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1. General formulae

The LEP note 1221) gives the beam-beam synchrotron radiation for a
round Gaussian beam and other simplified distributions. The calculations
for the more general case of a real two-dimensional Gaussian involves finding
an analytical soluticn for a 4-dimensional integral, which is obtained below,
starting from two different but equivalent integral expressions for the

electric field.

The general formulae would seem to be valid as the independent analy-
tical expressions for the integral agreed and the correct value was found

for the limiting case of a round beam.

The integral I2bb is defined as follows :
ds
I2bb = p—2- 1.1
This differs from the definition of Izbbl) but the results are compatible

(see Appendix).

Let us assume for the transverse distributions that :
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for the round gaussian beamn.



The result (see Appendix} is
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in equation 1.4 is replaced by
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This can be written as
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Using the relation
1 (1 + x
arctanh (x) = 7 in ll — x]

equation 1.4 for D0 can be written as follows :
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To show the influence of the r parameter we will consider the ratio n between

*
the I, . values of the general and the round beam case. From 1.4, 1.4 ,1.6,



1.7, we have
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We will look at n for two different hypotheses.

2. Constant cross section

We suppose that r is variable and that

This case is useful when the cross section, at the intersection
point is given. We must adjust the values of Bx, By’ the coupling parameter

and the emittance in order to get it.

From equation 1.12 we can obtain easily ‘ * \
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A graph of n, is shown in Figure 1.

From equations 1.6 and 1.7 we have for small r
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Equation 2.3 shows that with the same cross section, and therefore 1uminosity,

a flat beam will give lower radiation.

Equation 2.2 is valid for all values of r. From the definitions given by

1.5, 1.6 and 1.7

n (%) 2.4

n_ {xr}
1 1

The significance of equation 2.4 is that the synchrotron radiation does not

change if the observer turns his head by g—. Also the equation shows that nl

must be flat around r=1 as can be seen in Figure 1.



3. Natural coupling cross section variation

This case applies when for fixed ¢, Bx and BY we would like to obhserve
the influence of the coupling on the beam beam synchrotron radiation. If the
dispersion vanishes the radial and vertical beam sizes are given by the well

known formulae

where ¢ is the uncoupled radial emittance and where T, less than 1, is the
coupling parameter dependent on both the coupling strength (skew dquadrupoles
and solenoid fields) and the difference between the radial and vertical betatron

tune.From 3.1 we obtain
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and

Equation 3.3 has a maximum at r.=1, given by

max(ox a
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Tc have a meaningful formula for n (1.12) we assume

o2 = max (ox oy) = %VBX By 3-5

From equations 1.4, 3.2, 3.3 and 3.5 we have
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From 2.2, 3.6 it can be seen that at the maximum possible value of

r the Ny n, values coincide (see fig. 1).

cf
¢
Alsc, when rc and hence the cross section varies,'n2 gives the beam beam
synchrotron radiation of the elliptical beam, as a fraction of the beam beam
synchrotron radiation of the round beam, whose cross section is the maximum

possible value of the elliptical beam.

In the limit of vanishing r we obtain :
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The above equation shows that for small r, n_ does not depend on r, that

2
is on the vertical dimension.

This result is clearly related to the other limit of ny for vanishing r.
In this case we had vanishing beam beam synchrotron radiation for a constant
cross section and constant density, while now we have finite beam beam

synchrotron radiation for vanishing cross section and infinite density.

The LEP case is :

ke
I

1
= n 3.9

™

From equation 3.8 we have the limitation that
0 {r {0.25 3.10
At the maximum value of r we have from equation 3.6

n, (6.25) = nl (6.25) = 0.651



while from equation 3.7 the value for vanishing r is

n2 (0) = 0.5254

There is a minimum value of

n2 min - 0.4887

around

r = 0.068 r, = 0.272

We can conclude that for every coupling, T of LEP is between

2bb
49 % and 65 % of a value that a round beam with the same cross section of

the full coupling would have.
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APPENDTIX

Introduction
The purpose of this calculation is to obtain the average value of the

energy radiated by a particle in one beam passing through the other.

We suppose that both the beams have the same gaussian distribution in all

three dimensions.
The effect of the longitudinal and transverse distributions can be
computed separately (we assume that the beta function variations are negligible)
and at first it is only necessary to calculate the average square kick undergone

by a particle passing through the opposite beam.

The relation between the average square kick and the integral

I _ ds
2bb pZ(s)
undergone by a particle

The total PX.’ AY”

can be found in the following way
can be written as +oo
2
oo oo _ 25
2 02
d"x ds e S
Ayt = —5 ds = = A '+ f — ds
ds px(s) T
2 s

= 00 -0
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g A
where oy has been replaced by = in order to take into account the fact that

the two beams move against each other, and that each particle sees the length
of the other beam reduced by a factor 2.

From this last relation we deduce that




and therefore
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and for the average on the transverse plane -
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Definition of the 4-dimensional integral
. . 2)
We start from the formulae given in ref A 1.1
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and from a normalized gaussian distribution
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Using previous definitions we can write
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I =82 + 0,12 = de Ay K (x,y) (A,'2 + 812 A 1.3
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From equations Al.1l, A1.2 and Al.3 we obtain
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1st and 2nd integration
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The x and y integrals can be done easily by using the following

relationships

Hence

and by defining

A2.1

A2.2

The above formula can be
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simplified by making the following substitutions:
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A3.1

A3.2
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Then we have
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-3rd integration
We are now going to integrate over ¥, by defining
a = x
b = px+1
f = gq-x
g = -1 Ah.l
wve obtaln
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Using the indefinite integral

' dy - 2 a + by } A3
(a+by)? (f+gy)% (ag-bf) \I *+ &

we obtain

Xy
72 ALl
If we put
1 = 1I;5+1, AL.s
and by using the same method for I, as for I, it is possible to show that
I, = I, Ak, 6

and therefore we have
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Substituting back for a, b, g and f, we have
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4th integration
At this point it is convenient to change the integration variable
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we can write
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This can be integrated. Recalling the fact that
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