimates in the meson case37,38. Coupling constants
have been derived from sum rules in the external axial field 29 with the result:
gΣ∗Σπ = 0.83 ± 0.3 and gΣ∗Λπ = 0.58 ± 0.2. The semileptonic transition
Λb → Λc has been studied35 using sum rule techniques. The matrix elements
of this weak transition are determined by the Isgur-Wise function

〈Λb|c̄Γb|Λc〉 = ξ(w)ūcΓub (26)

where w = vb ·vc and Γ is the Dirac matrix. The baryonic Isgur-Wise function
has been estimated by QCD sum rules in 35. The slope of this function at
w = 1 is found to be ρ2 = −1.15 ± 0.2 and the shape is fitted very well by
ξ(w) = 2

1+wexp
(
(2ρ2 − 1)w−1

w+1

)
. Taking into account 1/m corrections39, one

obtains the width Γ(Λb → Λceν) = | Vcb

0.04 |2 · 6 · 10−14 GeV.

Conclusion: We have given a short review of selected topics concerning
QCD sum rules for heavy hadrons. One main development during the past few
years has been the NLO improvement. A second important development is the
ongoing update of the pion wave functions 6. Very recently a new sum rule for
B → π has been suggested4. Among the remaining problems, we have men-
tioned the application of LCSR to baryons requiring the knowledge of baryonic
distribution amplitudes.
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