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Parametric surfaces of least H-cnergy in a Riemannian
manifold

FRrRANK DUZAAR KLAUS STEFFEN

August 25, 1997

1 Introduction

The Plateau problem for surfaces of prescribed mean curvature  is to find a
surface with given boundary ' and with mean curvature H(a) at each point a on the
surface where f is a given function. For 2-dimensional parametric surfaces of disc type
in Euclidean space K* this problem has been treated by several authors, e.g. [Hel], [Hil],
[Hi3], [GS1], [GS2], [Stel], [Ste2], [We], and various optimal theorems have been obtained
in the early seventies which essentially scttle the existence problem in K. To give one
prominent example we recall the result of Hildebrandt that the Plateau problem can be
solved in a Fuclidean ball By of radius R in & whenever [ is a rectifiable closed Jordan
curve contained in By and the prescribed mean curvature function satisfies |H| < B! on
BR.

In a Riemannian 3-manifold M the Plateau problem for parametric surfaces of pre-
scribed mean curvature has been treated by Gulliver [Gul] and independently by Hilde-
brandt & Kaul [HK]. They considered the problem in a normal geodesic ball B} of radius
R in M with sectional curvature not exceeding K and they proved that a solution exists
whenever I' C B} and the prescribed mean curvature function satisfies [H| < (K, R) on
B}, where h(K, R) is the constant mean boundary curvature of a normal geodesic ball of
radius R in a 3-manifold of constant sectional curvature K. This extended Hildebrandt’s
theorem to the case of an ambient Riemannian manifold. Gulliver and Hildebrandt & Kaul
proved in fact more general results and it was clear that their method could be used to
extend various other existence theorems like [GS1], {GS2], [Hi3] from the Euclidean to the
Riemannian situation.

However, the method was restricted to boundary curves and surfaces in certain sub-
regions of M, like normal geodesic balls or geodesically starshaped domains, and there
were existence theorems known in E* for which clearly no such restriction should be as-
sumed in the hypothetical Riemannian analogue. For example, Wente’s theorem [We] in
the improved form [Ste2] states that a closed rectifiable Jordan curve I' C R* bounds disc-
type parametric surfaces of prescribed mean curvature I for all functions H on RE* with
sup |H| < y/27/3a. where ap. is the minimal area of discs spanning I'. In particular, I
bounds surfaces of large prescribed mean curvature whenever the least spanning area a. is
small. It is intuitively clear that a similar statement should hold in a complete Rieman-
nian 3-manifold M (assumed compact or satisfying some uniformity condition at infinity)



without any condition on the shape of the boundary curve I' except the smallness of ap.
Another example is the theorem of the second author [Ste2] that T' C B® bounds a disc-type
surface of prescribed mean curvature H whenever the integral of |H|® over ® is smaller
than 97 /2. One would expect a Riemannian version of this result to hold with a suitable
integral condition on [H|* on M, but without any assumption restricting the geometry of
the boundary curve T

The present paper is the result of our attempt to establish Riemannian generalizations
of those existence theorems for the Plateau problem with prescribed mean curvature in
R® which are not covered by the work of Gulliver [Gul] and Hildebrandt & Kaul [HK].
In particular, we did not want to assume that the boundary I' is contained in a normal
geodesic subdomain of the 3-manifold M. One of our main results presented in Section 5 is
an existence theorem of Wente type asserting that the problem admits a solution whenever

ar < (M) and sup |H| < fy(M)aI:]/z,
where a(M), v(M) are positive numbers computable in terms of certain isoperimetric
constants of M (Theorem 5.4, Corollary 5.5, and Corollary 5.6). The example of the
standard sphere M = $3 with I' C M a great circle shows that the upper bound a{M) we
must require for the minimal spanning area a;, to secure existence of solutions for sup,, [H|
sufficiently small cannot be improved, in general. (However, the constant v(M) we obtain

is certainly not optimal; even in the Euclidean case the best known constant /27 /3 [Ste2]
is very likely not the optimal one which is conjectured to be y(R*) = /7.)

From the general theorem we prove in Section 4 (Theorem 4.4) it follows that also the
other known existence theorems for the Plateau problem with prescribed mean curvature in
& can be extended to the Riemannian case under assumptions on M, I', H not covered by
[Gul] or [HK]. We work this out in one further instance by generalizing a result of Gulliver &
Spruck [GS2] to C* domains A in a Riemannian 3-manifold M (using a completely different
method of proof): If |H| does not exceed pointwise on A the (inward) mean curvature of
the Jocal parallel surfaces to dA (where they exist) and A satisfies a certain homology
condition, then the Plateau problem with prescribed mean curvature H is solvable in A for
all contractible boundary curves I' C A (Theorem 5.3).

Even in the gecometrical situation treated by Gulliver [Gul] and Hildebrandt & Kaul
[HK] our results give substantial improvements. For example (Theorem 5.1): If I' is con-
tained in a normal geodesic ball B = B} of radius R and sectional curvature < K, then
we have a solution of the Plateau problem in B if the prescribed mean curvature modulus
|H| does not exceed, pointwise on 8B, the (inward) mean boundary curvature of B and
satisfies

sup |[H| < hik, R),
B



where

( WK sin’(VKR)

2WEKR —sin(2VKR)
3
h{k, R} = ¢ o in the case K =0,

in the case K > 0,

2./ K| sinh?(/| K |R)
2\/|K|R — sinh(2,/| K|R)

in the case { < 0.

\

The bound Ak, R) required for sup, |H| here is less restrictive than the bound A(K, R) in
[Gulj, [HK] which is VK cot(vVKR), R7!, or MCoth(m}%) in the respective cases.
Morcover, if K is nonpositive, then instead of supy |H| < h(K, R) the following weaker
condition is sufficient for existence (Theorem 5.2):

97
/ |H | dvolyy < — .
lac Ii:| H(a)| 2 h(K, 1)} 2
This gives a simultaneous generalization of the results of {Gul], [HK] for manifolds of
nonpositive curvature and of the existence theorem [Ste2] in R* which as hypothesis requires
the bound 97/2 for the integral of |H|*.

Our method is a combination of the approach adopted by the second author [Stel] in the
Euclidean situation and the isoperimetric inequalities used in our joint work [DS2] on the
Plateau problem for hypersurfaces of prescribed mean curvature in Riemannian manifolds
in the setting of geometric measure theory. We work in the Sobolev class W2(U, M) of
mappings « from the unit disc U to the 3-manifold M and we set up an energy functional
Ey(z) which is the sum of the surface energy D(z) (Dirichlet’s integral) and a geometri-
cally defined (in Section 3) volume 2V (z) with respect to the prescribed mean curvature
function H as weight function. We then want to minimize Ey in suitable subclasses of
WU, M) to obtain the solutions to our Plateau problem which are referred to as H-
surfaces of least energy in the title. The emphasis is on deriving reasonable geometric
conditions for the data M, H, I’ which are sufficient for the existence of a weak solution to
the Platcau problem. (In Section 6 we indicate how one proves that the energy minimizing
weak solutions are actually smooth.)

The principal difference between the geometric measure theory setting in [DS2] and the
present context of parametric surfaces is that we cannot work here in a fixed homology
class of surfaces, because weak W2 convergence does not preserve homology, in general.
One may imagine this as a bubbling phenomenon: A (spherical) bubble can splitt off in
the limiting process and this bubble can also carry away homology. Therfore, in order to
define the H-volume Vj(z) = Vy(xz,y) enclosed by = and a fixed reference surface y with
the same boundary T’ we must require homological triviality of the closed surface composed
by z and y. This leads us to the notions of spherical 2-currents and spherical homological
triviality in Section 3. For the proof of lower semicontinuity of E;; with respect to weak wt?
convergence of surfaces we use isoperimetric inequalities (for spherical 2-currents in M) in
order to dominate the possible jump of H-volume by the jump of Dirichlet’s integral on a
minimizing sequence. For this it is essential to have a precise description of the bubbling
process. We provide this with a new construction in Section 4 since the arguments of [Stel]
are restricted to Fuclidean space R® at this point.
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To treat the Plateau problem for surfaces of prescribed mean curvature in a given sub-
domain of M we establish a geometric inclusion principle (maximum principle) in Section
2 which implies that minimizers for the H-energy under the constraint of being contained
in the closure A of the domain do in fact avoid the boundary dA, provided this is true
for the curve I' C A and |H| is strictly smaller along 0A than the inward mean boundary
curvature of A. Similar statements can be found in the literature, e.g. [Hi3], {Hi4], [Hi5],
[Gul], [GS2], [HK], but the strong form given in Proposition 2.4 below, which applies to
weak W1? solutions of the variational inequality, appears to be new.

The results of this work, in weaker form and without complete proofs, have been an-
nounced in our expository article [DS3] on the Plateau problem for parametric surfaces
of prescribed mean curvature. We want to mention that Toda has recently studied closed
parametric H-surfaces in a Riemannian 3-manifold and has obtained interesting existence
results [Tol], [To2] of a different nature. The second anthor acknowledges the hospitality
of the first author, of Humboldt University and the Sonderforschungsbereich 288 Berlin
which helped to prepare this article and put the results in the final form.

2 The variational problem

We begin with a formulation of the Plateau problem for parametric surfaces in a Rieman-
nian manifold (M, g). We always assume that M is of dimension 3, connected, oriented,
complete, without boundary, and sufficiently smooth. Riemannian inner products and
norms are denoted (7,7'),, = g4(7,7') and |7],, = (7, T);f for @ € M and tangent vectors
7,7 ¢ T,M. The Riemannian metric and the orientation determine a volume form §2
on M. Since M is of dimension 3 we have the exterior vector product 7 A,, 7" which is

characterized by (7 A,, 7/, 7"}y, = (o, TAT AT") fora € M and 7,7, 7" € T, M.

We consider parametric surfaces z: U — M which are defined on the unit disc U =
{w = (u,v) € R? : u? + v? < 1}. Lebesgue measure on U will be denoted £2, dw or
dudv. If the parametrization is conformal and of maximal rank, ie. |z,[5, = {z|5, > 0
and (z,,z,),, = 0 holds for the tangent vector fields z,, z, along z, then we can describe
the mean curvature H, of = by the equation AMz = 2H,z, A, x, on U, where AM is the
Euler operator associated with Dirichlet’s integral

(21) D(z) =4 jﬁ(|xu|§4+ |2, |2, Ydudy.

This assertion is easily verified with the variational characterization of mean curvature (see
below), but one can, of course, also use the definition of H, as one half the trace of the
second fundamental form of z in M with respect to the normal field |xn|;fliafu|;xu Ay To
along z.

The (in general) nonlinear elliptic differential operator of second order A is well known
from the theory of harmonic mappings (cf. [EL], [Jol], [Jo2], [Jo3]) and called the tension
field operator for mappings from the Euclidean disc U to the Riemannian manifold M.
Note that AMz is a tangent vector field of M along the mapping z, i.e. AMz(w) € TyuM
for w € U, which is orthogonal to z, i.e. (AMz)-2, = 0and (AYz)-x, = 0 on U (assuming
2 is a C? mapping of U into M).

We want to find surfaces z: U/ — M with preseribed mean curvature and given boundary
in M. For this we assume that a bounded continuous function H: M — R, which we call



the prescribed mean curvature, and a rectifiable oriented Jordan curve I' in M are
given. (Of course, I' must be contractible in M or in the subdomain of M where we want
to find the surfaces.) The problem to find a parametric surface z: ¥ — M with prescribed
mean curvature H and with boundary I, known as the Plateau problem P{H '), then
has the following formulation:

(2.2) AMp =2(Hox)z, Ay zy onl,

|

(2.3) |:1:1,,|§w — |zy ?\4 0= (Tu,Ty)y onl,

(2.4) z|sy is a weakly monotonic parametrization of I'.

Here (2.2) is called the H-surface-equation, (2.3) are the conformality relations, and
nonconstant C? solutions x to (2.2), (2.3) will be termed H-surfaces in M. The Plateau
boundary condition (2.4) means precisely that x]sy is the uniform limit of orientation
preserving homeomorphisms from U onto I'. This is a free boundary condition with one
degree of freedom, in contrast with a Dirichlet boundary condition where x|y would be a
given map from JU into M. For the existence theory it is convenient to require only that
z|sy 1s a weakly monotonic mapping from 8U onto T', but the fl-surfaces produced below
will in fact map @U homeomorphically onto T'. (In writing z|sy we understand that x is
continuous on the closed dise U and we take the restriction of x to the boundary 8U, or
that x is of Soboltev class W2 on U and z|sy is its boundary trace.)

Introducing local coordinates on M we can write equations (2.2), (2.3), on each subset
of I/ which is mapped into the coordinate domain by z, as follows (see e.g. [HK], [Gul},
[Jo3]:

degpedeyy

(2.5) iy + g, + (0 0m) (@hal, + 2lad) = 2AH o) yyomeir(g™ o 2) (2] — #2)),

(2.6) {giyox) (ol — zial) = 0 = (giyox)aial

Ty Ll
where :n’?,.géj, I‘fj are the coordinate components of z, the Riemannian metric g, and the
Levi-Civita connection {Christoffel symbols of ¢), and we have set (¢%) = (g;;)71, v =
det(g;), eij6 = 3(t — ) (7 — k)(k — ); summation over repeated indices 4, j, k from 1 to 3 is
understood.

As we want to solve P(H,T") with a variational method we need a weak formulation of
the H-surface-equation. This is no problem if one restricts the considerations to surfaces
with image in a fixed coordinate domain in M, because we can then multiply (2.5) with a
test function and integrate by parts. Such a point of view, which is equivalent to studying
parametric surfaces in B* cquipped with a general Riemannian metric, was adapted by
Hildebrandt & Kaul [HK] and by Gulliver [Gul] in their first treatment of the Plateau
problem with prescribed mean curvature in a Riemannian manifold. However, as we have
pointed out in the introduction, we do not want to assume that our surfaces are contained
in a fixed coordinate domain on M, because we want to prove existence of solutions for all
curves I' in M bounding a surface of sufficiently small area. Hence we must introduce the
Sobolev space WH2(U, M) and give a meaning to the H-surface-equation for W2 mappings
r:U — M.



Following the usual procedure in the theory of harmonic mappings we therefore assume
that M is isometrically embedded in some Euclidean space R™ as a closed subset. (This
is not really necessary, but it is convenient and no essential loss of generality, by the well-
known theorems of Nash and Gromov & Rohlin on isometric embedding.) We then define
W2(U, A) for A < M as the subclass of Wh2(U, R™) consisting of surfaces 2 which map
(£? almost every point of) U into A. Interpreting 2: U — M as a mapping into B™ we can
replace Riemannian inner products and norms of tangent vectors to M by their Euclidean
inner products and norms in 8™. Thus, the Riemannian Dirichlet integral (2.1) becomes
the Euclidean one, the same is true for the conformality relation (2.3), and we henceforth
omit, the subscripts refering to M in formulas of this kind.

By a general principle from the calculus of variations, the Euler operator AM associated
with Dirichlet’s integral and the constraint z(w) € M C ®" is just the tangential projection
of the Euler operator for the unconstrained problem which here is the Euclidean Laplacean
AT = Ty, + Ty (applied to cach of the m components of 7). Denoting by ITM the field
of orthogonal projectors 1™ (a) : K™ — T,M and by AM{a) : T,M x T,M — (T, M)* the
second fundamental form of M we have

(2.7) AMg = (M ox)Az = Az — (AM o) (2, 1) — (AM o) (24, 2,),
and (2.2) in this setting becomes
(2.8) (MMoz)Az = 2(Hoz)x, Ay, on Ul

A weak formulation of (2.8}, meaningful for x € W12(U, M) is then the following:

/U [z, - ((HM o))y + by - ((HM °x)&)y +2(H o z)¢ - A zyidudv = 0

(2.9) ‘ s
for all vector fields £ € Wy (U, R™) N L= (U, ®™),

or equivalently,

/U 2y - V¢t 2, - VY + 2(Hon)C -y Ay, m)dudy = 0

(2.10) |
for all ¢ € Wy*(U,®") 1 L=(U,R™) tangential to M along z,

the latter conditon meaning that ((w) € TyM for (almost all) w € U. We call (2.9),
(2.10) the weak H-surface-equation in M and any nonconstant and (almost everywhere

on U) conformal solution z € W12(U, M) a weak H-surface in M, or a weak solution
to the Plateau problem P{H,I') if also (2.4} is satisfied.

The covariant derivatives appearing in (2.10) are defined by VM¢ = (1M o 2)¢,. Since
Ty, Ty are tangential to M along x we could, of course, simply write (,, {, in (2.10) instead
of VM( VM (; we have preferred the latter expressions because of their intrinsic geometric
meaning. Note that in (2.9) we can equivalently use smooth £ € C}, (U, ®") while in (2.10)
we may not, in general, assume that ¢ is smooth. The tension field operator is expressed in
terms of covariant derivatives simply by AMz = VMg, + VMz, and in local coordinates
on M as above one has the representation (VM) = ¢f +- (Ffj ox)zi(? at almost all points
w € U with image z(w) in the coordinate domain.

'To set up a functional with (2.10) as variational equation we consider a deformation
zp of = xo in M with initial vector field ¢ = £|,_ z,. Then [,(Hoz)( - 2y Ay, z,dudy
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is the initial rate of change of H-weighted volume swept out by the deformation while
[y ¢ - Azdudv describes the initial change of the area A(x) = [ |z, Ay, zy|dudy, because
we have A(x;) < D(z;) with equality at ¢ = 0 and hence, assuming z, Ay, T, # 0, the
equation %|,_ A(zr;) = 4|,_,D(;) holds. Since the mean curvature is half the ratio of
the initial rates of change of area and volume under a normal deformation of z in M,
we recognize that (2.2) and (2.10) express that = has prescribed mean curvature Hour
wherever z is of maximal rank. We also see that as a variational functional we should usc
an H-energy of the form

(2.11) Eg(z) = D{(x) + 2V (x),

where the H-volume Vy(z) is, in a sense, the oriented volume enclosed by the surface
z (and a fixed comparison surface with the same boundary) in M measured with weight
function H.

We will give precise definitions of the H-volume lateron, but we note here that with
any of these definitions we have independence of parametrization

(2.12) Vy{z) = Vy(x o) for orientation preserving C' diffeomorphisms ¢: U — U,

and the homotopy formula (with €2 the volume form on A}
4
(2.13) V() — Vi(z) = [ / (HoX) {0 X, X, A X, A X, dsdudy
Ju Jo

for the variations X (s, u,v) = x(u,v) of z(u,v) = 2¢(u,v) we need. We call X a suffi-
ciently regular variation in M C K" if z, € WU, M) for sufficiently small |¢|, if the
initial vector field ¢ = f\;‘s_omﬁ is of class WH2(U, ®™) N L™, and if formal differentiation
under the integral with respect to ¢t at ¢t = 0 is valid for D(x;) and for V(zy) — Vg(z).

2.1 Proposition (first variation).

(i) For sufficiently regular variations x; of xc WH3(U, M} with initial field Ce WY2(U, R™)
NL> we have

d

EELZOEH(:Q) = fU [Ty - Cutzy - Gt 2(H 0z)( - 2y A, 2] dudy =: dEy(z; ().

(ii) If x € WY (U, M) and @, is the flow of a C* vector field n on U which is tangential
to AU along 0U, then

d

aitZOE(m‘opt) = fu Re [(|:L‘u|2 — {zy]* — 2iz,, - :r;v)gn] dudv =: OEy{z;n)

where we have used compler notation On = %(nu + in,) identifying R? = C.



Proof. (i) Formal differentiation of D(x,) gives the integrand z, - {, + 2, - {, on U,
and formal differentiation of (2.13) leads to the integrand (Heoz)(Qox,{ Az, A z,) =
(Hoxz) -y Ay iy

(i) In view of {2.12) we only have to compute &

JL_OD(W’%) and this is well known.
Using the transformation w = ¢, (W) one gets

[ 1D(zeplPdis = [ |Da(Dey) o' P det(Dyp ),

and since Dy, (W) = 1 + tDn + o(t) one obtains

d

el o = . : 1 2 y
dtL:UD(:E ©1) fU[D:L (DxDn) — 3| Dx|*trace Dnldw.

The claim then follows by appropriately collecting terms in the integrand. a

The integral dEg(x; () appearing in (i) is called the first variation of energy at z in
the direction of ¢ and OEy (x;7) from (ii) the first variation of independent variables
(inner first variation) for Ey at z in the direction 7.

2.2 Corollary.

(i) zeW2(U, M) is a solution to the weak H -surface equation if and only if SEy (x; ()=0
for all vector fields CEW, (U, R™)NL® (U, B™) which are tangential to M along z.

(i) x € WY (U, M) satisfies the conformality relations almost everywhere on U if and
only if OBy (x;n) = 0 for all vector fields n € CH(U,R?) which are tangential to AU
along OU.

(iir) « € WE2(U, M) is weak H-surface if and only if T is nonconstant with §Eg(x;¢) = 0
and OE(x;n) = 0 for all { and 1 as in (1) and (1i).

Proof: (i) and (iii) are clear, and (i) is well known: JEg(x;n) = 0 for n € Cg, (U, #)
is equivalent with the equation dh = 0 in the distributional sense for the function h =
|zu|* — |20)* — 2iz, - 2,. This means that h is (weakly, hence also classically) holomorphic
on UU. With a formal integration by parts on sees that w?*h(w) is real on AU in the weak
sense if dEg(z;n) = 0 also holds for all n € C'(U,R?) which are tangential to U on
dU. Such holomorphic functions can be extended by reflection to (weakly) holomorphic
functions on € which are bounded and hence constant. Evaluation at w = 0 then shows

that the constant must be zero and h vanishes on U. m

The meaning of (i) is that the weak H-surface equation (2.10) is the Euler equation
associated with the energy functional Egy. The equation dh = 0 is sometimes called the
second Euler equation. The reality condition for w?h{w) on AU is the natural boundary
condition for variations of the independent variables which is associated with the free
Plateau boundary condition (2.4). (It can be expressed invariantly by stating that the
quadratic holomorphic differential A{w){dw)?, known as Hopf differcntial, is real on the
boundary). It has become customary to call a mapping stationary for a variational problem
if the first variation and also the first variation of independent variables vanish for all initial



fields which are admissible in the problem. Thus, in the present context stationarity of a
nonconstant parametric surface is equivalent to being a weak H-surface.

Various types of variations have been used in the theory of harmonic mappings to deduce
the Euler equation for minimizers of the Dirichlet integral in subclasses of W (U, M) (sec
[DS3], (3.15)-(3.17)). For our purpose here we find variations of the form

(2.14) z,(w) = @ (tn(w), z(w)),

most convenient, where ® is the flow of a smooth tangent vector field ¥ on M and n a
smooth function on U/ so that n(Y o) is the initial field of the variation (cf. {Dul, {DS2]).
With these variations we obtain:

2.3 Proposition (variational equation/inequality).

(i) Suppose that xeW (U, M) is By minimizing with respect to the variation zy, |t]<<1,
from (2.14) for each smooth compactly supported tangent vector field Y on M and for
each smooth real function n on U with compact support in U. Then x 1s a solution
to the weak H-surface equation (2.10).

(i1} Suppose A is the closure of o C* domain in M. If the Ey minimizing property of x
is known only for one-sided variations x;, 0 <t << 1, as in (i) and only with the
restrictions n > 0 and Y(a) = 0 or Y(a) directed strictly to the interior of A at oll
points a € AA, then x is a solution to the variational inequality.

(2.15) dEg(z; () = fU[:EH Cy Ty G+ 2(Hom)( -y Ay xp]dudy > 0

for all vector fields ¢ € FVOI’Z(U, R™) N L(U, R™) which are tangential to M along @
and satisfy ¢ - (Dex) = 0 almost everywhere on 7'V for some neighbourhood V' of
0A in M and some C' vector field # on M extending the inner unit normal field v

of OA.

(iti) If v € WU, M) is Eg minimizing with respect to all variations z, = To gy, |t] <<
1, of the independent variables where @, is the flow of a smooth vector field on U
which is tangential to OU along AU, then x satisfies the conformality relations (2.4)
almost everywhere on U.

In (i) and (ii) we also assume implicitely that the homotopy formula (2.13) is valid for
the volume functional Vj; and the variations considered.

Proof. (i) One readily verifies that the variation z; is sufficiently regular in the sense
described after (2.13) so that (2.10) follows for the vector fields ¢ = n(Y o x). By approxima-
tion we can then admit n(Y oz) in (2.10) with Y as before, but 7 € W*(U, &) N L= (U, K).
Given a general vector field ¢ as allowed in (2.10), we consider smooth and compactly
supported functions vy M -+ R and vector fields Y1, Ys,Y; on M such that Y}, Y, Y; are
linearly independent on a neighbourhood of spty. We then have (Yoz)( = X0 7 (Yioz)
with 1, € Wy (U, R) N L%(U, ) and we deduce that (12 ox)( is admissible in (2.10). With
a partition of unity we conclude that this is true for ecach smooth function ) with compact



support in M, and approximating the constant 1 suitably with such functions 3 we obtain
(2.10) for (.

(ii) As in (i) we now have SEg(z;¢) > 0 for ¢ = (Y ox) with 0 < 5 € W *(U,R) N
L>*(U,R) and Y satisfying the additional restriction on dA4. We first observe that we may,
by approximation, admit also vector fields ¥ which are directed weakly to the interior of A
along dA. Moreover, 0Ey(z;n(Y o)} = 0 holds if ¥ is tangential to dA4 along 3A, because
then —VY is also admissible. Clearly, the condition » > 0, may be dropped in this tangential
case. For general ¢ as allowed in (ii) and smooth functions ¢ > 0 on M with sufficiently
small support intersecting dA we can now use the previous argument with Y7 = 7 and
Y3, Y3 tangential to 0A to deduce i > 0 and dE(z; (¢ ox){) > 0. Since, on the other hand,
SEg (z; (1 ox)() vanishes in the case dA Nspty = @, we can proceed with a partition of
unity argument and conclude édEy(z;¢) > 0 as in the proof of (i).

(iii) is clear with Proposition 2.1(ii) and Corollary 2.2(ii). |

If we minimize the H-energy in a subclass of W1(U, A), where A is the closure of a
smooth proper subdomain of M, then we have an obstacle problem (M\ A is the obstacle)
and we cannot expect more than the variational inequality (2.15) for a solution z. It is
well known (see Remark 2.5(3) below), however, that with a suitable inequality relating
the prescribed mean curvature H on M to the mean boundary curvature Hg4 of A one
can prove the variational equation for z and, in fact, the inclusion of the image of = in the
interior of A. We present our version of this geometric inclusion principle in the following

2.4 Proposition (variational inequality and strong inclusion). Suppose A is the
closure of a C? domain in M, v is the inner unit normal along 8A, the mean curvature
Houa of BA with respect to v is bounded from below, and 2 € W'2(U, A) is a conformal
solution to the variational inequality (2.15) for oll vector fields ¢ allowed there. Then the
following statements hold:

(i) There exists a nonnegative smooth Radon measure A on U which s absolutely contin-
uous with respect to Lebesgue measure L2 on U and concentrated on the coincidence
set x ' QA such that

(2.16) 0B (2;¢) = f ¢ (voz)dA

x1gA
for all ¢ € Wy (U, B™) 0 L®°(U, ™) which are tangential to M along x;
(ii) A satisfies the inequality
(217} A < L2 {(Jmo P + |70 [D)(|H| — Hpp)g o] on z7'0A,

in particular A = 0 and ¢ is a weak H-surface in M (or constant) if |H| < Hpa is
valid along 0A;

(iil) If |H(a)| < Haa(a) holds at some point a € A and the boundary trace x|gy does
not meet a neighbourhood of a, then also the surface x omits a neighbourhood of this
point.
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Here the coincidence set 27194 is the set of w € U (defined up to £? measure zero)
such that z(w) € dA, i.c.  at w touches the obstacle M\ A. Similarly, the meaning of (iii)
is that ='W has £* measure zero for some neighbourhood W of a. Our sign convention
for the boundary mean curvature H,,4 is such that Hsq > 0 in the case M = B and A a
convex body.

Proof. We write d(p) = dist (p, 0A4) for the distance of p € M to A4 with respect
to the inner metric on M and we extend v to a bounded C' vector field on M, still
denoted v, which coincides with grad,,d on a neighbourhood of dA. Assuming first that
A is compact we see that { = n(roz) is admissible in the variational inequality (2.15) if
0<ne Cém(U, R), and we obtain a nonnegative Radon measure A on I7 such that

(2.18) 6Ey(x,n(vox)) = / ndA
Ju

for all n € C., (U, R).

cpt
We next choose ¢ € C*°(R, R) nonincreasing with sptd <] —oo, 1{ and spt(1—9) )0, oof,
define 9.(t) = 9(e"'t) for £ > 0, and consider ¢, = (. odox)(roz) with n > 0 as above.
Then ¢ = ¢, holds on the inverse image of a neighbourhood of A4 under x, hence ¢ — (.
and ¢ — ¢ are both admissible in the variational inequality and, consequently,

(2.19) SE g (2;¢.) = 0By (2 ¢) > 0.
Noting that

(Ueodoux), = (V.odox)r, - (vou)
for & small we compute

Ty (C)u = u(Peodot)ay, - vox + n(d odox)(ay - (vox))?
+ (W odox)m, - (VMv)ox)r,)
< Woodon) ity - (vor) + 1 - (VM0) oz)ry].

Adding the analogous inequality for z, - ((.),, letting £ \, 0, and using the identities (valid
almost everywhere)

Ty (Vox)=u, (vex)=0 on z7'0A,
- (VMUY ox)y, + 2y o (VM) 02)z, = (| |* + lau|*) Hanox on 2 19A

(this follows from the conformality of « and the definition —2H,, = trace(VMv) on 9A)
we arrive at the estimate

B (r: () < f Al + ) H] = Hog) o zdudy

1)

From this and (2.18), (2.19) we deduce assertion (ii).

To prove (i) we note that (ii) implies absolute continuity of A together with A(U \
z7'0A) = 0, and (2.16) follows from (2.18) by approximation in the special case ¢ = n{voz)
with € Wy*NL>(U, R). General vector fields ¢ € Wy ?NL®(U, K™) tangential to M along
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z will be decomposed ¢ = (= + (" with (* = p(roz) and 5 = - (voz) € Wy N L>(U, R).
Then ¢ -(voz) = 0 almost everywhere on the inverse image under z of some neighbourhood
of @A, hence (T and —( T are both admissible vector fields in (2.15) so that dEj (x;¢T) =0,
and (2.16) now follows from §Eg(z;¢) = éEg(z;¢') and the special case of vector fields
n(voz) treated first.

If A is not compact we can still apply the reasoning above with veoz replaced by
(tpox)(vex) where v : M — [0,1] is a C! function with compact support. We then
obtain a measure A, depending on 7 for which the estimate in (ii) is valid. Letting
increase to the constant 1 in such a way that [grad,,v| tends to zero uniformly on M we
find a limit measure A of the A, for which assertions (i) and (ii) hold (cf. [Du]).

For the proof of (iii) we denote by H4 = —3jtrace VMy the mean curvature of the
parallel surface to 94 (on a neighbourhood of 4 in M) and we consider a € 94 such that
|H| < Hj4 holds on some ball B = B,(a) in M and z|sy does not meet By,(a). We first
assume that z=!'(d 1[0, €] 1 By,(a)\B) has zero £? measure for some £ > 0 and we choose
11) > 0 in C'(M,R) with % = 1 on B and spte compact in the interior of Bs,(a). Then
(. = (¢ —dox) (hox)(vox) is admissible in (2.15) and vanishes on U\z~'B. With similar
calculations as above we obtain therefore

0 < 6Egh(z; ) = —/ (@ - (vox))* + (2, - (vox))?|dudy

2 L(BNd~1]0,5])
+ /-1];(6 —dox) [y (V¥V)oz)zy, + 2 - (VMvox)x,) +
+ 2(HO:I:)(V°‘IL.) : :B'UZ Aj"l’f I;;]d’ud?).

We now use the conformality of x, the identity (VMv)ry = 0 on BN d~![0,¢] for ¢ > 0
sufficiently small, the selfadjointness of the shape operator S = (VMv)oz, and the general
identity

1—((bAc)-n} =(b-n)*+ (c-n)?

for orthonormal vectors b, ¢ and unit vectors n in an oriented inner product space of di-
mension 3, to deduce

(o) + 7o) = (trace S)b(ml? + [z )
Lo - STy + Ty Sy + |20 A gy ol 7w Ay ) - Sy Ay 7o)

H

and
|Z0 Apg 2ol T {20 Agy @) - Sl Ay 20)] < Sljlgp IV u||[(2y - (vo))? + (zyo (v - 2))%]
on BNd ![0,£]. We conclude
0< —] [1 = (¢ — doz). sup [VMu|||[(zw - (vo))? + (0 - (vox))?]dudy
L(BNd—![0,e]) B
+f (€ — doz) s (|za]? + |20 )| H| — Ha) oz dudv,

from which we infer that |z, |* + |z,|* vanishes on 2 ' (BNd 1[0, &[) for ¢ > 0 sufficiently
small. For every ¢ € C'(M,®) with compact support in (int B) N d [0, [ it follows that
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Wox is constant and, in view of the assumption z(QU) N B = 0, ie. oz ¢ W, (U, R),
that in fact 4oz = 0 on U/. This means that 2~ !{(int B) N d~'{0, e[} has £* measure zero
and z omits the neighbourhood (int B) N d~1{0,¢] of a as asserted in (iii).

To remove the assumption that =~ ! (d"'[0, ] N By,(a)\B,(a)} has vanishing £* measure
for some £ > 0 we consider the closure A of a smooth domain A > A such that JANGANW =
{a} for some neighbourhood W of a, but still H,;(a) = Haala) > |H(a)|. (This may be
achieved by defining A = ®,A for some small ¢ > 0, where ®, is the flow of a smooth and
compactly supported vector field on M which vanishes at e and is directed strictly to the
exterior of A on a neighbourhood of @ in dA4.) We may then apply the previous reasoning
with A, v replaced by A, 7, provided p is chosen small enough to ensure that ¢, constructed
now with 4 instead of 4 and still with spta) C Bay(a), is admissible in (2.15). |

2.5 Remarks. (1) The conformality assumption on x can be dropped if the boundary
mean curvature Hy, is replaced by the minimum of the principal curvatures of 9A in all
the statements of the previous theorem. This is seen with simple modifications of the proof
above.

{2) If @A has bounded principal curvatures and global inner parallel surfaces And~"{¢}
of class C? for 0 < £ < gy, and if |H| < H,4 holds on A M d™10, &4 (where H4(a) is the
mean curvature of A N d~'{e} at ¢ as in the proof above), then solutions x € WU, A)
to the variational inequality (2.15) have their image contained in the interior parallel set
AN d ey, o0f of A whenever their boundary trace x|zy has values in this parallel set.
To sce this one uses ¢, = (¢ — dox), (rox) as in the proof of (iii) and one observes that
the vanishing of (z, - (vox))? + (x, - (voz))? on the set x~'(d~'[0, £[) implies constancy of
(g —dox), on U.

(3) Variants of the preceding theorem have long been known in the theory of parametric
surfaces of prescribed mean curvature. However, we could not find in the literature the
strong version above which is valid for all conformal W12(U, A) solutions x to the variational
inequality (2.15). Hildebrandt [Hi4] used the variational inquality and a certain amount
of smoothness of z which ke established for energy minimizers in [Hi5]. Gulliver & Spruck
[GS2] required continuity and energy minimality of z, too. Stronger hypotheses than above
are also used in the treatments of the inclusion principle in {Gul], [Gub], [Hi3|, [HK], [Kal.
In this connection we mention the inchusion principles of Dierkes [Dil], [Di2] which are of

a different nature. The proof of Proposition 2.4 given above is an adaption of arguments
from [Du] and [DS2]. =

3 The volume functional

The definition of volume used in the early work of Heinz [Hel], Hildebrandt [Hil] and others
(see [DS3, Section 1]) for parametric surfaces of prescribed mean curvature in B depended
on the choice of a vector field Z with the prescribed mean curvature as its divergence
H = div Z. The integral of Z over a parametric surface z may then be interpreted, by
the Gauss-Green theorem, as the volume enclosed by z and a fixed comparison surface y
with the same boundary curve I' as z. (At least this is true up to an irrelevant constant
determined by ¢). The method works well also in the Riemannian case and has been used
in [HK], |[Gul] in this context. In general, for a 3-dimensional manifold M/ C R™ as in
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Section 2 and a bounded continuous vector field Z on M with div 1< = H in the sense of
distributions we may define

(3.1) Vy(x)= /U(Zoa:,mu Anr o) ppdudy for x € WHAHU, M)

or, using the 2-form w on M which is dual to Z and satisfies dw = HQ (where Q is the
volume form on M),

(32) Vilw)= [

Fw = f (wox, x, A x,)dudv.
U 1%

There is a slight abuse of notation here, because V(z) depends on the choice of w with
dw = HSQ, but if we restrict the considerations to surfaces with a given boundary curve I’
in the sense of (2.4), then different choices of w will change V() by an ignorable constant
depending on I' only.

The homotopy formula (2.13) is valid with the definition of volume above for variations
X(s,u,v) = z,(u,v) of type (2.14), for example. Since (2.13) can be written

Vile) = Va(e) = [ X#(19)

[0t U

and we have HQ = dw, the homotopy formula is formally true by Stokes’ theorem. It can
be proved rigorously by first considering smooth bounded 2-forms w on M and smooth
variations X : [0,¢] x U — M, then with variations as in (2.14) for general z € W2(U, M)
by approximation with smooth variations, and finally for continuous w with dw = HQ in
the distributional sense by approximating w suitably with bounded smooth 2-forms. Thus,
all the conclusions of Section 1 arc valid with the definition (3.1) or (3.2) of the H-volume.

However, this method has certain drawbacks when one takes a global perspective. If
M is compact without boundary, for example, then the condition Sy HE = 0 of vanishing
mean value is necessary (and sufficient) for the existence of a 2-form w with dw = HS2, and
this is an undesirable restriction from our point of view. Furthermore, if M is noncompact
there may still be obstructions to the existence of a bounded 2-form w on M with divyw =
HSY. The (boundedness) is needed to secure the existence of the integral (3.2) for general
x € WH(U, M).) For instance, if M = & and [a|H (a) — oo as |a| —> 0o, then no bounded
vector field Z with divZ = H exists on M as can be seen from the Gauss-Green theorem.
For these reasons we adopt another, geometric measure theoretic, method for the definition
of volume which was first used in [Stel]. We now briefly develop this approach in the
present Riemannian setting.

Given a parametric surface z € W?(U, M) we define the associated 2-current J, on
M by integration of 2-forms over =,

(3.3) L.(9) :/:n#ﬁz/(ﬁox,a:u/\:nv)dudv for 8¢ DY(M),
15 1

where D*(M) denotes the space of smooth A-forms on M with compact support. Then J,
is a current of finite mass

(3.4) M(J,) < D(),
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and using approximation by smooth mappings, in the sense of the Wh? norm as in {Stel]
or in the sense of a Lusin type theorem as in [EG, 6.6] one sees that J, is an integer
multiplicity rectifiable 2-current on M, i.e. J, can be represented by integration (with
respect to 2-dimensional Hausdorff measure) of 2-forms over a locally 2-rectifiable set with
a measurcable orientation and with a summable integer valued multiplicity function. (By
definition, a k-current 7' on M is a continuous linear functional on D*(A) and its mass
M(T) is the supremum of values T(3) on k-forms 8 € D*(M) with |5] < 1 pointwise
on M. The standard references are [Fe], [Si]. Our terminology deviates from [Fe| in that
our integer multiplicity rectifiable currents have finite mass but not necessarily compact
support. In the language of [Fe} these would be called locally rectifiable currents of finite
1nass. )

If y is another surface in W'2(U, M), then (J, — J,)(8) is given by integration of
2#3 — y#3 over the set G = {w € U : z(w) # y(w)}, because Dx = Dy holds almost
everywhere on I/ \ G. Hence, (3.4) can be sharpened to

(3.5) M(J, —Jy) <Dg(z)+Dgly) if e=y on U\G,
where
(3.6) Dg(r) = %/ | Dz|*dudv

G

for measurable G C U.

The boundary 9T of a k-current 7' on M is generally defined, if k& > 1, by 07 (e} = T'(de)
for o € DFY(M). If x € WH3(U, M) has a continuous rectifiable curve z|yy as boundary
trace, then 8J, is given by integration of 1-forms over this curve (see [Stel]). This implies,
in particular, that J, — J, is a closed current, i.e. 8(J, — J,} =0, if 2,y € WH*(U, M) both
satisfy the Plateau boundary condition (2.4) for the same oriented rectifiable Jordan curve
['in M. It is not difficult to verify d(J, — J,) = 0 also in the case z — y € W, (U, ®).

As a convenient notation we introduce
(3.7) S(I,A) = {xz € WI(U, A) : x|y satisfies (2.4) for '}

for the class of admitted surfaces. Here 4 is a closed subset of M defining the obstacle
condition (V) N M\A =0 (if A # M) and I is a Jordan curve as above (which must be
contained in A unless have S(T', A) = ).

The idea for the geometric definition of the H-volume Vy(z,y) enclosed by z,y €
S(T', A) is to look for a 3-current @ on M with 0@ = J, — J, and to integrate H (or
H{), more precisely) over Q. Since M is of dimension 3, the integer multiplicity rectifiable
3-currents € on M have a simple structure. Namely, they are represented by an integer
valued summable multiplicity function ¢g on M such that

Qy) = ] igy for e D*(M).
M
One may think of ) or ip as a set with integer multiplicities and finite absolute volume.

The condition 3¢} = J, — J, means that z and y parametrize the boundary of this set with
multiplicities in the sense of Stokes’ theorem

ipd = [ z*5— [ 4" D?(M).
/M.aqd/j /UJ: 3 .[Uy g for peD(M)
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The finiteness of the mass of 9Q) is equivalent with ig being a BV function on M. The
tentative definition of the H-volume is then Vg (z,y) = [, i HQ.

There are two obvious problems with this definition, the question of existence of
and the question of uniqueness. To take care of the first problem one could try to fix a
reference surface y € S(I', A) and then work in the variational problem with the class of
r € S(T, A) such that J, —J, is homologous to zero in A, i.e. the boundary of some integer
multiplicity rectifiable 3-current on M with support in A. However, as we have pointed out
in the introduction, weak convergence in W'*(U, M) does not preserve such a homology
condition. Therefore we are forced to require that J, — J, is in fact homologically trivial
in A for all surfaces z,y € S(I', A) which we need to admit for competition in the later
treatment of the variational problem. This amounts to the assumption that certain special
2-currents are boundaries in A.

3.1 Definition.

(i) A 2-current 7' on M with support in the closed subset A is called a spherical 2-
current in A if it can be represented T = f4x[S5?] with a map f € W12(S? A) from
the standard 2-sphere $? into 4, i.e.

T(g) = [, F#8 for BeDM).

(ii) T is called homologically trivial in A if it is the boundary of an integer multiplicity
rectifiable 3-current on M with support in A. If this is true for every spherical 2-
current in A then we say that 4 is homologically 2-aspherical in M. [

We note that homological triviality of T = f4[S5%] is equivalent to 7' = 8¢ for some
3-current @@ on M with M(()) < oo and sptQ C A. By the constancy theorem [Fe, 4.1.7,
4.1.31] Q is unique up to a possible real multiple of [M], the 3-current defined by integration
of 3-forms over M, and from the general theory of rectifiable currents [Fe, Chapter 4] it
follows by localization in M that @ can be chosen rectifiable with integer multiplicity.
Under mild assumptions on A it is possible to show that a spherical 2-current 7 in A can
be approximated in mass by smooth maps from S? into A, and T is homologically trivial
in A if this is true for the approximating smoothly represented spherical currents. This is
made precise in

3.2 Lemma. Suppose A is a uniform Lipschitz (resp. C') neighbourhood retract in R™
and f € WH2(S5?, A).

(i) For every e > 0 there exists g € WH2(S%, A) such that ||g— fllwr2 <&, g = f outside
a set of measure less than & in S%, and g is Lipschitz continuous (resp. of class C1).

(id) If 0 < s < 00, 0 <7 < oo, M(f]S*]) < s, and g4[S?] is the boundary of a 3-
current of mass < r with support in A whenever g: 5> — A is Lipschitz (resp. C!)
with M(gx[S?]) < s, then also fx[S?] is homologically trivial in A.
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Proof. (i) From [EG, Theorem 6.6.3] we infer the existence of Lipschitz functions
gx: 2 —» K™ for A > 0 such that {lgx — f|lw12 — 0 as A — oo and g, = f outside E) C 57
with A?|Ey] — 0 as A — oo. (We use stereographic projection from two antipodal points
p, —p in 5% and a partition of unity subordinate to the covering S*\ {p}, S*\{~p} to pass
from the sphere to the domain B treated in [EG]|. By |E,| we denote the 2-dimensional
Hausdorff measure of £y.) Morcover, from step 4 in the proof of this approximation theorem
presented in [EG] we see Lip(ga} < CA with a constant C depending on m only. Since for
|E\| < 47 no disc of radius 7( ;%] Ex|)'/? can be contained in Ej, we deduce that for each
w € E, there exists w' € S?\E\ with gy(w') = f(w') and

! 1 !
lga(w’) — ga{w}] < CA?T(EIEADW-

On account of limy_,, A?|Ey| = 0 this implies, for A sufficiently large, that g,(S?) is con-
tained in a uniform neighbourhood V,{A) where a Lipschitz retraction n: V,(A) — A is
defined.

Setting g = mogy we now have g € Lip(S?, 4), g = f on S?\Ey, and
g — f“le,SZ < “gHW'J,E,\ + Hprw,z,E,\.
Here the last summand has limit 0 as A — oo, and

| Dgll72 5, < (Lip g)*|Ex| < (Lip m)?C*A%|E,| — 0,
Mollne i, < llmogy —mo fllize + [fll2.m, < (Lipm)|lgn — flliz,ey + 1 flleze, = 0.

Choosing X sufficiently large the assertions |E)| < & and l|g — fllp1252 < € follow.
To treat the C' case we use [EG, Theorem 6.6.1] to approximate gx by C' mappings

i S? = R™ with Lip §y < CLip gr, §a = g» on S\ F) and |E,| small enough to ensure
M|E\ — 0 as A —» 0o. (€' is a constant depending on m only.) Arguing as above we see

(1) = 9y(w)] < (Lip G2 + Lib g3)(-1B) " < (€ + DO (I B )

for w € §?, and we infer that §, has image in V,(A) for ) sufficiently large. Using a C*
retraction m: V,(A4) = A we now define g = m¢ gy and readily verify the assertions made in
(1), provided A is chosen large enough.

(i) This is an immediate consequence of (i) and the compactness theorem for integer
multiplicity currents [Fe, 4.2.17] (in fact, we need only the easier two dimensional case here,
i.e. the BV compactness theorem [EG, 5.2], [Zi, 5.3]) which is transferred from Euclidean
spaces to Riemannian manifolds by standard localization procedures. ]

The following Lemma shows that J, —.J, is a 2-current of spherical type if 2,y € S{U, M)
both satisfy the Plateau boundary condition for a given oriented rectifiable Jordan curve
T in M. In the case = —y € Wy (U, ") this property of J, — J, is evident, for surfaces
x,y € S(I', M) with only weakly monotonic boundary traces, however, the proof requires
a geometric construction which we present in part (1) of
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3.3 Lemma.

(1) Supposex € S(I', A) and 0 < e < 1. Then there erist # € S(T', A) and 0 < & < ¢ such
that D(%) < ¢+ D(z), #(w) = r(l—%) forlw| <1-6,&(w) el forl—6<|w| <1,
and Z|su s a biLipschitz parametrization of I'; in particular J, = J;.

(i) If z,y € WY(U, A) with © — y € W,* (U, ™) or z,y € S(T', A), then J, — J, is a
spherical 2-current in A.

Proof. (i) We choose a biLipschitz parametrization v : §' — I". Then z(e!?) = 4(e'#(¥))
where :[0, 27] — R is continuous and nondecreasing with o(27) — (0) = 27x. We extend
() = p(¥) — 9 from [0,27] to R with period 27. Since ¥ = y~lox(e®”) and ~!
admits a Lipschitz extension B™ — C, we see that ¢ is of class Wzlf’z(R, R). In fact,
denoting by 7:U — K" any continuous W'? extension of z|s; we have an extension
(9, 0) = Loz (elPFie)) € C 4 of €% to a strip R x [0, s] with s > 0 small, and this can be
lifted via the exponential map to an extension of ¢ on this strip which is continuous and
of class W2 on [0, 27] x [0, s].

We now consider the harmonic function 5 : R x [0, 1] = R which is 27-periodic in the
first variable and has boundary values n(«,0) = ¥(9), n(d,1) = 0. (This may be viewed
as a harmonic function on S! x [0,1].) Since the boundary values are of class Wy/%?,
7 has finite Dirichlet integral on {0,2x] x [0,1]. From the maximum principle we infer
Zn(v,0) > 0 —1for 0 < ¢ < 1, because 9 ++ n(#,0} + 1) is nondecreasing and (9, 1) = 0.
{(Consider difference quotients in the ¢ direction.)

We define

z(5e"), if 0<p<1-4

yoexplid +in(d,o—-1+48)], if 1-6<p<1.

Then & € WH*(U,®R™), and Z|ay is a biLipschitz parametrization of T since 2 (¥ +
n(¥,0)) > & > 0 and, hence, ¢ — exp[id + in(19,d)] is an orientation preserving diffeo-
morphism of S§'. The Dirichlet integral of # exceeds D(z) by at most (Lipy)? times the
energy of (9,0) — 9 +n(d,0) on [0,27] x [0,d], and by choosing § > 0 sufficiently small
this is less than . Finally, J; = J; holds, because Z is a reparametrization of z on the disc
|w] < 1~ 4, while # factors through + and has zero area on the annulus 1 — 8§ < p < 1.

(i) In the case x,y € S(T', A) we construct § corresponding to y as in (i} and we extend
the biLipschitz automorphism (§|ay) ! e (Z|ay) of OU to a biLipschitz automorphism 7 of
U. Then J, = J;, J, = Jj = Jyor, and jjo7 — 7 € WU, E*). Composing i with
stereographic projection from the south pole and §jor with sterographic projection from
the north pole of S? we therefore obtain f € WH2(52, A) with

f#I[SQ]i = ]5: —_ Jﬁo‘r - JI - Jy.

In the case z —y € Wy * (U, B™) we apply the last construction directly to x and y. [

Suppose J; — J, is homologically trivial in the closed set A C M, i.e. we have J, — J, =
d¢) for some integer multiplicity rectifiable 3-current @ on M with support in A. By the
constancy theorem [Fe, 4.1.7, 4.1.31] € is unique up to an integer multiple of [M]. It
follows that () is unique if A is a proper subset of M or if A = M has infinite volume. On
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the other hand, if A = M has finite volume |M| < oo, in particular, if A = M is closed
manifold, then () is not determined uniquely and we must impose an additional condition
on @ to force uniqueness. A natural such condition is that the mass M((Q) is smaller than
5|M|. (It would be sufficient to require |spt Q| < %]M’U With the uniqueness of @ being
granted in this way we may now define the H-volume Vg (x,y) by integrating the bounded
continuous function H: A -+ R over (.

3.4 Definition.

(i) We say that a spherical 2-current 7" in the closed set A C M is uniquely homo-
logically trivial in A if T = 6@ for some integer multiplicity rectifiable 3-current @}
on M with support in A and either we are in the non-closed case, i.c. 4 # M or
A = M with |M] = oo, or we are in the closed case A = M with |M| < oo and @
can be found with M(Q) < 3|M

(ii) Suppose x, y are in W12(U, A) with boundary condition =,y € S(I',A) or z — y €
I-VDI’Z(U, ™). If J.—.J, is uniquely homologically trivial in A we define the H-volume
enclosed by z and y in A

Vi(z,y) = L, (HQ) = []L iy HSL,

where [, , is the unique integer multiplicity rectifiable 3-current @ on M associated
with the spherical 2-current T' = .J, — J, as in (i), 4, is the multiplicity function of
Iy and Q the volume form of A . =

The intuitive meaning of the H-volume Vy(z,y) is the integral of H over the set with
multiplicities in A which is bounded in A by the parametric surfaces x and y.

3.5 Remarks. (1) The {not necessarily unique) homological triviality of J, — J, in Def-
inition 3.4 (ii) is granted, of course, when A is homologically 2-aspherical in the sense of
Definition 3.1 (ii). For a connected uniform Lipschitz neighbourhood retract A this latter
condition is equivalent to triviality of the Hurewicz homomorphism mo(A) — Hy(A,Z),
i.e. each continuous map S? — A induces the zero homomorphism H,(S5%,2) — Hy(A,Z),
and it is satisfied in particular if the homotopy group my(A) = 0 or the homolgy group
Hy(A,2) = 0. These assertions follow from Lemma 3.2 above and from the description of
the homology groups with integer coefficients in terms of integral currents [Fe, Section 4.4].
For example, if M is a 3-torus and A the complement of a smooth open ball in M, then
Jy — J, is uniquely homologically trivial in A for all z, y € S(I', A} (although m3(A) # 0
and Hy(A4,2) # 0).

(2) The H-volume Vg (x,y) is defined whenever A ¢ M is uniformly locally biLipschitz
equivalent to the unit 3-ball, =, y € W12(U, A) satisfy the boundary condition =, y €
S(I',A) or x —y € Wy (U,R™), and the mass M(J, — .J,) is sufficiently small. This can
be proved as in [DS2, Proposition 2.2]. |

It remains to verify that the H-volume defined here has the properties used in Section
2 to derive the variational (in-}equality. For this, we prove
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3.6 Lemma. Suppose z,y € WH*(U, A) are as in Definition 8.4 (i) so that Vy(z,y) is
defined.

(i)

(i)

If ACM admits ¢ uniform Lipschitz neighbourhood retraction m in R™, 2eW2(U, A),
F—x € WU, BR™) or &,z € ST, A), and || — x|~ is smaller than a positive
constant (depending only on A and in the closed case additionally on an upper bound
for D(z) + D(Z) and a positive lower bound for J|M| — M(l,,)), then Vy(%,v),
VulZ,x) are also defined and satisfy

VH('%: y) - VH(xa y) = VH(E’:L) ’

Viu(z,2)| < sup |H] 1 = 2|1~ (Lipn)*3[De(z) + De(2)],

where G ={w e U : 2(w) # z(w)}.

If ®F is the flow of a compactly supported C1 vector field Y on M with ®) (A) C A for
smallt > 0, 1 is a nonnegative C! function with compact support in U, and xi(u,v) =
X (t,u,v) with X(s,u,v) = &Y (sn(u,v), z(u,v)), then Vg(z,y) and Vy(z,, z) are
also defined for smallt > 0 and

VH(ﬂft, .U)*VH(-’E, y):VH (Sl?t, 35): /

t
/(HoX)(QoX, X, A Xu A X, )dsdude.
U
0

Proof. (i) With the affine homotopy X (s,u,v) = (1 — s)z(u,v) + sZ(u,v) we define
the 3-current (2 on R™ by

(3.8)

1
Q) = / f (7o X, Xs A Xy A X, )Ydsdudv
i Jo

for v € D¥®™). From the homotopy formula [Fe, 4.1.9] and the boundary condition
satisfied by = and & we infer 0Q = J; — J,. For the mass of ¢} we obtain from (3.8) the
estimate

(3.9)

M(Q) < [{& — zlip=5[Dg(z) + Da()].

For ||# — z||p= sufficiently small 74 () is then an integer multiplicity rectifiable 3-current in
A with boundary

871’#@ = ﬂ'#aQ = Jj - Jx

and with mass

(3.10) M(r4Q) < (Lip 7)°M(Q).

In the non-closed case it follows immediately that

W#CQ = I:'c,;ca I’J:,y - I.E:c + I:r,y'
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In the closed case the same cquation is true if
1
M(I) +M(7yQ) < 51M]

which can be deduced from M(Z,,) < 3|M| and (3.9), (3.10) if [|# — 2|z is sufficiently
small.

For the H-volume we conclude
VH (.i, y)—-VH(.’L', :U): / (Ej-’,’,HQ — ix,yHQ): ] ij,mHKBZV][ (.IE, .’,E):?T#Q(HQ)
M M

Now the estimate asserted in (1) follows from (3.9), (3.10), and approximation of H{} by
smooth v € D¥(M) with |y| < |H| pointwise on M.

(ii) We now define, for small ¢ > 0,

t
(3.11) Qu(v) = [ ] (vo X, X, A Xu A X, )dsdudy
S0

for v € D*(M) using the present homotopy X. Then @, is an integer multiplicity rectifiable
3-current in A with 8Q; = .J;, — J.. This follows from the homotopy formula [Fe, 4.1.9] if
x is Lipschitz continuous on U, and it is readily proved with the present hypotheses on x
by suitable approximation arguments (e.g. [EG, 6.6]). For the mass of Q; we estimate

(3.12) M(Q,) < tC?supn [DC(T) + %tQDg(n)]
U

where G = spt[n(Y ox)] and C is a bound for |D®Y| on [0,tsupyn] x sptY. For t > 0
sufficiently small we deduce from (3.12)

M (L) + M(Q:) < §|M

in the closed case, and

Im,x = Qta I;r.g,y - I.’L'f,ﬂ’,‘ + Ig;,y

follows as in (i). Appxoximating HQ with v € D*(M) we see from (3.11) that Vg(z, z) =
Q:(HQ) has the integral representation asserted in (ii). u

With (ii) we have verified that the homotopy formula (2.13) is valid for the variations
considered in (ii) and the volume definition Vg(z) = Vg(z,y), where y € WHA(U, A} is
a fixed reference surface and z,y satisfy the conditions of Definition 3.4. Thus, all the
conclusions of Section 1 are again valid.

Continuity of H-volume with respect to convergence of surfaces in W% norm can be
discussed as in [Stel]. We will only need the continuity property expressed in part (i) of the
preceding lemma. With regard to the variational approach based on minimization of the
energy Eg(z) = D(z) + 2Vg(z,y) the continuity of H-volume with respect to weak W2
convergence would be useful. However, the H-volume functional is not (semi-)continuous
in this sense.
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4 A general existence theorem

In this section we prove a general theorem about the existence of weak solutions to the
Plateau problem P(H,I') in a Riemannian 3-manifold M C K™ as described in Section 2.
We use the direct method of the calculus of variations to minimize the energy Ey(z) =
D(z) + 2Vyg(z,y) on suitable subclasses of S(T', A), the set of parametric surfaces z €
WL2(U, M) which satisfy the Plateau boundary condition (2.4) for the oriented rectifiable
closed Jordan curve I' in M and have their image (essentially) contained in the closed
subset A of M. y € §(I', A) will denote a fixed reference surface.

The natural topology to use an S(I', A) is weak convergence in W"?(U, R™). Dirichlet’s
integral D{(-) is lowersemicontinuous, however, the H-volume functional Vi (-, y) is not
(semi-)continuous for this type of convergence. The rcason is that for a W2 weakly
convergent sequence z, — x in S(I', 4) a large part of volume and of area of z,, may
be parametrized over a small subset of the unit disc U/ with measure approaching zero
as n — oo. We may think of a "bubble” splitting off in the limit which carries away
a certain amount of volume and area. In contrast with the geometric measure theoretic
treatment of the Platen problem in [DS2], this bubbling phaenomenon can occur even for
uniformly bounded weakly convergent sequences of parametric surfaces, and it may change
the homology class in the limit. For the analytical treatment it is important to have a
precise technical description of the possible bubbling. This is presented in the following
lemma which states that we can replace the z, by uniformly close parametric surfaces %,
which coincide with the weak limit x on a large subset of the domain, while we have control
of all the relevant quantities. The construction used in the proof may be useful also in other
situations where one has to deal with bubbling phaenomena. In Euclidean space R* another
construction, using harmonic replacement on open subsets of I/ with small measure, has
been applied in [Stel] to prove similar statements as in the lemma below. However, it seems
that this latter construction cannot easily be adapted to the case of parametric surfaces in
a Riemannian 3-manifold, and our method here is more flexible.

4.1 Lemma. Suppose , —» z weekly in WI2(U,R™) and x,|or — z|sv uniformly in
L>=(0U,®™). Then, for every ¢ > 0 there exist R > 0, a measurable set G C U, and
mappings I, € WLE(U,R™) such that the following assertions are true after passing to a
subsequence (still denoted ©,, T, }:

(i) Tn =z on U\G with L%(G) < &;

(i) Tnlov = Tlov;
(i1} Tn(w) = zp(w) if |zo(w)} > R or |za(w) — x(w)| > 1;
(1) lim [|Z, — ZnllLe@wrm = 0;

(v) &, — 1 weakly in W'2(U R™)as n — oo;

(vi) limsup[D¢(Z,) + De(2)] < € + lim inf[D(z,) — D(z)].

n—o0

(vii) if the x, have values in a closed set A C R™ which admits neighbourhood retractions
with Lipschitz constant arbitrarily close to 1 on neighbourhoods of compact subsets,
then the I, can be chosen to have also values in A.
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Proof. Using the theorems of Rellich and Egoroff we can find R > 3,% > by N0,
and G C U with £*(@) < ¢ and D¢(z) < £/, where ¢’ > 0 will be determined later, such
that [|z]oy|lre < LR, suppg 2] < 3R, suppg [zn — 2| £ 6, and [anlor — @lov e < 0n
(after passing to a subsequence). We choose p € C'(R) with 7= 1 on ] — o0, 3R], 7= 0 on
[2R, 00, 0 < —1f <4R7" on R, and we set #,(t) = 1 for t <&, D, (1) = (71 = 1) /(671 — 1)
ford, <t <1 ¢,()=0fort>1

Letting
(4.1) Fp =z, + (mel|z))(Ono|z, — z|) (& — &)

and noting that ne|z| and ¥, 0|z, — x| have values in [0,1] and boundary traces 1 on
OU we deduce immediately (1) and {i1). From the properties of ¥, and the observation
that |z,(w)| > R implies [z(w)] > 2R or |z.(w) — x(w)] = 3R > 1, i.e. n(lz(w)l) =0 or
I (lr,(w) — 2(w)|) = 0, we infer (iil). Since 0 < 7 < 1 and sup,.q Vn ()t =6, — 0asn — 0
we also see {iv). To prove {vi) we differentiate (4.1) and calculate (with the interpretation
£ . Dy =0 where z = 0)

||

(4.2) Dz, = Dz, + (ne|z|)D{(Vpelzy — z|)(x ~ )]
+ (1o |a\)(f_ D) (0, 0|ty - x|) (T — 20),

il

with

D[Y, |z, — z\)(x — z,)] = D(x — x,) where |z —ua,] <4y

and
, Tn — & (
= (U o|zn — ) |£En — x| D(zn = 2)| @ (2 — 20) + (Inojzn — 2)D(x — 2)
= —|z, — z|(¥, o |zy — 2)PD{(x,, — 2) = (Fnolzy — z))D(2n — 1)
On
=173 PD(x, —z) — (P oz, — 2 )P+ D(z, —x) where |z — z,| > én.

Here P denotes the field of rank 1 orthogonal projections
P:R" 3 &0 |z, - x| H(xn — ) - &) (zp — T)
on K, P+ =1d — P, and for ¥/, we have used

dn
I - 6*”,

=t (t) = 9. (t) + for ¢ > d,.

Inserting into (4.2) we end up with

(4.3) Dz, = (1 — ne|z|) Dz, + (nejz|)Dx

L (o |z))(i= - Da)(z — z,) where |z — Zn| < b,

||
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and

Din = {1 = (go[e)(Inolza — )P Doy + [1 + (nolal) | PDa,

b
(4.4) (0o 12])(Uno |20 = 2)) PP Dz — (golz]) ;- PDs

+(7]’0J:r|)(§—| . D.’.E) (Onolzn — x|)(z ~-x,) where |z —x,|> 6,

We can now estimate |DZ,| on G. At (almost all} points w € G with |z(w) — z,,(w)| < J,
we have, by (4.3) and the properties of 77 and 9,,,

4
|Dz,| < |Dxzy| + |Dz| + EénlD.ﬂ < | Dy + 2| Dz,
while in the case |z(w) — z,(w)| > &, we use (4.4) and ¥, (¢)t < 4, to see, at w,

1172
|Dzn| < [|PDanl* + (1= 6,)*|PDz,|*|  +|P-Dxl

On 4
+ 5n|PDac| + ﬁ6n|Da:|.

In any case, we have

1
1 -4,

|Dz,| < |Dz,| +2{Dx| on G,

and with Young’s inequality we deduce, for given A > 0

A1+ A)
T+ —(L—0,)2

(45) Dg(ifn) S (1 + A)D(;(’En) + Dg(ZC),

provided n is large enough to secure (1 —4,)7% < 1+ A, From (4.5) we conclude

(4.6) liﬂilp[DG(jn) + De(z)]
< (14 A) linmj;};p[D(:L‘n) ~D(z)|+ 2+ A+ 4¥)Dg(:ﬁ),

because 6, — 0 as n — 0o and
lim sup DU\G’(:ETL) 2 Du\(;(ﬂ?)
n—00

on account of the weak convergence z, — x in W!2(U, ®™).

We now fix A > 0 such that Asup, D(z,) < e, and then determine &’ with Dg(z) <
¢ such that [2 4+ A+ 4A7'(1 + A)]¢’ < e, Then assertion (vi) follows from (4.6) after
passing to a subsequence in order to replace lim sup by lim inf on the right-hand side. Since
sup, D¢ (Z,) < oo by (vi) and Dyy(&,) = Duyg(®) by (i) we deduce (v) from (iv) and the
weak convergence z,, — x. Finally, to prove {vii) we apply the proceding construction (with
%5 instead of £) and we replace the resulting %, by mo#,, where 7 : B — A is a Lipschitz



retraction with B C E"™ containing a neighbourhood of the compact set {a € A : |u| < R}
and with Lipschitz constant sufficiently close to one. [ ]

One may interprete the quantity liminf, . [D{(#z,) — D(2)] as the Dirichlet integral of
the bubble that splits off in the weak W12 limit z,, — z. To prove lower semicontinuity
of the energy Ey(z,) = D(z,) + 2V (5, y) as x, — = in S(I', A), we must estimate the
H-volume jump limsup,,_, .. 2|Vi{x,, ¥) — Vu(z,y)! by this quantity. This will be done
by passing from x, to &, constructed in the preceding lemma and assuming a suitable
isoperimetric inequality for the H-volume which is formulated in the definition below. This
isoperimetric condition, with constant ¢ < 1, will also imply a bound for the W2 norm
of energy minimizing sequences, which is the remaining ingredient we need for the direct
method of the calculus of variations. We recall the notions of spherical 2-current from
Definition 3.1 and of unique homological triviality from Definition 3.4 (i).

4.2 Definition. Suppose 0 < s < oo and every spherical 2-current 7" with support in
A C M and M(T) < s is uniquely homologically trivial in A, i.e. there exists an integer
multiplicity rectifiable 3-current () on M with support in A and 8¢ =T, and additionally
with M(Q)) < $|M! in the closed case,

(i) If 0 < ¢ < oo and the inequality

(4.7) 20Q, HO)| =2

/A f;QHQ} < eM(T)

holds for all such 7" and @) {where ig is the multiplicity function of ¢ and 2 the
volume form on M) then we say that a spherical isoperimetric condition of type
c, s is valid for H on A.

(ii) If 0 < ¢é < o0 and the inequality

(48) M(Q) = [ ligl? < eM(T)

is satisfied for all 7" and @) as above, then we say that a linear spherical isoperi-
metric inequality of type ¢, s holds on A. [

The difference hetween this definition and the unrestricted isoperimetric condition or
inequalities used in [DS2] is that, on the one side, we need only consider the special spherical
2-currents here but, on the other side, we have to require unique homological triviality for
these. In [DS2] this requirement was not necessary, because there we could work in a given
homology class. Moreover, by the decomposition theorem for integer multiplicity rectifiable
currents in the top dimension one could formulate the unrestricted isoperimetric condition
simply in the form

2

fF,Hﬂlch(F) for P(F)<s

for all sets F' C A with finite perimeter P(F) < s, and the unrestricted linear isoperimetric
inequality similarly

P o= /FQ < P(F)



for the same sets F. Of course, if the unique homological triviality assumption made
in Definition 4.2 is satisfied, then such unrestricted inequalities imply the corresponding
inequalities for spherical currents. Therefore the results of [DS2] apply here with the
additional hypothesis of unique homological triviality for spherical 2-currents of mass < s.
Apart from the uniqueness requirement (in the closed case) this additional hypothesis is
satisfied when A is homologically 2-aspherical, in particular when A is a uniform Lipschitz
neighbourhood retract with H,(A,Z) = 0 (cf. Remark 3.5 (1)).

On the other hand, it is clear that there are situations where a spherical isoperimetric
condition or linear isoperimetric inequality is less restrictive than an unrestricted condition
of the same type. For example, if A = M = S x §! xR, then a linear spherical isoperimetric
condition of type c(s), s holds for each 0 < s < oo with the same optimal constant ¢(s)
as in the case of the Euclidean space E*, because continuous maps f : 52 — M can be
lifted to the universal cover ®* of M. However, clearly no unrestricted linear isoperimetric
inequality of type ¢, s is valid on M a finite constant ¢ if s > 2|S' x S| = 872 A similar
observation holds for isoperimetric conditions, e.g. with H =1 on M.

4.3 Remark. By Lemma 3.3 (ii) and Definition 3.4 a spherical isoperimetric condition of
type ¢, s for H on A implies that the H-volume Vg (z,y) is defined and satisfies

(4.9) 2|Vg(z,y)| £ M(J; — J,),

whenever .,y are parametric surfaces in WH?(U, A) with M(J,—J,) < s and with boundary
condition x,y € S([,A) or z,y € Wy*(U,®R™). It is this form in which the spherical
isoperimetric condition will be used in the sequel. ]

We are now prepared for the proof of the main theorem. A result of this type was first
proved, for surfaces with constant prescribed mean curvature H in Euclidean 3-space, by
Wente [We]. An improved version, valid for variable H and surfaces in B, was later given
by the second author [Stel]. We recall the definition of the class S(T, A) from (3.7), the
closed case and the non-closed case distinguished in Definition 3.4 (i), and the notion of
weak solution to the Plateau problem P({H,I') in M from Section 2.

4.4 Theorem. Suppose A is closed in the 3-manifold M C R™, Lipschitz neighbourhood
retractions onto A exist in R™ with Lipschitz constant arbitrarily close to 1, the function
H: A - R is bounded and continuous, a spherical isoperimetric condition of type c,s is
valid for H on A, a linear spherical isoperimetric inequality of type ¢, s holds in the closed
case with és < 3| M|, the oriented rectifiable closed Jordan curve T is contained in A, and
the reference surface y € S(I', A) satisfies (1 + o)D(y) < s for some 1 < 0 < oco. Let
S(T', A;0) be the class of parametric surfaces & ¢ S(T, A) with D(Z) < ¢D(y). Then the
following assertions hold:

(i) If o < o0 and ¢ <1 or if 0 = co and ¢ < 1, then the variational problem
(410) En(Z) = D(£) + 2Vy(f,y) > min  on S(T, A4;0)

has a solution.



fii) If

(4.11) e < 25

resp. ¢ <1 n the case o = 00,
o+

then the variational problem in (i) posesses a solution & with D(z) < aD(y); of strict
inequality holds in (§.11) or y itself is not a solution to (4.10), then D(x) < oD(y)
is true for each solution x of (4.10).

(i) If A is the closure of a C* domain in M and
(4.12) |H| < Hpa pointwise on  0A,

where Hya denotes the (inward) boundary mean curvature of A (no condition in the
case A = M), then cach minimizer z of (4.10)with D(z) < oD(y) is a weak solution
to the Plateau problem P(H,T) in A; moreover, if |[H(a)] < Hsa(a) holds at some
point @ € (DAL, then © does not meet a neighbourhood of this point.

Proof. (i) Recalling (3.5) we first observe
(4.13) M(J; - Jy) < D(Z) + D(y) < (0 + 1)D(y) < s

for ¥ € S(T', A; o) and we infer from Definition 3.4 and the spherical isoperimetric condition
that Vg (Z,y) is defined for & € S(I', 4;0) with

(4.14) [D(%) - Eg(F)]| = 2|Vy(@,y)| < [D(&) + D(y)},

by (4.9) and (4.13). Choosing a minimizing sequence x,, for (4.10) we next note sup,, D(x,,)
< o0, because we have assumed ¢ < 1 in the case ¢ = oo and (4.14) with ¢ < 1 clearly
implies a bound for D(z,,).

Since the energy functional Ej is invariant with respect to reparametrization of surfaces
by conformal automorphisms of the unit disc I/ we may assume a three-point-condition,
i.e. z,{w;) = a; holds for three fixed points wp, w1, ws C OU and ag, a1, a3 € [’ numbered
compatible with the orientation. As is well known from the theory of parametric minimal
surfaces (sce [DHKW], [Jo3], [Ni1], [Ni2] or [Str]), it then follows from a Lemma of Courant
and Lebesgue and the Jordan curve property of I' that the sequence of boundary traces
Zn|or 18 equicontinuous. Passing to a subsequence and taking Rellich’s theorem into account
we may therefore assume that the x, converge W1? weakly and almost everywhere on U
to a surface z € S(T', 4; o) such that z,|sy — z]sy holds uniformly on OU.

We now apply Lemma 4.1 with a given ¢ > 0 to obtain, after passage to another
subsequence, the surfaces 7, € S(I', A). From statements (i), (ii), (iv) and (vi} of this
lemnma and from part (i) of Lemima 3.6 we see

(4.15) Vg{(z,,y) — Vy(z,,y) = Vu(dn, z,) =0 as n — oo.
(It is clear from the proof of Lemma 3.6 that we do not need a uniform Lipschitz neigh-
bourhood retraction onto A here, because we have Z,{w) = z,(w) for |z,(w)| > R, by

Lemma 4.1 (iii).}
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Choosing 2¢ < D(z) we infer from (3.5) and Lemma 4.1 (vi) that
(4.16) M(Jz, — Jo) < Dg(E,) + Dg(z) <26+ D(z,) — D{z) < oD(y) < s

holds for large n. Therefore, the spherical isoperimetric condition with constant ¢ < 1
implies for sufficiently large n, by Remark 4.3 and (4.16),

(4.17) 2|V (Zn, z)| < 26 + D(x,) — D(z).
We claim
(4.18) Vy(&n,y) = Vg (Tn, ) + Vi(z,y).

To prove this we note that, on account of (4.14), (4.15) and {4.17), we already know that the
H-volumes in {4.18) are defined, i.e. we have the integer multiplicity rectifiable 3-currents
Iz, ys L300, L2y with support in A which are uniquely determined by their boundaries Jz, —
Jy, Iz, ]I, Jm — J, and, in the closed case, by the additional condition of mass < 2| M.
(4.18) follows if we verify

Ii"ﬂ’y = IIE;;,I + I.I‘,y'

This is clear in the non-closed case, because the currents on both sides have the same
boundary, and it can be seen in the closed case from the following chain of inequalities,
valid for £ > 0 fixed suffciently small and for all sufficiently large n:

M(z, o+ Iry) < M{L,,.) + ML) < eM(J;, — J) + EM(J; - J,)
< €26 + D(zn) ~ D(2)] + €[D(z) + D(y)] < &[2 + (1 + 0)D(y)]
< #2e + 5) < 3|M]|,

where we have used (4.13), (4.16), and the linear spherical isoperimetric inequality with
¢s < 5| M| which is assumed in the closed case.

Now, from (4.15), (4.18), (4.17) we deduce

EH(IER) = ( ) + QVH(’En, g)
= Eg(z) — ( ) +D(z,) + 2V (Zn, z) — 2V (dn, z,)
> EH(.T)

for sufficiently large n, and we have proved that  minimizes Ej on S(T, A; a).

(ii) For solutions z to (4.10) we infer from Eg(z) < Eg(y), (4.14), the definition of
S(T', A; o), and the assumption (4.11), that the following chain of inequalities holds:

D(z) = Eg(x) = 2Vy(z,y) < Eu(y) - 2Vg(z,y)
= D{y) — 2Vu(z,y) < D(y) + ¢[D(z) + D(y)]
< D(y)[1 +¢(e + 1)] < oD(y).
Strict inequality D(z) < ¢D(y) follows if 0 = 0o, or 1 +¢(o+ 1) < o, or y is not a solution
to (4.10) (ie. Eg(x) < Ex(y)), or strict inequality holds in (4.14) (with # replaced by =

there). If, on the other hand, y is a solution to (4.10), then D{(z} < oD(y) is true for x = y
becausc o > 1.

(iii) This follows from Scction 2, in particular Propositions 2.3 and 2.4, since we have
verified in Lemma 3.6 (ii) that the assumptions made in Section 2 about the H-volume
functional are satisfied. |
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4.5 Remarks. (1) The same proof works for the Dirichlet problem, i.e. S(I', A;a) is
replaced by S(y, A;0), the set of & € WHH(U, A) with & — y € W, (U, A) and D(%) <
ocD(y), where y € W1?(U, A) is given. To obtain weak solutions x € W1H2(U, A) for the
H-surface equation (2.2), (2.10) with Dirichlet boundary condition zjsy = |4y we have to
replace, by Remark 2.5 (1), the mean boundary curvature Hyy4 in part {iil) of Theorem 4.4
by the minimum of the principal curvatures of JA.

(2) In the case A # M it is not really necessary to assume that the integer multplicity
rectifiable 3-currents f;, etc. occuring in the proof have their support in A as required
in the definition of the spherical isoperimetric condition. If we modify Definition 4.2 by
allowing that the integer multiplicity rectifiable 3-current ¢} with 0 = T, where T is a
given spherical 2-current in A, may have support spt @ in some closed subset A of M with
ADA (i.e. we require unique homological triviality of 7" in ‘1), then the proof of Theorem
4.4 remains valid, provided H is bounded and continuous on A. Of course, in the case
A = M with |M| < oo we then must impose the restriction M(Q) < 2IM{ on the mass
of (7, and for the theorem we need the hypothesis és < %U’tﬁlr | for the linear isoperimetric
constant ¢ of M.

(3} Tf we work with the definition
(419) Vir(z,y) = Vie) = Vuly) = [ 2% — [ yu

of H-volume, where w is a continuous bounded 2-formn on M with dw = H in the distri-
butional sense on a neighbourhood of A, then Theorem 4.4 is valid with the isoperimetric
condition defined by (4.9). No assumption of homological triviality for the spherical cur-
rents .J, — J, is needed here, neither do we have to assume ¢s < %|Mf| in the closed case.
To adapt the proof given above, we need only observe that with a homotopy formula as in
(2.13) and in the proof of Lemma 3.6 (i) we can show (4.15) also for the H-volume defined
by (4.19). All the other steps of the proof remain valid. (However, as we have already
pointed out, the assumption HQ} = dw with a bounded 2-form w imposes restrictions on
the prescribed mean curvature H which may be unwarranted.)

(4) A natural choice for the reference surface y is a minimizer of Dirichlet’s integral in
S(T', A) (which exists by the argument in the second paragraph of the proof of Theorem
4.4 above.) Under some uniformity condition on A in the noncompact case (see Section 6)
y is then continuous on U. Thus, the assumption S(T', A) # ¢} implies in particular that
[ is contractible in A, and the converse is also true, of course. One may then lift I' to
a Jordan curve I' by the universal covering p: M — M and apply the theorem to M in
order to obtain sometimes a better existence result for the Plateau problem P(H,T") by
projecting the solutions to P(H op,T) in M onto M (see [Gul, Section 6]). »

5 Geometric criteria sufficient for existence

In this section we combine the results of [DS2] on isoperimetric inequalities and conditions
in Riemannian manifolds with Theorem 4.4 to derive concrete geometric conditions on the
Jordan curve " and the prescribed mean curvature H which are sufficient for the existence of
a solution to the Plateau problem P{H,I') in a given Riemannian 3-manifold M (satisfying
the general assumptions of Section 2} or in the closure A of a smooth subdomain 4 of M.
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The first treatment of this problem by Gulliver [Gul] and Hildebrandt & Kaul [HK] was
based on the simple version of Theorem 4.4 described in Remark 4.5 (3), i.c. they worked
with a 2-form w on M satisfying dw = HQ on A (in fact, they used the vector field Z dual
to w which satisfies divysZ = H on A). The isoperimetric condition

2|VH(M)|_2U w—/ ’<cMJ — )

for z,y € S(I', A) (see (3.7)) is then clearly satisfied with constant ¢ = 2 sup 4 |w|. Therefore
to apply Theorem 4.4 with the choice s = o = oc, one needs the condition sup, |w| < 1
(or sup4 |Z| < 3). With this assumption the proof of lower semicontinuity of the energy
functional Ef = D(z) + Vg (z,y) is also much simpler than in Theorem 4.4 (cf. [DS3]).

A natural method to produce a 2-form w with dw = HQ on a geodesically star shaped
domain in M is radial integration of H} as in the usual proof of Poincare’s Lemma. Using
this approach and Riemannian comparison techniques to deduce sup , |w| < % from suitable
geometric assumptions on A and H Gulliver and Hildebrandt & Kaul were able to show that
in the case of a closed normal geodesic ball A of radius R > (0 on M the Plateau problem
P(H,T) can be solved in A for all rectifiable closed Jordan curves I' C A, provided

(5.1) 51;111) w| < keot(kR),

where x 1s real or purely imaginary with |k|R < § in the real case and the sectional
curvature of M is bounded above by Sec(M) < x? on A. The geometric interpretation of
the constant x cot(xR) appearing in (5.1) is the mean curvature of a sphere of radius R
in the simply connected 3-manifold N, with constant sectional curvature 2. In the case
x = 0 one has to interprete xcot(kR) = R, of course, so that the result of Gulliver
and Hildebrandt & Kaul appear as the natural analogue of Hildebrandts theorem [Hil] on
the solvability of P(H,I") in a ball of radius R in Euclidean space R for prescribed mean

curvature H satisfying sup |H| < R™L.

1t follows from Gullivers work [Gul] that the constant xcot(xR) in (5.1) may be re-
placed by a computable larger constant, provided |H| does not exceed on 9A the mean
boundary curvature Hys of A. Furthermore, Hildebrandt & Kaul [HK] treated not only
balls but general geodesically star shaped domains in M. By definition, such a domain is
the diffeomorphic image under the exponantial map exp,, of M at some point p (the star
point) of a domain in the tangent space T, M which is star shaped with respect to the origin
of T, M. It seems, however, that the following improvement of the results of Gulliver and
Hildebrandt & Kaul, which we deduce from Theorem 4.4, cannot be easily obtained with
their methods.

5.1 Theorem. Suppose D is a geodesically star shaped domain in M with star point p,
the sectional curvature of M is bounded above by Sec(M) < k* € R on D, A is the closure
of a C* domain in D, and geodesic arcs connecting p to points in A have length < R where
2k|R < m in the case k* > 0. If the (continuous) prescribed mean curvature H: A —» R
satisfies the two conditions

sin?(kR)
R — 3-sin(25R)’

(5.2) sup|H| <
A
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(5.3) |H| < Hpa pointwise on 0A,

where Hy, is the (inward) mean boundary curvature of 4, then the Plateau problem P(H,T')
has a weak solution in A for every rectifiable closed Jordan curve I' which is contractible in

A.

We also have here and in the following theorems the strong inclusion statement of
Theorem 4.4 (iii), i.e. if |H| < Hya holds at a point of A\ T then each weak solution of
P(H,T) in A omits a neighbourhood of this point.

Proof. We have the linear isoperimetric inequality
(54) M(Q) < c(s, IM(OQ)

for 3-dimensional integer multiplicity rectifiable currents ¢ on A with support in D where
the constant ¢(«, 12} is the optimal one when M = N, is simply connected with constant
sectional curvature x* (see Section 2, in particular Remark 2.8 (2), in [DS2}). From the
isoperimetric property of balls in N ([Sch], [DeG]|, [BZ, 10.2]} one deduces that ¢(x, R} is
the ratio of the volume of a ball of radius 72 in N, and its boundary area. One computes
readily (cf. [DS2, Example 2.5]) that

sin 610N 70 g7 (sin ) ? R— Lsin(2kR
(5.5) 2c(x, R)ZQ(HIM) [ (Y g - & sin (2% 1R)

K Jo K sin? kIt

1s the reciprocal of the constant appearing in (5.2).
On account of

(56) Q. HY| = |[ igH| < sup |HM(Q)
g/ D

for spt (2 € D we see that (5.4) implies an isoperimetric condition of type ¢ < 1, oo for H
on D if the hypthesis (5.2) is satisfied for 2 instead of A. Since we may clearly assume
supy, |H| = sup, {H| the assertion now follows from Theorem 4.4 with s = ¢ = o0 and
from Remark 4.5 (2). [

In the case of a normal geodesic ball A of radius R condition (5.3) is automatically
satistied if (5.1) holds on A. Indeed, by the comparison theorem for Jacobians [Gil], [BZ,
3.3], [GHL, 3.101] the mean curvature Hy, is not smaller on 04 than the mean curvature
of spheres of radius R in N, which is £ cot(kR) (cf. the proof of Proposition 2.6 in [DS2]).
In the interior of A, however, we need only the less restrictive inequality (5.2) for |H|. For
example, in the case x = 0 the constant appearing in (5.2), i.e. the limit as & — 0, equals
2R~ in contrast with the constant R~" in (5.1). It has already been observed by Gulliver
& Spruck [GS2| that the proof of Hildebrandts existence theorem [Hil] for a Euclidean ball
of radius R remains valid if instead of sup |H| < R~ on the ball we have sup |H| < $R™!
in the interior and sup |H| < B! ou the boundary. Thus, Theorem 5.1 may be considered
as a Riemannan version of this stronger form of Hildebrandt’s theorem.

In another direction we can generalize to the Riemannian context the result of the
second author [Ste2] that the inequality

(5.7) /R HPALY < 97”
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is sufficient for the existence of a solution to the Plateau problem P(H,T) in E* for any

given rectiftable boundary I". This is based on the nonlinear isoperimetric inequality (see
[K1] and [DS2, Section 2])

1
v 367

for integer rectifiable 3-currents () in a simply connected 3-manifold M of nonpositive
sectional curvature, where the constant is the optimal isoperimetric constant in Euclidean
space R®.

655 M@ < ([ o) < — M0

Using Holder’s inequality in (5.6} and applying (5.8) we find that H satisfies the required
isoperimetric condition of type ¢, oo with ¢ < 1 if the analogue of (5.7) is valid for integration
on M with respect to its Riemannian volume form €. In the case Sec(M) < k? < 0 we
can prove more, making use also of the linear isoperimetric inequality (5.4). We then see
from the proof of Theorem 3.10 (ii) in [DS2] that it is sufficient to integrate in (5.7) over
the subset of M where |H| is larger or equal to the constant appearing in (5.2). We thus
obtain the following theorem which in the case Sec(M) < x* < 0 simultaneously sharpens
the result of [Gul], [HK] and extends [Ste2] to the Riemmanian situation:

5.2 Theorem. Suppose the assumptions of Theorem 5.1 are satisfied for M, D, R, and
A with Sec(M) < k* <0 on D. If H: A = R satisfies (5.3) on A and

(5.9 f P < T
{e€A:|H {a)|>h(x,R)} 2
where
sinh? |k R)|
hik,R) =
i, B) R — ;L sinh |26R|’

2|x|

then the Plateau problem P(H,T') has a weak solution in A for every rectifible closed Jordan
curve I' which is contractible in A. [

Note that h(x, R) decreases to |x| as B — oo. Hence the domain of integration in
(5.9) may be replaced by {a € A : [H| > ||} to obtain a condition which is sufficient
for the solvability of P(H,I') for all rectifiable boundary curves T in a simply connected
3-manifold M of nonpositive sectional curvature Sec(M) < x* < 0. Hypothesis (5.9) is
clearly an improvement over (5.2) since it is implied by (5.2) but allows arbitrarily large
values of the prescribed mean curvature modulus |H| {(on sets of small volume). On account
of

‘_/iQHQ‘ < max{./iQ[H+§2,_[|7JQ|H“Q} ,

where 1, = max{H,0} and H_ = max{—H,0} arc the positive and negative parts of H,
it ts actually sufficient to require (5.9) for H, and for H. instead of |H|= H, + H_.

So far we have discussed the consequences of Theorem 4.4 for the Plateau problem
P(H,T) in (subdomains of) normal geodesic balls in M. The next theorem is not restricted
to this special situation. It is again derived from the case s = o = oo in Theorem 4.4.

32



5.3 Theorem. Suppose A is the closure of a proper C* subdomain in M, A is homologically
2-aspherical, and the prescribed mean curvature H is related to the parallel mean curveture
function H4 of A by the inequality

(5.10) |H| < cHpa pointwise on A

with a constant 0 < ¢ < 1. Then the Platcau problem P(H,T') has a weak solution in A for
every rectifiable Jordan curve I' which is contractible in A,

Here the parallel mean curvature function H,(a) is the (inward) mean curvature
of the local parailel surface to dA through a at each point @ € A where this is defined
(i.c. a has unique nearest point b in dA4 and it is not a focal point of b} and H,(a) = oo
otherwise (on a subset of measure zero in A). The proof of Theorem 5.3 is based on the
fact that the gradient of the distance function to d4 is a unit vector field 22 which satisfies
divysZ > H4 on A in the distributional sense (see the proof of Proposition 2.9 in [DS2]).
With the Gauss & Green Theorem and (5.10) one deduces

QfF|H|Q < ¢P(F)

for sets F' C A of finite perimeter P(F'), and an unrestricted isoperimetric condition of type
¢, oo follows for H on A by the decomposition theorem for integer multiplicity rectifiable
currents of top dimension. (For details we refer to {DS2], in particular Remark 2.10 (1)
and Proposition 3.4 (v).) Theorem 5.3 above then follows from an application of Theorem
4.4 with s = ¢ = oc, since inequality (4.12) is also implied by (5.10) and ¢ < 1.

Variants of the preceding theorem which allow ¢ = 1 or even values of ¢ slightly larger
than 1 in (5.10)} (insisting in |H| < Haa on the boundary, of course) can be proved using
modifications of the vector field Z above. We refer the reader to [DS3, Section 2] to see
what can be done in this direction. In Euclidean space B* Theorem 5.3 is due to Gulliver &
Spruck [GS2]. They used an existence theorem of Serrin [Se] for the nonparametric mean
curvature equation

vf

Y1+ IVI

in order to find a vectorficld Z with div Z = H on A and with sup, |Z| < 1. Working with
the 2-form w dual to Z one can then argue as in the beginning of this section to obtain
an isoperimetric condition of type ¢ < 1, oo for H on A. This method could also be used
in the Riemannian situation, but our approach here is more flexible since we need only an
inequality |H| < divy Z on A.

It is clear that other isoperimetric inequalities and conditions proved in [DS2] can also
be used in combination with Theorem 4.4 to extend classical existence theorems for the
Plateau Problem in R?, e.g. from [GS1], [Hi2], [Hi3], [Stel], [Ste2], to the Riemannian case.
We leave this to the reader with one exception. Namely, we want to reach our initial
goal and prove a Ricmannian analogue of Wente’s theorem [We] on the solvabiltity of the
Plateau problem in R* for all Jordan curves I' spanning sufficiently small minimal area.
This is based on the lincar spherical isoperimetric inequality (see Definition 4.2)

(5.11) M(Q) < ca(s)M(Q)

div =2H on A4
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for integer multiplicity rectifiable 3-currents @) on M with support in the closed subset A
and with a spherical 2-current 9Q of mass M(9Q) < s as boundary. In the closed case
A= M with [M| < cc we also understand M(Q) < |M] for the currents allowed in (5.11).

For the next theorem we introduce, for a given rectifiable Jordan curve I' with S(T', 4) #
@ (see (3.7)), the least spanning area of I' in A

ar = inf{Dfz) : 2 € ST, A)} .

By the (weak) solution of the Plateau problem in A with zero prescribed mean curvature
(the argument in the second paragraph of the proof of Theorem 4.4) there exists a surface
yr € S(T', A) of least area D(y.) = ar.

5.4 Theorem. Suppose 0 < s < 0o, A is the closure of a C? domain in M, each spherical
2-current of mass < s in A is uniquely homologically trivial in A, and a linear isoperimetric
inequality (5.11) with finite constant ca(s) holds on A where sca(s) < L|M| in the closed
case. Suppose further that the rectifiable Jordan curve I' ts contractible in A with least
spanning area ar < is, and the prescribed mean curvature H satisfies (5.3) on GA (no
condition if A= M) and

(5.12) sup |H| < in the case s = oo,
A

1
2ca(s)

s — 2ap

25c4(5)

Then the Plateau problem P(H,T') has a weak solution in A.

(5.13) sup |H| < in the case s < oo,
A

Proof. We choose y. € S(I', A) with D(y.) = a as reference surface. The unique
homological triviality assumption on A and the linear spherical isoperimetric inequality
(5.11) imply, by {5.6), a spherical isoperimetric condition of type ¢, s for H on A where

¢ = 2ca(s)sup |H]|.
A

We can therefore apply Theorem 4.4 with s = 0 = oo or with 1 <« ¢ = sa' — 1 < o
noting that inequality {4.11) in Theorem 4.4 reduces to (5.12) or (5.13). m

Of course, instead of (5.12) or (5.13) we can use other conditions on H that imply an
isoperimetric condition of type ¢, s for H on A with ¢ < 1 or ¢ < s7'(s — 2a.) respectively.

It follows from Theorem 5.4 that the Plateau problem is solvable whenever a,. and
supy |H| are sufficiently small. Indeed, in [DS2, Section 2] it is proved that a linear
(unrestricted) isoperimetric inequality (5.11} is valid with a finite constant c4(s) for all
sufficiently small s > 0 if A is homogeneously regular {in the sense of Morrey}. The
latter condition means that A is uniformly locally biLipschitz equivalent to the unit ball
in R*. This is automatically guaranteed if A is the closure of a Lipschitz domain on M
and A is compact. In the noncompact case the condition requires that we have uniform
Lipschitz coordinate systems for A at its boundary points and also a certain control for
the Riemannian metric on A. Since the homological triviality hypothesis of Theorem 5.4
is also satisfied for sufficiently small s > 0, by [DS2, Section 2|, we obtain the
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5.5 Corrollary. If A is compact or homogeneously reqular and either A= M or A # M
with positive inward mean boundary curvature bounded away from zero, then there cxst
constants a(A) > 0, 3(A) > 0 such that the Plateau problem P(H,T) is weakly solvable in
A whenever

ap < o(A) and sup H| < g(4).

In order to make the idea precise that we should be able to solve the Platcau problemn for
large values of the prescribed mean curvature if the minimal spanning area of the bound-
ary curve is sufficiently small, we make use of the nonlinear spherical isoperimetric
inequality

(5.14) M(Q) < 7aM(9Q)**  if M(3Q) < s4,

which 1s valid with constants 0 < s4 < oo and 0 < v4 < oo for all integer multiplicity
rectifiable 3-currents on M with spt Q C A, with spherical boundary €2, and with M(Q) <
% M| in the closed case, provided A4 is homogeneously regular (sce IProposition 2.2, Corollary
2.3, and Remark 2.4 in [DS2]). For a simply connected 3-manifold A = M of nonpositive
curvature we have s4 = oo, and v4 = (367)""/2 is the optimal isoperimetric constant of
Eclidean space RY, by [KI].

5.6 Corollary. If M is compact or homogencously reqular then there exists a(M) > 0
such that the Plateau problem P{H,T') is weakly solvable in M whenever a. < o M) and

1

Yary/04ay.

where vy > 0 is the isoperimetric constant from the nonlinear spherical isoperimetric
inequality (5.14) (with A= M ).

(5.15) sup |H| <
M

Proof. (5.14) implies the nonlinear isoperimetric inequality

M(Q) < 1v/sM(3Q)  for @ with M(IQ) < 5 < .4

{and with M{Q) < % M| in the compact case). Therefore we can apply Theorem 5.4 with
ca(s) replaced by var/s, provided s > 0 is sufliciently small. For small a;. we then choose
s = Bap, and (5.13) reduces to the inequality (5.15). |

We conclude with an example: Consider the standard sphere S*. Then the hypothesis
sear(s) < 1|M| in Theorem 5.4 is equivalent to s < 4z, and the condition ay. < 3|M| means
that the least spanning area of T’ should be smaller then the area of a great half sphere in
S3. By Corollary 5.5 we can then solve P(H,T') in S? for supgs |H| sufficiently small. On
the other hand, Gulliver {Gu3] has proved that P(H,T') has no solution if I is a great circle
in S? and H # 0 is constant. Thus, Corollary 5.5 is sharp with respect to the conditions
imposed on I' to secure solvability of P(H, ') for sufficiently small values of sup,, |H|.



However, Corollary 5.6 is most likey not optimal with respect to the bound required for
sup,s [Hi. If one optimizes (5.13) using the explicitely known form of cp(s) for M = 53,
one finds (see [DS2, Example 4.4]) that the condition supgs |[H| < cotr is sufficient for
existence where 7 is the solution of r cot r = 1+ (27)~}/?a with (Qw)_‘f'gayz <r < Z. For
small a,. this is much more restrictive than necessary. In the Euclidean case M = B (and
for simply connected M of nonpositive curvature) (5.15) reduces to the condition

2 /n
5.16) sup |H| < 1/ =, [— .
( )%ﬁpl 1_\/; a

Even in this case the optimal constant is not known. Considering plane circles I' C B one
is lead to the conjecture that the constant /2/3 in (5.16) (which is an improvement [Ste2]

of Wente’s original constant [We]) can be replaced by 1. This would be best possible by
the non-existence theorem of Heinz [He3]. (It has been observed by Struwe [Str, 111.3] that

+/2/3 can be replaced by a larger constant depending on I" if only constant H are admitted.
Such statements can also be derived from an analysis of the proofs for Theorem 4.4 and
Corollary 5.6 above).

6 Concluding remarks on regularity

Here we want to indicate briefly how one can prove regularity of the solutions zcWL2(U, M)
to the Plateau problem which we have produced in Theorem 4.4 and Section 5.

With regard to analytic regularity, i.e. the smoothness of the function z, it is sufficient
to establish continuity on the closed disc I/. Then one can localize in the target manifold
M and introduce coordinates to rewrite the variational equation (2.10) valid for x as an
elliptic system of partial differential equations (2.5) satisfied by z in the weak sense. Now
the arguments given in [Gul}, [HK], [Hi5] apply to give interior C**2# regularity for = if
the precribed mean curvature H is of class C*#. The simplest method is [Grii], making
strong use of the (weak) conformality of z. Boundary regularity was established for minimal
surfaces in a Riemannian manifold M by Heinz & Hildebrandt [HH2] using earlier regularity
theorems of Heinz [He2, [Hed]. Their reasoning can also be applied to H-surfaces in M,
because the extra terms appearing in (2.5) when H # 0 are of the same quadratic nature
with respect to z,, z, as the terms which come from the Levi-Cevita connection on M and
are already present in the case H = 0 (sce also [DHKW, Chap. 7)).

To prove continuity of z on U one can make use of the H-energy minimizing character
of our solutions to employ an old device of Morrey which is based on harmonic replacement
and comparison of encrgies. In order to produce comparison surfaces which lie in the
manifold M, or in the closed subset A in which we have solved the energy minimization
problem by Theorem 4.4 (i), we need to locally transform M, or A, to a convex set in
E*, because harmonic maps into B take their values in the convex hull of their boundary
trace. A natural assumption is therefore that A is uniformly locally biLipschitz equivalent
to a convex set in R, a property called quasiregularity of A in [HK], [Hi5]. In the case
A = M this condition means that M is homogeneously regular in the sense of Morrey. For
completeness we now outline the continuity proof for x based on quasiregularity of A and
the ideas of Morrey. For more details we refer to [HEK].
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Given a disc U.(w) in U such that the boundary trace of our minimizer x € S(T', A)
on dU.(w) is an absolutely continuous curve of sufficiently small length, one can choose
a biLipschitz map ® from a convex set in B® onto a neighbourhood of this trace in A
such that the biLipschitz constant A of ® is bounded by a constant depending on 4 only.
Defining h € WH2(U, (w), R*) as the harmonic function with the boundary values of @~ !ox
on OU,(w) we may then use & = ®oh on U (w), & = x on U\ U, (w), as comparison surface.
The energy minimality of z, the identity

Ey(#) — Ey(z) = Dy,()(#) — Dy, () + 2V y{F, 2)
(valid for small r > 0, cf. (4.18)), and the isoperimetric condition
2 Viu(a,8)| < ¢ [Du, ) (F) + Do, ()]
(valid by (4.9) and (3.5)) then imply

1
/ |Dz|? dudy < +
Ur{w) 1

CAZ[ \ DA dudv

— JUp ()

provided we have required 0 < ¢ < 1 for the constant in the isoperimetric condition
excluding the case ¢ = 1 in Theorem 4.4 (i). Since the Dirichlet integral of a harmonic
function on the unit disc does not excecd the Dirichlet integral of its boundary trace (as
can be seen from a Fourier expansion, e.g.} one infers an inequality

f |\ Dx|? dudv < const T‘/ |Dz|*ds.
Unlw) U (w)

As this inequality is also satisfied (trivially) in the case where x on U, (w) has a boundary
trace of large length one can integrate to obtain a growth condition

. 20
f | Dz|? dudv < const (7—) / | Dx|? dudv
Uy {w) R JU )

for 0 < r < R < min{l — |w|, By}, where By > 0 is sufficiently small and 0 < o < 1 a
suitable exponent. By Morrey’s well known Dirichlet growth theorem this condition implies
Hoélder continuity of x with exponent o on U and, if $|(’)U is continuous, also continuity on
U (see [HK] for a proof of the latter assertion).

With regard to geometric regularity, i.e. the immersed character of our paramet-
ric solutions z: U — A C M of the Platcau problem with prescribed mean curvature, it
is known from an asymptotic expansion given by Hildebrandt & Heinz [HH1] (see also
[DHKW, Chap. 8]) that branch points, where z fails to have maximal rank, are isolated
in U. As a consequence, the boundary mapping z ou must map the circle U homeomor-
phically onto the Jordan curve I' although for the admissible surfaces in the class S(T', A)

we have only assumed that their boundary traces are weakly monotonic parametrizations
of T.

True interior branch points, i.e. branch points accompanied by lines of transversal self-
intersection of the surface emanating from the point, can be ruled out by an argument of
Osserman [Os] for energy minimizing minimal surfaces in ®B* which has been extended to
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surfaces with Lipschitz prescribed mean curvature in Riemannian manifolds by Gulliver
[Gu2]. The missing arguments in Ossermanns work with regard to false branch points,
where the parametric surface is locally a branched covering of an embedded smooth 2-
submanifold of M, have been worked out by Alt [Al] in R* and by Gulliver [Gu2] also in a
Riemannian manifold M (see also [GOR], [Gu4], [Gu5]) to exclude such points in the inte-
rior. Gulliver worked with the volume definition explained at the beginning of Section 5,
where the vector field Z with divaZ = H was used (or the dual 2-form w with dw = HSQ),
and he required sup |Z| < % An inspection of Gulliver’s proof reveals, however, that it is
sufficient to have the isoperimetric condition (4.9) for H with constant ¢ < 1 (sce [SW]).

The situation is less satisfactory with respect to geometric boundary regularity. With
the exception of the article [GL] by Gulliver & Lesly adressing energy minimizing solutions
to the Plateau problem with given analytic boundary curve and with constant mean curva-
ture in an analytic Riemannian 3-manifold, there is no work on the exclusion of boundary
branch points. Thus, in contrast with the geometric measure theory setting where complete
boundary regularity has been established [DS1], {DS2], the question of geometric boundary
regularity of energy minimizing solutions to the 2-dimensional parametric Platcau problem
is largely open.
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